APPLYING FORMAL METHODS TO
CRYPTOGRAPHIC PROTOCOL
ANALYSIS

Catherine Meadows
Code 5543
Center for High Assurance Computer Systems
US Naval Research Laboratory
Washington, DC 20375
meadows@itd.nrl.navy.mil

http://chacs.nrl.navy.mil

OVERVIEW OF TALK

Background: What are cryptographic protocols, and
why should we be interested in them?

Short history of application of formal methods to
cryptographic protocol analysis

Discussion of what I see as emerging issues

— Will concentrate on issues raised by applications rather than
the theoretical issues

WHAT IS A CRYPTOGRAPHIC
PROTOCOL?

e Communication protocol that uses encryption to:
— Distribute keys
— Authenticate principals
— Process transactions securely
e Must operate in hostile environment in which traffic may
be intercepted, altered or destroyed

EXAMPLE: CCITT DRAFT STANDARD
X.509 (1987)

A and B want to verify origin and recency of messages

* Protocol uses public key crypto
— A and B possess public keys K, and K, private keys K, ! and
K; !
— Anyone can send K, [X] to A, only A can read X
— If A sends K, ! [X], anyone can compute K,[K,! [X]] = X and
verify X came from A
A and B both have the capacity to generate nonces

— If B receives K, ! [X,N], where N is a nonce previously sent by
B, B knows A sent message after B sent nonce

THE PROTOCOL (simplified)

A A, KA'1[NA,B,XA]
© RS

B B, KB'1 [Ng,A, N, Xg] :
oy

. KA'1[NB]
© T

Third message appears to be linked to second by Ng
Second message appears to be linked to first by N,

Is this enough?

NO! (Burrows, Abadi, Needham, 1989) X&

A, Ko 1[NAB, X, =
m (old message from A) > (&)

A

B, Ky [Ng.A, NaXel ¥ -

Intruder causes A to initiate communication with it
A, K, N, LX L]

‘ . B
m , K [Ng,A, N5, X]] N @
‘ Sy

@ Ka[Ng] >
Ka'[Ng] 5
o o B

A HIERARCHY OF CRYPTO PROTOCOL
MODELS

Logics of knowledge and belief
— No concrete model of intruder

— Describes what can be deduced by honest principals from a successful protocol run

“Dolev-Yao’ model

— Concrete model of adversary

* Adversary restricted to (possibly arbitrary set of) fixed set of operations
e Adversary able to intercept traffic, etc.

Complexity-theoretic models

— Reduce breaking the protocol to solving a computationally hard problem
e May or may not be able to intercept traffic, etc.

— Adversary restricted to computations done in polynomial time

— Random oracle model special case - appears to integrate well with Dolev-Yao model

Information-theoretic models

— Adversary assumed to have infinite computational power
e May or may not be able to intercept traffic, etc.

FIRST MENTION OF FORMAL
METHODS FOR CRYPTO PROTOCOL
ANALYSIS - 1978

e Needham & Schroeder -- ¢“Using encryption for
authentication in large networks of computers,”
CACM, 1978

— Early protocols for key distribution and authentication

— Mention as an aside that formal methods could be useful for
assuring correctness

DOLEV-YAO (IEEE Trans Info Theory, 1983)
DOLEV-EVEN & KARP (Info & Control, 1982)

* Assume that cryptoalgorithms obey a certain set of algebraic
identities
e Assume an intruder who can
— read all traffic
— modify, delete and create traffic

— perform cryptographic operations available to legitimate users of the
system

— isin league with a subset of “corrupt’ nodes
e Assume an arbitrary number of nodes
e Assume an arbitrary number of protocol executions
e Assume that protocol executions may be interleaved

e Allows us to consider the protocol as an algebraic system operated
by the intruder

With some modifications, this is the most commonly used model today
for formal methods analyses of crypto protocols

PING-PONG PROTOCOLS

Small number of operations
— Public key encryption and decryption
— Namestamps

Action of a party on receiving a message is to apply some sequence
of operations to it and send it back out

Message sent back and forth like a ping-pong ball, hence the name

Dolev-Yao, Dolev, Even & Karp, and later others, found
algorithms for determining whether a protocol would reveal
secrets to an intruder

— Found to be related to problem of finding intersection of two
formal languages

— Freshness issues (e.g. replay) were not considered

WHAT HAVE WE LEARNED HERE?

e Possible to abstract away from original protocol model
to one that treats protocol as maching operated by
intruder

e Possible to reason about machine in exhaustive way so
that even nonintuitive attacks ruled out

WHAT’S MISSING FROM THE MODEL

Other operators, such as
— Concatenation
— single-key encryption
— Digital signatures
Other data types, such as
— Nonces
— timestamps
Requirements other than secrecy, such as
— Authentication
— Replay prevention
Other intruder capabilities, such as
— Compromise of keys, etc.
Unfortunately, problem becomes undecideable quickly

