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ABSTRACT

Interleaving planning and execution is a much sought after quality of a robot
architecture. It allows the robot to plan and act in a timely manner. In this paper,
we present a robot architecture that uses abstraction to enable interleaved planning
and execution. We define an Abstraction System as a partially ordered collection
of abstract spaces. We also describe the implementation of an Abstraction System
on a rea-world robot, leading to compelling experimental results in addition to
analytical results.
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WHAT ISABSTRACTION?

Abstraction is a term that has been used by many to denote some strategic form of
problem simplification. Particular instances of abstraction can be found in early planning
literature [1], while more recent discourse in the planning and search communities has
produced a number of formal definitions for abstraction [2,3].

Although many of these works disagree in detail, the common thread throughout is that
abstraction involves a representational transformation. An abstraction performs a
transformation on the original search space, yielding a new, less complex search space in
which discrimination between (irrelevant) details has been mitigated.

Two fairly distinct approaches to abstraction appear in the literature. In one case,
researchers propose to create abstract reasoning spaces by performing transformational
operations on arcs in the state space; in the other case, abstraction is effected by first
redefining the nodes of the search space. We will refer to these two approaches
respectively asaction-based and state-based abstraction.

Action-based abstraction often strives to combine similar actions or to group actions
together to form macro operators [4]. The refinement process following action-based
abstraction can be extremely efficient, as the refinement of a macro-operator may require
little or no search.

State-based abstraction is the less popular technique in which an abstract space
represents world state at a coarser level of detail. In state-based abstraction, refinement
may involve a significant computational effort since the abstract solution provides
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subgoals for the refinement process but does not necessarily aid in the discovery of a
pathway from the current state to the subgoal state.

Y et state-based abstraction is powerful in that limited action models (e.g. STRIPS) are
not required. In this paper, we demonstrate and evaluate the use of a partial order of
state-based abstract problem spaces. We believe that the state-based approach is
particularly amenable to implementation on real-world mobile robotic platforms because
of the ease with which arbitrary action models can be incorporated.

More formally:

We define an Abstraction as a mapping from the original search space to an abstract
search space, such that every knowledge state in the original search space is mapped
to exactly one knowledge state in the abstract search space.
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Figure 1: An example of arobot with state-based abstraction.

This surjective mapping of states is fully general in that any particular abstraction can be
formally captured with such a mapping, plus a specification of node connectivity.

Consider Figure 1. For the security robot shown, an abstract space can completely
ignore the location of the protagonist and professor, differentiating world state only on the
basis of their relative locations. Detail is eiminated, not via a straightforward re-
discretization of the domain, but by partitioning the set of possible knowledge states in a
useful manner.

A more complex example of abstraction in Figure 1 involves vehicle keys. The
abstraction is powerful because it groups together individual knowledge states that are
superficially quite different. In particular, the state of having bicycle keys with the bicycle
out front is indistinguishable, at the abstract level, from the state of having car keys and
having the car out front.

Such an abstraction will prove to be useful whenever a solution in the abstract spaceis a
nontrivial ‘walk’ through a sequence of abstract knowledge states. Of course, the abstract
problem space does not obviate the need for ground problem space planning, as it
provides only subgoal guidance and not a means to achieve the goal.

In order for such abstractions to be effective during planning, we require a measure of
correctness from each abstraction. The requisite property is akin to a generalized form of
downward refinement [5]:

A Sound Abstraction is an abstraction from the ground search space G to the

abstract search space A such that, for every arc between two nodes in A there is a

conditional plan between the set of corresponding nodesin G.



This definition ensures that whenever there is a path between two abstract knowledge
states, then there must be an executable conditional plan from the corresponding set of
possible initial conditions to the corresponding set of goa conditions in the ground
problem space.
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Figure 2: Sound Abstraction example in the domain of Fig. 1. In the abstract problem space, the
goal is for the protagonist and Prof. X to be together. In the ground problem space, this subgoal
is effected using a conditional plan. The robot checks room 3 and then room 5 if the Professor
was not in room 3. The hyperarc denotes a taken action and resulting discrimination between
different possible knowledge states based on perceptual values.

Figure 2 demonstrates a partial plan that satisfies the Sound Abstraction constraint.
Note the subtle point that a sound abstraction requires the existence of a conditional plan
from an initial node that is equivalent to the union of the possible knowledge states
represented by the source node in an abstract space.

