
Rewriting Logic
and

The Maude Execution Environment

Carolyn Talcott
SRI International

http://maude.cs.uiuc.edu

Impact

rapid
prototyping

state space
search

S |=Φ
model

checking

Maude Formal Methodology

Plan

Big Picture

Simple examples in some detail

Highlights of some applications and case studies

Rewriting Logic

Q: What is rewriting logic?

A1: A logic to specify, reason about, prototype,
and program software systems, that may possibly
be concurrent, distributed, or even mobile.

A2: An extension of equational logic with local
rewrite rules to express concurrent change over
time.

Rewriting Logic as a
Semantic Framework

A wide variety of models of computation can be
naturally expressed as rewrite theories

0 Lambda Calculus, Turing Machines
0 Concurrent Objects and Actors
0 CCS, CSP, pi-calculus, Petri Nets
0 Chemical Abstract Machine, Unity
0 Graph rewriting, Dataflow, Neural Networks
0 Real-time Systems
0 Physical Systems (Biological processes)

Rewriting Logic as a
Logical Framework

A wide variety of logics have a natural representation
as rewrite theories

0 Equational logic
0 Horn logic
0 Linear logic
0 Quantifiers
0 Higher-order logics (HOL, NuPrl)
0 Open Calculus of Constructions
0 Rewriting logic !

Rewriting Logic is Reflective

A reflective logic is a logic in which important aspects
of its metatheory (entailment relation, theories,
proofs) can be represented at the object level in a
consistent way.

This has many applications:
0 Metaprogramming
0 Module composition
0 Reification of maps of logics
0 Internal strategies
0 Higher-order capabilities in a first-order framework
0 Formalization of reflection for concurrent objects
0 Domain specific assistants

Simple Examples

Rewrite Theories

0 Rewrite theory: (Signature, Labels, Rules)

0 Signature: (Sorts, Ops, Eqns) -- an equational theory
– Describe data types, system state

0 Rules have the form label : t => t’ if cond

0 Rewriting operates modulo equations
– Describes computations or deductions, also modulo equations

Maude

0 Maude is a language and environment ! based on
rewriting logic

0 See: http://maude.cs.uiuc.edu
0 Features:

– Executability -- position /rule/object fair rewriting
– High performance engine --- {ACI} matching
– Modularity and parameterization
– Builtins -- booleans, number hierarchy, strings
– Reflection -- using descent and ascent functions
– Search and model-checking

Example: NatList
fmod NATLIST is
 pr NAT .
 sort NatList .
 subsort Nat < NatList .
 op nil : -> NatList .
 op __ : NatList NatList -> NatList [assoc id: nil] .

 var n: Nat. var nl: NatList .

 op sum : NatList -> Nat .
 eq sum(nil) = 0 .
 eq sum(n nl) = n + sum(nl) .
endfm

Maude> reduce sum(1 2 3) .
result NzNat: 6

Example: NatList
fmod NATLIST1 is
 inc NATLIST .
 var n : Nat .
 vars nl nl' nl'' : NatList .

 op removeDups : NatList -> NatList .
 eq removeDups(nl n nl' n nl'')
 = removeDups(nl n nl' nl'') .
 eq removeDups(nl) = nl [owise] .
endfm

Maude> reduce removeDups(0 3 0 1 2 1 0) .
result NatList: 0 3 1 2

Deduction/Computation Rules

reflexivity:

replacement:

congruence:

f f

Petri Net Example
A vending machine

Buy-c Buy-a change

c a q

$

4

The vending machine as a rewrite theory

mod VENDING-MACHINE is
 sort Place Marking .
 subsort Place < Marking .
 op 1 : -> Marking . *** empty marking
 ops $,q,a,c : -> Place .
 op _ _ : Marking Marking -> Marking
 [assoc comm id: 1] .
 rl[buy-c]: $ => c .
 rl[buy-a]: $ => a q .
 rl[change]: q q q q => $.
endm

A Maude Program

Using the vending machine

Maude> rew $ $ $.
result Marking: q a c c

Maude> search $ $ $ =>! a a M:Marking .