EARLY STATE EXPLORATION TOOLS

e Interrogator (Millen, earliest version 1984)
— First to automate intruder
— Earliest version similar to a finite state model-checker
e Searched finite number of rounds to find attack

e Ina Test (Kemmerer, 1987)

— General-purpose symbolic execution tool, could be used to reproduce
attacks

e NRL Protocol Analyzer (Meadows, earliest version
1989)

— Automated intruder in a way similar to Interrogator
e Implemented full Dolev-Yao model

— Used symbolic representation of states, and supported use of lemmas
to reduce infinite state space to finite one

— In earliest version, lemmas proved by hand, later offered automated
support

NRL PROTOCOL ANALYZER

A formal methods tool for the analysis of crypto
protocols

Uses standard Dolev-Yao model of intruder

User specifies insecure state using a combination of
constants and existentially quantified variables

— NPA works backwards from state to determine if there is a
path to it

— May make substitutions to the variables as it goes
Uses rewrite rules to specify properties of
cryptosystems

— Narrowing to match up rule outputs with state description
Search space is initially infinite

— User may prove a set of lemmas to cut down search space size

— When a state is generated, lemmas are used to determine
whether it should be kept or discarded

HOW NPA EXPLORES STATE SPACE

State o
Generator /
Equational uni |Cat|on
Biggest source of cost:

@ Generate and test strategy

Filter

EXAMPLE

Rewrite rules:
pke(pubkey(U),pke(privkey(U),X)) --> X
pke(privkey(U),pke(pubkey(U),X)) --> X
Rule for signing
If receive message X, then produce message pke(privkey(server),X)
Try and find state in which intruder knows word Y
First result: Y = pke(privkey(server),X), intruder needs to know X
Second result:
X = pke(pubkey(server),W),
Y = pke(privkey(server),pke(pubkey(server),W)) = W

Intruder needs to know X = pke(pubkey(server),W)
Can use rule as oracle for decrypting encrypted messages

EXAMPLE OF LEMMA GENERATION

e Consider protocol with only one rule:
— IF arcvs X THEN a sends d(k,X)

* Suppose you want to know if the intruder can learn m,
not known initially

— If you want to know word m, system tells you that you need to
know e(k,m)

— If you want to know e(K,m) system tells you that you need to
know e(k,e(k,m)), and so on

— Try to show the unobtainability of the formal language A
defined by

1.A->m
2. A ->e(k,A)

PROVING THE LEMMA

Try to show the unobtainability of the formal language A defined
by

e 1.LA->m
e 2.A->elk,A)
— Already tried Analyzer on first production

— Try it on second, find that you need to know e(k,e(k,A)), which is also
in A

Have proved that, in order to learn a word from A, need to
already know a word from A

Analyzer can show automatically that languages are unreachable

THE AGE OF BELIEF LOGICS

Burrows, Abadi, and Needham (BAN) logic for
analyzing authentication protocols, 1989

— Codified common-sense reasoning about cryptographic
properties into a set of rules about beliefs that could be
inferred during operation of a crypto protocol

— Easy to use and intuitively appealing

A host of descendants, GNY, AT, SvO, AAPA
(automated and augmented GNY)

Trade-off high level of abstraction with efficiency and
ease of use

However, have been shown to be effective at flagging a
large number of protocol errors [Brackin - 1998,99]

BURROWS, ABADI, AND NEEDHAM
(BAN) LOGIC 1989

Builds upon statements about beliefs in messages sent through the course
of a protocol

Example: “If I’ve received a message encrypted with key K, and I believe
that only Alice and I know K, then I believe that the message was
originated by either Alice or me.”

In the analysis of a protocol, an initial set of beliefs is assumed.
Each message received is mapped to another set of beliefs.

Inference rules used to determine what beliefs can be derived from initial
beliefs and beliefs gained from participating in the protocol

If resulting set of beliefs adequate, the protocol is assumed to be correct

If set of beliefs not adequate, this observation can lead to the discovery of
a security flaw

SOME BAN INFERENCE RULES

1. (message-meaning) If P believes that K is a key shared with Q
AND P sees K[X] THEN P believes that Q said X

2. (nonce-verification) If P believes that X is fresh AND P believes
that Q said X THEN P believes that Q believes X

3. (freshness) If P believes that X is fresh, then P believes that
<X,Y> is fresh

4. (jurisdiction) If P believes that Q believes X AND P believes
that Q controls X THEN P believes X

EXAMPLE BAN ANALYSIS (SKETCH)
1. A-->S:B,N,
2. S-->A:K,[N,,B,K,;]

Initial beliefs: A believes N, is fresh, A believes , for all K, S controls the fact that K
is a good key for A and B, A believes that K, is a good key for A and S

