Rewriting Logic
and
The Maude Execution Environment

http://maude.cs.uiuc.edu

Carolyn Talcott
SRI International

Maude Formal Methodology

Database
o

Yearly
Manthly
Weekly
Daily
Manually

Distribute guery

Palling

Resource monitoring

S |=®

model
checking

state space el

rapid search ! \3
i &) &
prototyping h PN /

E-mail

Fault
Configuration
Accounting
Performance
Security

Plan

Big Picture

Simple examples in some detail

Highlights of some applications and case studies

Rewriting Logic

Q: What is rewriting logic?

Al. A logic to specify, reason about, prototype,
and program software systems, that may possibly
be concurrent, distributed, or even mobile.

A2: An extension of equational logic with local
rewrite rules to express concurrent change over
Time.

Rewriting Logic as a
Semantic Framework

A wide variety of models of computation can be
naturally expressed as rewrite theories

Lambda Calculus, Turing Machines
Concurrent Objects and Actors

CCS, CSP, pi-calculus, Petri Nets

Chemical Abstract Machine, Unity

Graph rewriting, Dataflow, Neural Networks

Real-time Systems
Physical Systems (Biological processes)

Rewriting Logic as a
Logical Framework

A wide variety of logics have a natural representation
as rewrite theories

Equational logic

Horn logic

Linear logic

Quantifiers

Higher-order logics (HOL, NuPrl)
Open Calculus of Constructions
Rewriting logic !

Rewriting Logic is Reflective

A reflective logic is a logic in which important aspects
of its metatheory (entailment relation, theories,
proofs) can be represented at the object level in a
consistent way.

This has many applications:
Metaprogramming
Module composition
Reification of maps of logics
Internal strategies
Higher-order capabilities in a first-order framework
Formalization of reflection for concurrent objects
Domain specific assistants

Simple Examples

Rewrite Theories

Rewrite theory: (Signature, Labels, Rules)

Signature: (Sorts, Ops, Egns) -- an equational theory
Describe data types, system state

Rules have the form label : t =>1t' if cond

Rewriting operates modulo equations
Describes computations or deductions, also modulo equations

Maude

Maude is a language and environment based on
rewriting logic

See: http://maude.cs.uiuc.edu

Features:
Executability -- position /rule/object fair rewriting
High performance engine --- {ACI} matching
Modularity and parameterization
Builtins -- booleans, number hierarchy, strings
Reflection -- using descent and ascent functions
Search and model-checking

Example: NatList

fmod NATLIST is
pr NAT
sort NatList
subsort Nat < NatLlist
op nil : -> NatList
op : NatList NatList -> NatList [assoc id: nil]

var n: Nat. var nl: NatlList

op sum : NatList -> Nat
eq sum(nil) =0
eq sum(n nl) = n + sum(nl)

endfm

Maude> reduce sum(l 2 3)
result NzNat: 6

Example: NatList

fmod NATLIST1 is
inc NATLIST
var n : Nat
vars nl nl' nl'' : NatList

op removeDups : NatList -> NatList
eq removeDups(nl n nl' n nl'")
= removeDups(nl n nl' nl'')
eq removeDups (nl) = nl [owise]
endfm

Maude> reduce removeDups(0 3 01 2 1 0)

result NatList: 0 3 1 2

Deduction/Computation Rules

reflexivity:
/\ /\ congruence:
A/“\ /N
| A ! le replacement:
N .

" omm o
Y e ow omm *

Petri Net Example
A vending machine

($)

AN

Buy-c Buy-a change

b o

The vending machine as a rewrite theory

A Maude Program

mod VENDING-MACHINE is
sort Place Marking
subsort Place < Marking

op 1 : -> Marking . *** empty marking
ops $,9,a,c : -> Place
op : Marking Marking -> Marking

[assoc comm id: 1]
rl[buy-c]: $ => c
rl[buy-al: $ => a g .
rl[change]l]: g ggqgq=>$
endm

Using the vending machine

Maude> rew $ $ $
result Marking: g a c ¢

Maude> search $ § $ =>! a a M:Marking

Solution 1 (state 8)
M:Marking --> g g ¢

Solution 2 (state 9)
M:Marking --> g g q a

No more solutions.
states: 10 rewrites: 12)