The fact that we employ conditional plans brings up a question that is less commonly
addressed: what isthe role of perception in abstraction?

Formally, perception is nothing more than a guarantee of run-time information gain.
Once this perspective is adopted, the role of perception in abstract problem spaces can be
viewed just asin aground problem space.

The difference between a ground-level perceptual branch and an abstract perceptual
branch involves the role of input. In a ground perceptual branch, a single, instantaneous
input vector determines the sink node at run-time. In an abstract perceptual branch, a
series of perceptual input vectors, together with the associated output actions, determine
the sink node after execution of a plan fragment.

ABSTRACTION SYSTEMS

We now turn our attention to a more macroscopic issue: that of the entire problem-solving
representation. Suppose that we are capable of designing an abstract problem space that
Is both sound and useful. In other words, the overhead of using the abstract problem
space should be more than offset by the computational savings provided by itsubgoaling.

Once this has been accepted, it is no great leap to submit that a set of abstract problem
spaces can be better than just one. Since ground reality may be extremely rich and
complex, several abstraction operations may be required to simplify that complexity into a
tenable planning domain.



A popular conclusion is to generalize from a single abstract space to an Abstraction
Hierarchy, which defines abstractions recursively to create a linearly ordered set of
problem spaces ranging from the ground problem space to a most abstract problem space
[1,3].

Linear abstractions of this form are useful for the elimination of overpowering detall,
particularly if that detail can be ignored, at abstract levels of reasoning, regardless of the
initial conditions and goals of the system.

More commonly though, different aspects of detail are irrelevant at different times,
depending on the system context and goals. Since such factors certainly change, even
within one problem domain, we employ a problem space that alows for parallel
abstractions.

Therefore, it makes sense for there to be aternative abstractions of a ground problem
space, since each aternative will be applicablein alimited set of contexts.
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Figure 4: A simple abstraction system for NASA’s Cassini spacecraft. At the ground problem

space (Level 0), all spacraft controls are relevant. However, at Level 1, dlternatives select a
particular set of details depending on the spacecraft mode (science versus orbital injection).

We therefore define an Abstraction System as a partial order of abstractions:
An Abstraction System is a set of partially ordered search spaces. The partial
order must have a unique minimal element, which must bel the ground problem
space.

Figure 4 depicts a portion of the Abstraction System for a spacecraft robot based loosely
on the Cassini spacecraft (NASA). Some representational detail as well as available
actions may be ignored, depending on the goals and current conditions of the spacecraft.

At Level 1, we present two abstract spaces, both of which are abstractions of the ground
gpace in Level 0. Note that no linear abstraction hierarchy can capture the separation
between science experimentation and orbital entry that is captured by the abstraction
system of Figure 4.

Creating a partial order on models is not new. For example, [6] uses partial orders of
models in the context of model-based reasoning and diagnosis. Here, we apply similar
techniques to defining an architecture for abstraction, which we shall then use to interleave
planning and execution on arobot platform.
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Figure 5: (a) A standard exponential search at the ground level. (b) Using an abstraction system,
first an abstract space at Leve 1 is searched, then its results are applied to the search in the ground
problem space at Level 0. A subgoal resulting from the Level 1 search, denoted by the black oval,
enables early search termination and plan execution.

Now that we have presented definitions for Abstraction and for the Abstraction System,
we can begin to imagine the potential savings resulting from interleaving with this
representation. Suppose that we have a control algorithm for interleaving planning in this
problem space with execution.

Figure 5 depicts the potential computational savings of such an approach. Figure 5a
depicts a standard search from the initial conditionsto the goal at a ground problem space,
making no use of abstraction. Figure 5b depicts the case of a two-level abstraction
system. Planning is first conducted at Level 1, where a planner discovers a path to the
goa. That path enables the introduction of a subgoal into the space of Level O, where
that subgoal enables early search termination.

Interleaving comes in at this point, for execution can be effected once a ground plan to
the subgoal has been discovered. Once that aspect of execution is complete, planning
resumes to the goa conditions and, finaly, execution resumes to complete the process.
The computational savings provided by abstraction can be denoted visualy as the white
space in the Level 0 problem space minus the grey area searched in the Level 1 problem
space (the overhead of abstraction).
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Figure 6: A flowchart description of the control algorithm used in every problem space in the
abstraction system.

