
Symantec Visual Cafe (Java 1.1) and Microsoft Visual C++ 5.0
A COMPLETE step-by-step guide to creating a simple example program.

This guide will describe precisely the steps needed to connect up a native Java call to a C
dll generated using Microsoft Visual C++ 5.0. Try this example, then you can pattern-
match to your heart’s content!

1. Start Visual Cafe. Go to the menubar and select File/New Project. Double-click
Basic Applet

2. Select File/Save as and save the project as sample1 (in its own new directory)
3. Select Insert/Form and double-click Frame.
4. Now go to the objects window on the left and change the name of this new object

from Frame1 to NativeClass.
5. Now double-click on Applet1 and double-click on the visual window to get to the

code.
6. Right after the class declaration, put the line: NativeClass myclass; So, the resulting few

lines around this declaration will look like:
7.

public class Applet1 extends Applet
{
 NativeClass myclass;

public void init()

8. Now cause an instance to be created in the init function. Put the line, myclass = new

NativeClass(); in the init() function, at the end. The surrounding lines will look
like:

//{{INIT_CONTROLS
setLayout(null);
setSize(426,266);
//}}
myclass = new NativeClass();

}

//{{DECLARE_CONTROLS

9. Now double-click on the NativeClass object to get to the Form Designer. Now we
will add a button and a textfield to this form. The button and textfield icons are under
the Standard tab above your work area. Click on the button (far right) and then drag a
button into existence on the form. Click on the textfield (6th from the left) and drag a
textfield in the form as well.

10. Now double-click no the background of the Form Designer to get to the code. In the
NativeClass constructor, add setVisible(true); The surrounding will look like:

add(textField1);
setTitle("Untitled");
//}}
setVisible(true);

//{{INIT_MENUS
//}}

11. Now select Project/Execute and you should get the Applet window and, on top, the
untitled window with a button and a textfield. Exit this execution by clicking the X at
the top right of the Applet window.

12. From the top left Objects selection on the NativeClass.java code select button1.
Then, to its right, from Event/Methods select MouseClick.

13. Inside the button1_MouseClick function add lines to result in the following function
definition. The function addone is going to be written in C:

void button1_MouseClick(java.awt.event.MouseEvent
event)
{

// to do: code goes here.
int returnval;
returnval = addone(5);
returnval = returnval + 1;
textField1.setText(Integer.toString(returnval));

}

14 After this function definition, but before the final curly brackets of the class definition,
add:

public native int addone(int num);

static {
 System.loadLibrary("csample");
}

These lines declare that addone will be a native call and the static paragraph loads the
.dll file at runtime. Now select Project/Execute. The Applet will appear and then
you’ll get an error on the outputs window: java.lang.NoClassDefFoundError.
Quit the program, same as before.

15 Now you need to generate the C header (.h) file based on the Java code you wrote.
Go into MS-DOS and get to the directory with your Java code in it. Make sure you
see NativeClass.java. Now run javah to create a JNI header file by typing:

javah -jni NativeClass

16. Now do “type NativeClass.h” and you should see this:

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class NativeClass */

#ifndef _Included_NativeClass
#define _Included_NativeClass

#ifdef __cplusplus
extern "C" {
#endif
/*
 * Class: NativeClass
 * Method: addone
 * Signature: (I)I
 */
JNIEXPORT jint JNICALL Java_NativeClass_addone
 (JNIEnv *, jobject, jint);

#ifdef __cplusplus
}
#endif
#endif

If for some reason javah was unrecognized, note that it’s in your
?:\VisualCafedbDE\Java\Bin directory and you should have that in your path for
executables. The other MS-Dos executable we’ll be using also are there. By the way,
I’m using Visual Cafe database edition (that’s why there’s the dbDE on the folder
name).

17 Now we can do the C side! Start up Microsoft Visual C++ 5.0. On the menubar,
click File/New. Select Win32 Dynamic-Link Library. Give the project the name,
csample and click OK. Now make sure you’re in File View on the left side tab.

18 Click File/New again. Select Text File, name it csample.c and click OK. Now,
inside csample.c, put the following two lines:

#include <jni.h>
#include "NativeClass.h"

19 Now click Project/Settings. Go to the C/C++ tab. Select Category:

Preprocessor. In Additional include directories: put the following:

D:\VisualCafedbDE\Java\Include,D:\VisualCafedbDE\Java\Include\win32

(in my case, Visual Cafe is installed on the D drive)

20 Now go to your Java project directory and grab NativeClass.h. Put it in your csample
directory.

21 Back to Visual C++ 5.0. Open NativeClass.h in here, and copy and paste the function
declaration into csample.c. Type lines into csample.c to send up with the following
code:

#include <jni.h>
#include "NativeClass.h"

JNIEXPORT jint JNICALL Java_NativeClass_addone
 (JNIEnv * jnienv, jobject javaobj, jint parm1)
{

int n;
n = parm1 + 1;
return (n);

}

22 Now make your dll. Select Build/Build csample.dll. It generate a .lib that is useless
and the .dll file in the Debug (or Release) subdirectory of your project.

23 Copy csample.dll from the C side to your Java project directory.

24 Start up MS-DOS. Go to your Java project directory. Type: “implib.” For the lib
file, specify csample.lib. For the dll, specify csample.dll. When it’s done, then
type “libunres -p csample.lib” and you should see the function in the library!
Strange name, eh?

25 Last step: Now go back to Visual Cafe. Click Project/Execute. Click your button
and, voila, the number 6 appears in the textfield. You have communication from your
C dll to Java!

The End