Solution 1 (state 8)
M:Marking --> q q c

Solution 2 (state 9)
M:Marking --> q q q a

No more solutions.
states: 10 rewrites: 12)

Reflection example: Module analysis
fmod CONSUMERS is
 inc MY-META .
 var M : Module . var T : Term .
 var R : Rule . var RS : RuleSet .

 op consumes : Module Rule Term -> Bool .
 eq consumes(M,R,T) =
 getTerm(metaReduce(M,'has[getLhs(R),T]))
 == 'true.Bool .

 op consumerRules : Module Term -> QidSet .
 op consumerRules : Module RuleSet Term -> QidSet .

 eq consumerRules(M,T) =
 consumerRules(M,upRls(getName(M),true),T) .
 eq consumerRules(M,none,T) = none .
 eq consumerRules(M,R RS,T) =
 (if consumes(M,R,T) then getRuleId(R) else none fi);
 consumerRules(M,RS,T) .
endfm

Reflection Example: Module analysis cntd.

mod VEND-X is
 inc VENDING-MACHINE .

 vars M0 M1 : Marking .
 op has : Marking Marking -> Bool .

 eq has(M0 M1, M1) = true .
 eq has(M0, M1) = false [owise] .
endm

select CONSUMERS .

Maude> red consumerRules(['VEND-X],'$.Coin) .
result: Sort 'buy-a ; buy-c

Maude> red consumerRules(['VEND-X],'q.Coin) .
result: Sort 'change

Reflection example: Strategy

fmod METAREWRITE-LIST is
 inc MY-META .
 var M : Module .
 vars T T’: Term .
 var res : Result4Tuple? .
 var rid : Qid .
 var ql : QidList .

 op metaRewList : Module QidList Term -> Term .
 eq metaRewList(M,nil,T) = T .
 ceq metaRewList(M,rid ql,T) = metaRewList(M,ql,T')
 if res := metaXapply(M,T,rid,none,0,unbounded,0)
 /\ T' := if res :: Result4Tuple
 then getTerm(res) else T fi .
endfm

Reflection example: Strategy cntd.

Maude> red metaRewList(['VENDING-MACHINE],
 'change 'buy-a,
 '__['q.Coin,'q.Coin,'q.Coin,'q.Coin]) .

result GroundTerm: '__['q.Coin,'a.Item]

Maude> red metaRewList(['VENDING-MACHINE],
 'buy-a 'change,
 '__['q.Coin,'q.Coin,'q.Coin,'q.Coin]) .

result Constant: '$.Coin

Experience Using Maude

A Tool To Build Tools
Maude interpreters for ...

– PLAN, an active network language
– D’Agents, a mobile agent language
– GAEA, a mobile agent language

Notations and analysis tools
– Object-oriented
– Real-time Maude

And Maude mappings from ...
– UML → Maude (Universal Modeling Language)
– CAPSL → CIL (cryptographic analysis)

– Common Authentication Protocol Specification Language (CAPSL) provides
interoperability for many tools used in the analysis of computer security
protocols

– HOL → NuPrl (Sharing Theory Libraries)

Agile Machine Shop
for Software Systems

Maude Finds Insidious Bugs in Complex
Systems

0 A new active network broadcast protocol with

 dynamic topology (UCSC, 1999)

0 AER/NCA suite for active network protocols
 (UMass /TASC, 2000)

RBP
Designing a Reliable Broadcast Protocol

Pseudocode

Maude Specification
•distributed structure
•rules

Default Execution
Exhaustive Search

•make assumptions explicit

•discover gaps, missing
 cases

•repair problems early in
 design phase

•discover subtle bugs
 related to concurrency
 and distribution

Application to Reliable Multicast in
Active Networks

sender

receivers

repair
server

lossy
link

Tasc/UMass

 Faithful representation:

Network nodes and links

Capacity, congestion, etc.