From message 2 and message meaning rule, conclude that A believes S once said
<N ,.K,gkey for A and B>

From A believes that NA is fresh, and freshness rule, conclude that A believes that
<N ,,K, g key for A and B> is fresh

From A believes that <N ,,K, ; key A and B> is fresh, and A believes S once said
<N, K, key forA and B>, and nonce-verification, conclude that A believes S
believes <N ,,K,; key for A and B>

From A believes S believes <N ,,K, ; key for A and B>, conclude A believes S
believes K , ; key for A and B

From A believes S controls K for A and B, and A believes S believes K, ; key for A
and B, and jurisdiction rule, conclude A believes K, ; key for A and B

THE AGE OF MODEL CHECKERS

e Goal of a model checker: to verify system properties by
exhaustive search of a finite set of states

e How a model checker is used

Specify your system

Specify the behavior of your system, usually using a temporal
logic

Use the model checker to exhaustively generate possible
behaviors of the system that can violate the desired behavior

* For example, generate all paths possible starting from an initial
state

Can only search finite space, but with suitable abstractions,
can also use on infinite systems

LOWE’S USE OF FDR

Lowe first to use a model checker (FDR) to
demonstrate a protocol failure (Needham-Schroeder
public key protocol)

FDR: model checker based on Hoare’s communication
sequental processes

User can specify size of search space in terms of
number of participants, protocol executions, etc.

Some work since then

— Developed high-level specification language, Casper

— Conditions that will guarantee that, if a protocol is secure for a
finite search space, then it is secure for an infinite space

NEEDHAM-SCHROEDER PUBLIC-KEY
PROTOCOL

1. A -->B: [R,,AIK,
2.B->A [R,R,IK,
3. A ->B: [Ry]K,

THE ATTACK
1. A -->I: [R,,AIK,

1’: 1A -> B: [R,AIK,
2: B -> A: [R,Ry]K,
3: A ->1: [RyK,

3: 1A --> B: [Ry]K},

CHALLENGES IN MODEL-CHECKING
CRYPTO PROTOCOLS

e Sources of infinity
— unbounded number of actions by intruder
— unbounded number of concurrent sessions that could interact

— unbounded number of data items such as keys, nonces, etc.

e Roscoe et al. have shown that, if you bound the number of
concurrent sessions, can also bound nonces, etc.

e Undecidability of secrecy problem

— easy to show that this also implies undecidability of
authentication problem

THEOREM PROVERS

e Paulson’s inductive approach
— Uses Isabelle theorem prover to inductively define invariants

— Has developed library of techniques which have been taken up
by others

* Some special-purpose tools
— TAPS (Cohen)
— Cryptyc Type Checker (Gordon and Jeffries)

e Many, many more

STRAND SPACES (THAYER,
HERZOG,GUTMANN)

Graph-theoretic model for crypto-protocol analysis

— Similar to Lamport’s theory of causality

Strands (linear graphs) represent local executions

— Protocol strands: local execution of protocol participant in one
protocol instance

— Penetrator strands: describe actions such as concatenation,
encryption, decryption, etc.
Strands contain both positive (output) and negative
(input) nodes
Can glue up strands along positive and negative nodes
to obtain a bundle

EXAMPLE BUNDLE - NS PUBLIC KEY

+{N,, Ale > - {N,, Al
- {N4, Ng}ga< + {N,, Np}ya
+ {Ng}a > - {Nghe

ATTACK ON NS PUBLIC KEY

+ {NA, A}KI > - {NAf A}KI

+{N,, A}

!
- {Nl A}
+{N,, Alg—> - {N,, Al
v v

- {N,4, Ng}a< +{N,, Ng}a
* {NlB}KI > - {Nphe

+ {Neha > - {Ng}e

ADVANTAGES OF STRAND SPACES

Simple, easy to work with model

Graph-theoretic approach easy to visualize

Can use as basis of comparison with other models
We’ll meet up with strand spaces again

OPEN PROBLEMS

Emerging Properties of Protocols

Greater interoperation

— Meta protocols to negotiate agreement upon protocols, eg.
ISAKMP-IKE

Negotiation of policy
— Security associations
— Certificate hierarchies

Greater complexity

— Especially for electronic commerce
Group-oriented protocols
Emerging security threats

— Denial of service
— Traffic analysis

ISSUE 1:
Composability

e Avoid harmful interactions between protocols

— Example, consider a protocol suite of slightly different protocols that
satisfy different requirements

— Need to be sure that one doesn’t get confused with another
e Assure secure reliance between protocols

— Suppose that one protocol relies on another for a particular service
— Assure that service cannot be compromised or spoofed

ISSUE 2: Incremental Analysis

Many protocols part of a family of protocols that differ only
slightly

— Would be helpful to be able to reuse proofs

When integrating formal analysis in design, necessary to be able
to redo proofs rapidly as design changes