Reflection example: Module analysis

fmod CONSUMERS 1is
inc MY-META
var M : Module . var T : Term
var R : Rule . var RS : RuleSet

op consumes : Module Rule Term -> Bool
eq consumes (M,R,T) =
getTerm (metaReduce (M, 'has[getLhs (R) ,T]))
== 'true.Bool

op consumerRules : Module Term -> QidSet
op consumerRules : Module RuleSet Term -> QidSet

eq consumerRules(M,T) =
consumerRules (M, upRls (getName (M) , true) ,T)
eq consumerRules (M,none,T) = none
eq consumerRules(M,R RS,T) =
(Lf consumes(M,R,T) then getRuleId(R) else none fi);
consumerRules (M,RS,T)
endfm

Reflection Example: Module analysis cntd.

mod VEND-X 1is
inc VENDING-MACHINE

vars MO M1 : Marking
op has : Marking Marking -> Bool

eq has(M0O M1, M1l) = true
eq has(M0O, M1l) = false [owise]
endm

select CONSUMERS

Maude> red consumerRules (['VEND-X],'$.Coin)
result: Sort 'buy-a ; buy-c

Maude> red consumerRules (['VEND-X], 'g.Coin)
result: Sort 'change

Reflection example: Strategy

fmod METAREWRITE-LIST is
inc MY-META
var M : Module
vars T T’ : Term
var res : Resultd4Tuple?
var rid : Qid
var gl : QidList

op metaRewList : Module QidList Term -> Term
eq metaRewlList (M,nil,T) =T
ceq metaRewList(M,rid gl,T) = metaRewList(M,ql,T')
if res := metaXapply(M,T,rid,none,0,unbounded, 0)
/\ T' := if res :: ResultdTuple
then getTerm(res) else T fi
endfm

Reflection example: Strategy cntd.

Maude> red metaRewlList (['VENDING-MACHINE],
'change 'buy-a,
' ['g.Coin,'q.Coin, 'q.Coin, 'q.Coin])

result GroundTerm: ' ['qg.Coin, 'a.Item]
Maude> red metaRewlList (['VENDING-MACHINE],
'buy-a 'change,

' ['g.Coin,'q.Coin, 'q.Coin, 'q.Coin])

result Constant: '$.Coin

Experience Using Maude

A Tool To Build Tools

- PLAN, an active network language
- D'Agents, a mobile agent language
- GAEA, a mobile agent language

ngjel\ll&hiné‘Shop
- Object-oriented for Software Systems

- Real-time Maude

- UML — Maude (Universal Modeling Language)
- CAPSL — CIL (cryptographic analysis)

- Common Authentication Protocol Specification Language (CAPSL) provides
interoperability for many tools used in the analysis of computer security
protocols

- HOL — NuPrl (Sharing Theory Libraries)

Maude Finds Insidious Bugs in Complex
Systems

o A new active network broadcast protocol with\

dynamic topology (ucsc, 1999)

» AER/NCA suite for active network protocols
(UMass /TASC, 2000)

RBP

Designing a Reliable Broadcast Protocol

‘ Pseudocode |< make assumptions explicit

\l-’ -discover gaps, missing

Maude Specification cases

-distributed structure . .
rules ‘repair problems early in

design phase

\|/ -discover subtle bugs
Default Execution related to concurrency
Exhaustive Search and distribution

Application to Reliable Multicast in
Active Networks

e Faithful representation:
Network nodes and links
Capacity, congestion, etc.
Represented in Maude

e Efficient automated analysis

® Uncovered important and
subtle bugs not known to
network engineers

" Tasc/UMass

Service Proxy Toolkit (SPTK)

Remote service requirements:

Publication and discovery

Remote messaging
Security

~ RegistryNode ~

Reg: db
4 AN

AN

4

LookUp,’/

ClientNode ’
ﬁ ﬁ
findSvc

Sch;II\A cPxy <+ ——

y
\- A

‘.Register

\ ServerNode

/ 4 \
Tk Register

STh <= S2EL Gremg)

Remote Messaging

- /

SvcCall

> sPxy —

_

%

Security Goals

Goal O: Client VM protected from evil proxy

Goal 1: Secure client-server communication

Goal 2: Client can authenticate service proxy

Goal 3: Server can also authenticate client

Maude Model of SPTK

Documentation of SSPTK architecture

Modular, tunable security levels
Formalization of security goals

Security hole closed
signed proxy needs to include service description

http://www-formal.stanford.edu/clt/FTN

Secure Spread

Spread is group communication system
Provides range of message delivery guarantees