In order to implement this form of interleaving, planning and reasoning in each problem
space needs to satisfy several task requirements:
1 The planner must plan to the goal within its problem space.
2 The planner must be capable of trandating and instituting a subgoal provided by
any adjacent higher-level problem space.
3 The planner must construct multistep plans such that the results of a step can be
used to supply an adjacent lower-level problem space with a subgoal.

The flowchart of Figure 6 describes a planner algorithm that satisfies these requirements
for any problem space in the Abstraction System. Note that the notion of the



opportunistic refinement of higher-level subgoals applies to every level except the ground
problem space; at thislevel, refinement is replaced by real-world execution.

An obvious question during the refinement process is. which lower problem space
should be chosen, since a partial order may offer more than one possible lower level? In
the systems we have implemented, higher level subgoals have been passed in parallel to
al adjacent lower-level problem spaces. The worst-case cost of such an operation is
proportional to the branching factor of the partial order, whereas the potential for savings
is arbitrary, depending upon the existence of one such child problem space that is well-
suited to handle that specific subgoal. We were fascinated to discover that, empirically,
the overhead of launching the planning process in all child problem spaces appears to be
negligible compared to this reward.

Of course, savings are only realized when the partia order is composed of well-designed
problem spaces that, together, make the planning problem trivial. The fact that we employ
partial orders means that any particular problem space can be vauable even if its
representational simplifications are relevant only to one class ofsubgoals.

IMPLEMENTATION ON BALIN

We now revisit an essential question: can abstraction, in the final anayss, enable
computational savings, or does the overhead of using multiple search spaces offset any
potential savings?

We believe that abstraction is a win in complex and rich environments, where the
autonomous agent is subject to a disparate set of possible inputs, state features, and
various types of goals. To demonstrate the usefulness of abstraction in such a situation,
we set out to design a problem domain for an indoor navigation robot that would satisfy
these criteria.

Tablel: Tasksand featureimplemented by Balin

Tasks State Features
navigation position, obstacles, world map
prof singing location of profs, songs
hourly chime temporal indexing
working inrain umbrella position, manip.

Table | summarizes the result of this design effort. Considerations range from position

and obstacle detection to temporal reasoning in order to achieve the rea-time goal of

hourly chiming. The primary task of the robot involves Professor happiness—its task is to
sing regularly to a set of professors in order to keep them in good spirits. Balin’s goal is
to achieve overall Professor happiness while meeting its other requirements, including
hourly chimes for the author and careful reasoning to either stay clear of “rainy” hallways
or retrieve its umbrella.



Figure 8 Bn of Smith

Figure 8 is a picture of Balin in its current incarnation. Balin is a Nomad-150 mobile
robot that wanders the halls of Smith Hall at Carnegie Mellon’s Robotics Institute. The

processor is a Macintosh Powerbook 170 running Macintosh Common Lisp 2.01. This
MCL image implementsvery problem space of the abstraction system (5 problem spaces
in all), from the lowest-leveground problem space to the highest problem space that is

three levels of abstraction removed.
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Figure 9: Balin’s abstraction system

Figure 9 depicts the abstraction system we chose for Balin. The ground problem space
captures all relevant details of the scenario. The scenario is quite complex, resulting in
more than 10° possible states at this level, 8 possible low-level actions and 32 possible
perceptual input vectors, or percepts|[7].

As one travels up the 4-deep abstraction system, the complexity of the search spaces
decreasesrapidly. At Level 1, two alternative search spaces distinguish between a context
in which the agent reasons explicitly about the umbrella and one in which the agent
ignores the umbrella. The savings in the latter case involve both action branching factor
(since we ignore actions having to do with retrieving the umbrella) and with state space
size (since we ignore the detail of umbrella position). Of course, the applicability of this
latter problem space is more limited, since it will fail to find a solution plan if it is raining
or if the agent does not know whether or not it is raining.



The juxtaposition at Level 1 between this “no-umbrella” world and the alternative “with-
umbrella” world is truly that of alternative representations; one space is not to be viewed
as hierarchically above the other since, for any given initial conditions and goals, one space
will be more appropriate than the other.