— Again, would be helpful to be able to reuse parts of proofs that are
still valid

But -- analysis of crypto protocols requires checking for unsafe
interaction of all parts

— How can we tell if any of our proofs are still valid
Closely related to modular evaluation problem

See work by Datta, Derek, Mitchell, & Pavlovic Pavlovic &
Meadows

— Go back to epistemic logic, but reason on more concrete level
* E.g. knowledge of sequences of events that occurred

— Concentrate on properties that are monotonic

ISSUE 3: PROBABILISTIC AND
GAME-THEORETIC ANALYSIS

 Many attacks on protocols are probabilistic

— Traffic Analysis

e Can an attacker increase the accuracy of its picture of the
network?

— Protocols Using Lightweight Authentication
e How much do they reduce the likelihood for a successful attack?
e Many protocol properties can be modeled in terms of
games
— Electronic commerce protocols

— Denial of service
e Trading off effort of attacker against cost to defender

ISSUE 4:
High Fidelity

There are a number of protocol problems that occur below the
level at which most formal methods work operates, but above the
cryptoalgorithm level

— Modes of encryption
— Integrity checks

— Bellovin (Usenix 96) describes a cut-and-paste attack on an earlier
version of ESP relying on ESP’s use of CBC mode and TCP’s not
checking length of packets

— Malleable cryptosystems

— Some techniques (e.g. Chaum’s blinded signatures, actually make
use of malleability)

Some work exists on formal models for properties at this level

— Stubblebine-Gligor (Security and Privacy ‘92, ‘93)

— Can automated tools be extended to deal with these properties?
When can we prove that it is safe to ignore these
properties

— E.g, that protocol is sound against attacks on this level

ISSUE 5§:
Open-Ended and Group Protocols

e Many of the newer protocols use open-ended data structures
 Examples

— Protocols for negotiating choices from an open-ended set of
algorithms
— Group-oriented protocols
e Group authentication
e Secure auction, voting, etc.
e Anonymity: Chaum mixes

* Beginning to see more work done in this area

CLIQUES GROUP KEY DISTRIBUTION
PROTOCOL

Group leader n shares common secret exponent Knj with each
principal j
Step 1: Group members send keying material to leader

a aXl aXZ aXl aX 1X2
’ ’ ’ X2X3 oX1X3 5X1X2 oX1X2X3 X1X2X3X4
a ,a ,a a a

Group leader raises each value received to the Xn.

At the end, for each group member j, group leader has a X1---Xi---Xn,

Group leader also has group key a X1---Xn,

Step 2: Leader sends key info to members, encrypted w. shared secret
exponents

qX1X3X4K4)

@ qX1X3X4K4oX2(K4p1) = 4X1X2X3X4
—> A

For each member j, group leader sends a X1...Xj...XnKnj ¢ j,

Group member j computes a X1---Xi--. XnKnjXjKnj-l) = group key

ISSUE 6: TRANSACTION PROCESSING

e E-commerce protocols such as SET allow parties to agree on
complex data structures

— Need to assure integrity and consistency of the structure
— Different parts of the structure introduced by different
principals
— Some parts of the structure kept secret from some of the
principals
e Protocols such as ISAKMP-IKE agree on somewhat less complex,
but open-ended data structures

e Otway-Rees protocol (1987) tried to agree on a two-part data
structure (key and key id)

— Thayer, Herzog, and Guttman (1998) showed protocol didn’t
achieve that

e This is a problem that could use some close attention

ISSUE 7:
Getting it into the Real World

Protocol developers are aware that assurance is a problem

— If you care enough about security to use cryptography, you
probably care enough to worry about whether you’re using it
correctly

But -- formal methods are seen as an arcane field only accessible to
a few experts

— Seen as a barrier to integration of formal methods into the
design process

— Promotes adversarial relationship between developers and
verifiers

— Leads to inflexibility in application of formal methods

How can we make formal methods more accessible and more
flexible?

What is the best way of introducing them into the design process?

BIBLIOGRAPHY

These talks based on the following papers:

Meadows, C.,"Formal Methods for Cryptographic Protocol Analysis:
Emerging Issues and Trends", IEEE Journal on Selected Areas in
Communication, Vol. 21, No. 1, pp. 44-54, January 2003.

Meadows, C., "Open Issues in Formal Methods for Cryptographic Protocol
Analysis," Proceedings of DISCEX 2000, IEEE Computer Society Press,
pp. 237-250, January, 2000.

Meadows, C. "Formal Verification of Cryptographic Protocols: A Survey,"
Advances in Cryptology - Asiacrypt '94, LNSC 917, Springer-Verlag,
1995, pp. 133-150.

All of the above available at
http://chacs.nrl.navy.mil/projects/crypto.html