- reliable, fifo, causal, agreed, safe

in the presence of network partitions

Secure spread adds group key management

Apps

Apps

Secure Spread

Apps|| Flush Spread

Cliques

Spread Group Layer| Key

Mgt

Spread Net Layer

Secure Spread in Maude

o Objective
Abstract executable specification of Secure Spread
Model each component and compose
Documentation for designers and user
Verification of Spread and applications built top of Spread

Starting point
User Guide (informal, many details)
Research papers (high-level axiomatic semantics)
Spread Source Code (C)
Modelling Challenges
Capture best-effort principle formally

Secure Spread

Basic tool for exploring alternative designs

Formal API

Mapped abstract GCS specification to event partial
order semantics of Spread model

Raised some subtle issues

Adapting CAPSL specification of Secure Spread to
glue Flush Spread and Cliques

http://www-formal.stanford.edu/clt/FTN

Pathway Logic

Maude Models of Cellular Processes

o Biological entities are represented as terms

o Networks of processes/reactions are represented by
collections of rewrite rules.

o The network models can be queried using formal
methods tools.
- Execution--find some pathway through the network

- Search--find all pathways leading to a specified final
condition

- Model-checking--is there a pathway having particular
properties?

Visualizing a EGFR Network as a PetriNet

il

| 793_EGF.act.EGFR.ErbBZ. |

/ [S 816.EGFR.act.Src.] | 761.EGFR.act.Grb2.]

/
,

299.Slk.act.Shc. |

450.Vav3.act.7RRC.

—

485.EGFR. ac:t ?Vawv.

324.Shc.act. '?Sos

471 .Cdc42.act.Mekk4. | |

6.7Sos.act.?Ras. |

458.Mekk4.act.Mkk4. |

775.7Ras.act.bRaf. |

Jnk1 (cyto) Mik4act(cyto) << bRafact(CM) > -

[23.7MKkA/ 7 et 7 Ink. |

T 452.bRaf.act.?Mek1/2. |

|
|
!
] —

| 49.7Jnk.to.nuc. | | 910.?Me:1/2.act.?Erk‘I/2. |

-
| 437.7Erk1/2.act.7Rsk. |

|

'~ 149.7Rsk.inhib.Gek3. |

< Gsk3deact(cyto) > -

50.7Jnk.act.cJun.

EGF/EGFR experiments

Activation of a transcription factor (cJun cFos) following
binding of extracellular epidermal growth factor (EGF) to
its receptor (EGFR)

ops gl glx : -> Dish .

eq ql = PD(EGF {CM | EGFR Pakl PIP2 nWasp [H-Ras - GDP]
{Aktl Gabl Grb2 Gsk3 Eps8 Erkl
Mekl Mekkl Mekk4 Mkk4 Mkk3 Mlk2
Jnkl p38a p70s6k Pdkl PI3Ka PKCbl
Rafl Rskl Shc Sos [Cdc42 - GDP]
{NM | empty {cJun cFos }}}1})

eq glx = ql - < PI3Ka , cyto > *** knockout

Model Checking

subsort Dish < State
eq PD (out:Soup
{CM | cm:Soup
{cyto:Soup
{NM | nm:Soup
{nuc:Soup
[cJun - act] [cFos - act] }}}})
|= propl = true

eq findPath (S:State,P:Prop)
= getPath (P:Prop, S:State |= ~ <> P:Prop)

red findPath(ql,propl)
red findPath(qlx,propl)

Roadmaps for q1,q1x runs

ol w3 \3 0 e alme
; A
AN
429 U FC IR GRS

. 13
i ,
T |

| dsT

Pathway Logic Workbench

rd

Rules

MetaData
g J

Browser
/%)\
Entrez

_ SwissProt

ook sk

Maude model
4 repository \ \._ Editor
Mode

Ontology xplorey

r— Web Resources =\

J

Pathway Logic
Assistant

GraphixMgr

manager

— BioCyc —

Navigator

X

K ok k

Node
Coud) (G
\

GraphixInteractor

Ob)

ﬁ BioNet Tool —

EcoCyc HumanCyc

T

S

J

Challenges for a Next Generation

FM Framework

Natural modeling of a

wide range of features

Combining and interoperating different models of a

system, and/or mode

Factoring models/ana

s of subsystems

yses/code -- scale and reuse

Transforming and abstracting models

Analysis techniques and tools that require the right
level of effort for the required level of assurance

Promising candidate: rewriting logic and Maude

Coming Attractions

Mobile Maude

Probablistic and stochastic reasoning

Animation and visualization capabilities

More interoperation with other tools