At Level 2, the problem space distinguishes only between states sets based on changes in
the relative positions of the robot and the professors (and the author), thereby ignoring
singular information about the position of the robot. Note that this is a valid form of
irrelevance at this reasoning level, although it is crucial to reason about one’s own position
at lower levels of reasoning in order to be able to navigate.

Finally, Level 3 incorporates a representation that captures only distinctions involving
the happiness levels of professors and the timeliness of the robot’s chimes. These, after
all, comprise the top-level goals of the robot. So, this highest-level space adisslas a
scheduler, sequencing and interleaving satisfaction of these top-level goals. Complete
planning to the goal at this level is trivial since the state set size is merely 16 and the
branching factor turns out to be, on average, 4.

THREE RESULTS

In this section, we present three types of results: empirical results on Balin demonstrate
measurable performance improvement due to abstraction; analytical results demonstrate
that abstraction saves at the exponent-level. Finally, we note the existence of formal
results that enable architectural completeness and soundness to be proven for this model
of abstraction.

Empirical Results
Over the course of approximately one week, we exercised Balin’s abstraction system in
Smith Hall and collected planning-cost data. Execution lasted approximately one hour on

these runs.

Tablell: Planning timeresultsfor Balin experiments

Planning time (sec) No abstraction
Level 3 0.09 0.09
Level 2 0.19 7.0
Level 1 0.31 >6h
Level O 2.13 --

Table Il summarizes the total planning time for Balin at each level of abstraction. The
rightmost column indicates the total planning time at that level of abstraction if the
abstraction system is not used. Note that the top-most level suffers no computational
setback in the case of “No abstraction”, since it receives no subgoal information from a
higher level anyway, even when an abstraction system is in place.

The table demonstrates that ground level planning without abstraction was impossible.
Furthermore, planning without abstraction at Level 1 was possible, but just the planning
time was actually greater than the entire planning plus execution time in the abstraction-
based case.



A final comment about this table regards the relative sizes of planning times in each
space. Note that the planning time in successively higher problem spaces decreases
quickly. The planning time in these higher problem spaces is the computational overhead
of abstraction, and the fact that the total overhead is much smaller than the total planning
time at the ground level demonstrates that it is quite possible for the computational gains
of abstraction to handily outweigh its overhead.

Of course, one must remember that abstraction has the potential of leading to less
optimal executable plans; it is entirely possible for abstraction to therefore make execution
costs sufficiently suboptimal as to outweigh any computational savings brought on by the
abstraction. In the case of Bdlin, the Abstraction System we have designed preserves
execution optimality.

Indeed, as the independence and multifaceted nature of a problem domain increases, it
becomes easier and easier to design such Abstraction Systems. The nonoptimality danger
becomes apparent when seemingly independent problem properties and subgoals are, in
fact, dependent.

Computational Savings

Planning is traditionally a search performed on the exponential search space. If therearea
actions arljdkp percepts in this search space, then planning is exponential in the length of the
plan, k: p‘a”.

Conventional means of abstraction offer search space saving because the abstract
problem-solving process informs the ground search space with subgoals, reducing the
depth to which the planning system must blindly search. If the origina solution is of
length k and the abstract subgoal ‘cuts’ at the midpoint of the solution, then we transform
the search space size frpfa‘to p?a’® + p**(p%a“?) = p“?a’*(1+p"?).

Now consider interleaving planning and execution. Suppose that the subgoals provided
by the abstraction are guaranteed to be correcbad abstraction). In that case,
ground level planning can stop after a conditional solution to the next unachieved subgoal
Is in hand. Once the system executes that solution, reaching a particular node at the fringe
of the plan, planning resumes.

For our previous formula, this further reduces the search spacg’@“2 In the
general case, when abstraction yieldsubgoals for ak-step problem, interleaving
abstraction and execution yields the following savings at the ground level:

(1) p‘a“ (no abstraction)
(2) bounded bp“"a“'(1p") (with abstraction)
(3) bounded byp'a” (interleaving + abstraction)

The intuition behind these savings, which are indeed occurring in the exponent, is that we
make maximal use of run-time information gain (in the form of sensory feedback) to
reduce perceptual branching addition to the well-known reduction in effectory
branching.