Represented in Maude

 Efficient automated analysis

 Uncovered important and
subtle bugs not known to
network engineers

Svc

sTk

ServerNode

App cTk

ClientNode

cPxy

SvcMgr

sPxy

Service Proxy Toolkit (SPTK)

RegistryNode

Reg: db

findSvc

SvcCall

LookUp Register

Register

Remote Messaging SvcCall

Remote service requirements:
0 Publication and discovery
0 Remote messaging
0 Security

Security Goals

0 Goal 0: Client VM protected from evil proxy

0 Goal 1: Secure client-server communication

0 Goal 2: Client can authenticate service proxy

0 Goal 3: Server can also authenticate client

Maude Model of SPTK

0 Documentation of SSPTK architecture
– Modular, tunable security levels

0 Formalization of security goals
0 Security hole closed

– signed proxy needs to include service description

 http://www-formal.stanford.edu/clt/FTN

Secure Spread

0 Spread is group communication system
– Provides range of message delivery guarantees

– reliable, fifo, causal, agreed, safe

– in the presence of network partitions

0 Secure spread adds group key management

Spread Net Layer

Spread Group Layer

Flush Spread Cliques
Key
Mgt

Apps

Secure SpreadApps

Apps

Secure Spread in Maude
0 Objective

– Abstract executable specification of Secure Spread
– Model each component and compose
– Documentation for designers and user
– Verification of Spread and applications built top of Spread

0 Starting point
– User Guide (informal, many details)
– Research papers (high-level axiomatic semantics)
– Spread Source Code (C)

0 Modelling Challenges
– Capture best-effort principle formally

Secure Spread

0 Basic tool for exploring alternative designs
0 Formal API
0 Mapped abstract GCS specification to event partial

order semantics of Spread model
0 Raised some subtle issues
0 Adapting CAPSL specification of Secure Spread to

glue Flush Spread and Cliques
0 http://www-formal.stanford.edu/clt/FTN

 Pathway Logic
 Maude Models of Cellular Processes

0 Biological entities are represented as terms

0 Networks of processes/reactions are represented by
collections of rewrite rules.

0 The network models can be queried using formal
methods tools.

– Execution--find some pathway through the network
– Search--find all pathways leading to a specified final

condition
– Model-checking--is there a pathway having particular

properties?

Visualizing a EGFR Network as a PetriNet

EGF/EGFR experiments

 Activation of a transcription factor (cJun cFos) following
binding of extracellular epidermal growth factor (EGF) to
its receptor (EGFR)

ops q1 q1x : -> Dish .
eq q1 = PD(EGF {CM | EGFR Pak1 PIP2 nWasp [H-Ras - GDP]
 {Akt1 Gab1 Grb2 Gsk3 Eps8 Erk1
 Mek1 Mekk1 Mekk4 Mkk4 Mkk3 Mlk2
 Jnk1 p38a p70s6k Pdk1 PI3Ka PKCb1
 Raf1 Rsk1 Shc Sos [Cdc42 - GDP]
 {NM | empty {cJun cFos }}}}) .

eq q1x = q1 - < PI3Ka , cyto > *** knockout

Model Checking

subsort Dish < State .
eq PD(out:Soup
 {CM | cm:Soup
 {cyto:Soup
 {NM | nm:Soup
 {nuc:Soup
 [cJun - act] [cFos - act] }}}})
 |= prop1 = true .

eq findPath(S:State,P:Prop)
 = getPath(P:Prop, S:State |= ~ <> P:Prop) .

red findPath(q1,prop1) .
red findPath(q1x,prop1) .

Roadmaps for q1 and q1xRoadmaps for q1,q1x runs

Pathway Logic Workbench

Maude model
repository

Model
Explorer

Viewer

BioNet Tool

Analyzer

Model
Editor

PetriNet
Editor

*
*
*

Pathway Logic
Assistant

Interaction
manager

Navigator

BioCyc

Browser
Web Resources

Entrez

HumanCycEcoCyc

Export
Import

Ontology
Rules

MetaData

SwissProt

GraphixMgr

GraphixInteractor

Node
Obj

Menu
ObjGraph

Obj

Challenges for a Next Generation
FM Framework

0 Natural modeling of a wide range of features

0 Combining and interoperating different models of a
system, and/or models of subsystems

0 Factoring models/analyses/code -- scale and reuse

0 Transforming and abstracting models

0 Analysis techniques and tools that require the right
level of effort for the required level of assurance

0 Promising candidate: rewriting logic and Maude

Coming Attractions

0 Mobile Maude

0 Probablistic and stochastic reasoning

0 Animation and visualization capabilities

0 More interoperation with other tools