Formal Properties



Our definition of abstraction and the Abstraction System fits formally within the
mathematical framework of state and property-based representations. This connection
leads to the appealing characteristic of provability. Specificaly, it is possible to guarantee
soundness and completeness (convergence in the eyes of control theoreticians) for robot
architectures that interleave planning and execution using a dlightly more complex
implementation of the abstraction system.

Theorem 1: There exists a search algorithm ABS that is sound and complete for all
consistent, sound abstraction systems.

In this paper, we have not delved into sufficient detail to present the ABS agorithm fully;
it is, however, an extension of the flowchart shown in Figure 6.

This formal result has some similarity to formal results provided by other researchers in
the field of abstraction. The key difference, however, is that we prove soundness and
completeness of the interleaving system, not of a single planning episode.

RELATED WORK

The majority of research in the area of abstraction has focused on off-line abstraction
[2,3,5]. Furthermore, much of this research has involved action-based abstraction. For
example, [4] define both inter-action and sequential abstractions. The former involves
abstract actions that represent a digunction of a set of actions, whereas the latter enables
abstract actions that are essentially macro-operators.

As stated earlier, this approach frequently demands that the researcher make simplifying
assumptions concerning the action model for the sake of tractability. For instance, Helwig
& Haddawy express actions models under a STRIPS assumption, even when describing
the preconditions and postconditions of a macro-operator. This type of simplification is
significant because, while it enables the abstraction of action, it severely limits applicable
and tractable domains. Our work differs in that we do not institute a STRIPS model.
Instead, we assume that action models are expressed as arbitrary mappings between
knowledge states.

We are able to be this general because we focus upon state-based abstraction. Under
the umbrella of state-based abstraction, the representational transformation that we call
abstraction is really a way to reason about reachahbility. Other researchers have delved
into state-based abstraction, most notably [3]. However, Knoblock asserts the ordered
monotonicity property, which limits him to abstractions in which all refinements of an
abstract plan leave the abstract literals established. Our approach differs from this in that
we consider sound abstractions to be those in which some refinement exists. Of course,
our weaker definition allows for much more possible abstraction spaces, with the potential
penalty of run-time computation (e.g. planning) during the refinement process.

Furthermore, although Knoblock engages in state-based abstraction, he too employes
STRIPS type action models, again restricting the set of applicable domains. A much more
subtle representational argument involves our definition of state abstraction. Whereas
Knoblock drops terms to form reduced models, we allow arbitrary clustering of ground
level states. Our approach is strictly more genera in that an abstraction operation can in
fact depend on the value of multiple dependent real-world properties. Dropping literals in



one way of eliminating detail; we argue that one may not want to drop a litera altogether,
but to abstract across the values of two literalsin the problem space.

Interestingly, several results from within the motion planning community can be couched
as instances of our state-based abstraction formalism. Lazanas & Latombe [8] introduce
the concept of TC Actions, which are actions that have a durative component, continuing
on until an associated termination condition (TC) is detected. Lazanas & Latombe
implement this method by introducing geometric subgoals in the robot’s environment, then
searching between these subgoals. In this more abstract search space, the action
branching factor, the perceptual branching factor, the state set size and the solution length
are all decreased.

Another motion planning research project, Donald [9] also demonstrates a form of state
abstraction through the use of flustical dice mechanism, whereby he discretizes a
continuous space while preserving soundness and completeness.

Significantly, note that these motion planning roboticists demonstrate instances of state-
based abstraction amid not employ the STRIPS assumption. In the case of both Donald,
for instance, the action model allows for arbitrary function specification. It is no
coincidence that those researchers employing more complex robot models cannot use the
STRIPS assumptions and, instead, shy away from such simplifications during abstraction.

CONCLUSIONS

We have presented a framework for representing and reasoning about abstraction systems.
Our approach is of particular interest because it has been successfully tested on a real-
world robot that was placed in a purposefully complex world.  Furthermore,
computational and formal results demonstrate that abstraction can provide savings at the
exponent-level while preserving the soundness and completeness of the underlying
planner.

The partial order concept at the heart of our definition of Abstraction Systems offers a
method for reasoning about domain characteristics that are relevant to a particular
problem at hand. As such, the partial order representation allows the implementation of
very intuitive notions of irrelevance.

Many topics remains to be addressed in this discipline. The automatic generation of
abstraction systems and the automatic selection of the right abstract search space during
refinement are two such open topics.
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