Domain Separation by
Construction

Bill Harrison, Mark Tullsen, & James Hook

Pacific Software Research Center
OGI School of Science & Engineering
Oregon Health & Science University

Copyright 2003, William L. Harrison

Domain Separation by Construction

= Approach to language-based security based on
monads:
« Provide a modular algebra of effects,
= Allow precise control of interaction of threads
= Expressible in any higher-order functional programming
language
= Outline development of a operating system kernel

= Kernel obeys non-interference style property
= Called “take separation”

= Security property follows directly from well-understood (aka,
by construction) properties of monads aid in its verification

Foundations of our approach

e Separability & Separation
— e Goguen/Meseguer 82,84 _ Kernels [Rushby]
based e McCullough 88 security | o Java Sandboxing
security e McClean 94 q by e KSOS 79
models | * Zakathinos, et al., 95,97 =191« Fox Project 98
e .. e White, et al., 00

e LiangHudakJones 95
e Moggi 89

e Harrison 01

e Papaspyrou 00

monadic
semantics

Shared-state concurrency with global state

L
system threads NI
* vVYYY
‘0
¢
L 4
L 4
4
user threads . .,
. o Yo,
" .
n vYyVYy *
u .
\/ v
global state
“ user space”

“kernel space’

Separation Kernel Approach [Rushby82,81,...]

Lo “domain” Kernel Hi “domain”
L | < b L | < > |
vvyyy mediating vvyyy mediating vvyyy

I services I services I
\ \ \
“ 1o sandbox” “ kernel space” “ hi sandbox”

Security through separation:

e relies on tamed effects via state partitioning
AND controlling interactions through trusted kernel services
e supports a “divide & conquer” approach to verification

Trace-based models

An event system S is a tuple (E,T,I,0O) where

T C FE* (T is the set of permissible traces)
IUO C E
INO = ¢ (I/O events are distinct)
X ly = subseq of X with noyeY (“view”" from Y)
EFE = loUHi & LonHi=4¢

Ex: Generalized Non-interference [GoguenMeseguer]

* Changes in high-level inputs only result in
changes to high-level outputs”

Our approach to language based semantics

Instead of traces of abstract Lo and Hi events:
ho,lo, ..., hn,ln
consider the imperative program:
hoiloi--i hn i ln

with (monadic) denotational semantics:

[-1: (Behy, + Behy;) — R()

Monad R encapsulates imperative effects and
a notion of concurrency called resumptions
[Plotkin76,Schmidt86,Moggi89].

Take separation (first cut)

For any initial sequence of interleaved Hi and
Lo operations, the Lo operations should be
“oblivious’ to the high security operations:

Tho ; lo ;...; hn ;]l > maskHi

= [lo ;...; ln] > maskHi

What is a monad?

A monad is an algebra of effects (state, exceptions, concurrency,...)

M (type constructor)
v - a— Ma (unit)
*M:Ma—>(a—>Mb)—>Mb (bind)

>u:MQO) MO —>M() (sequence)

Additionally, a state monad, St, has the effects:

u: (Sto— Sto) — St() (update)
g:5t() (get)

Properties “"by construction” of state monads

ufxi_ug = u(gof) (sequencing)
g x Aog.u(A_.og) = n() (cancellation)

Monad transformers are constructors for monads

Monad transformer, (StateT Sto), adds effects to existing monad M

St = Statel Sto M

Monad St2 with two states H, L

St2 = StateT L (StateT H M)
ur : (L — L) — St2() ug : (H— H) — St2()
gL:StZL gH:St2H

Another by-construction property: “atomic non-interference”

(ur, f) >sp (ug 9) = (ug g) > (ur, f)

Primer on resumption-based concurrency

Consider two simple threads: a = [ag; a1] and b = [bp]

Concurrency as interleaving: (a || b) means:
{[ao; a1; 0], [ag; bo; a1, [bo; ag; a1]}

Resumption monad transformer:

ResTMa = puR.Da+ P(M(R a)) “ "
step : Ma — ResT Ma g_= “ ngSee,
step ¢ = P(ex,Av.nu(Dv)) - P

(4

Now, (a || b) means the set of:

(step ag) > (step ay) > (step by)
(step ag) > (step bg) > (step aq)
(step bg) > (step ag) > (step aq)

Monadic event systems

Events are effects in state monads
= Update operation. u: (Sto- Sto) - M ()
= Get operation. g: M Sto
= Monad transformers give us “interaction rules” by construction

Traces represented by “resumption threads”

Domain separation by associating different
domains with different state monad transformers

This approach unifies “security by design” with formal
trace-based security models

= Implementations directly in higher-order typed functional
languages

= Reason about system specs at the level of denotational semantics

= Promise of the approach: Scalability/Modularity through monads &
monad transformers

Monadic Event Systems

(& Multi-threading

(b) Kernel
© Separate
Domains

ur -
dr -

R = ResT K
4

scheduler, step | ¢ run

K = StateT L (StateT H M)

4 4
liftl | ' liftH

Lo = StateT L M Hi = StateT HM

(L — L) — (StateT L M)() ug : (H— H) — (StateT H M)()
(StateT L M)L gy : (StateT H M)

Monadic Event Systems

R = ResT K
4

scheduler,step | i run

K = StateT L (StateT H M)

4 4
liftL | | liftH

Lo = StateT L M Hi = StateT H M

ur : (L — L) — (StateT L M)() ug : (H— H) — (StateT H M)()
dr, (StateT L M)L di . (StateTHM)

Properties “by construction”

u(go f) (sequencing)
n() (cancellation)

ufxAi_uUg
d x Aop.u ()_.0‘0)

Monadic Event Systems
(more “by construction” properties)

R = ResT K
4

scheduler, stepi i run

K = StateT L (StateT H M)
4 4
liftl | | liftH
Lo = StateT L M Hi = StateT H M

ur : (L — L) — (StateT L M)() ug : (H— H) — (StateT H M)()
dr, (StateT L M)L di . (StateTHM)

Interaction rules (aka “atomic non-interference”)

liftL (up, f) >k liftH (ug g) = liftH (uy g) >k liftL (ug, f)

Language of behaviors Beh

Abstract Syntax for the Behavior Language.

Beh ::= Var:=FExp |
skip |
Beh; Beh |
ite Exp Beh Beh |
while Exp do Beh

Exp = Var | Integer

Basic Separation

= Refine monad transformer to reflect separation:

ResTMa = pR.D a—+ P ,(M(Ra))+ Py (M(Ra))
stepl . Ma — ResTMa

stepH : Ma — ResTMa

stepL ¢ = Py (px*,, Av.qu(Dv))

stepH ¢ = Py(y *\ Av.ny(Dw))

= Create “security conscious” semantics

evl : Beh — R ()
evH : Beh — R ()
evL (x:=1) = stepL ((liftLouy)[z — 1])
evH (x:=1) = stepH ((liftHoug)[x — 1])

Create two schedulers

Schedule with withHi : Beh — Beh — R()
Hi & Lo events withHi lo hi = weave (evL lo) (evH hi)

weave : R() - R(— R()
weave [l07l17' .] [h'07h17' .] — [l07h07l17h’17"]

Schedule without WithoutHi . Beh — R O
Hi & Lo events withoutHi lo = evlL lo

takeLo : Integer — R() — R()
takeLo n [lo, ho, Y P] = [lo, ce ,ln]

run : Ra — Ka
run [60,61,...] =eg >K €1 >K ---

Security property

Theorem 5 (Take Separation)

Let lo, ht € Beh, then for all natural numbers
n,

run (takelLo n (withoutHi (evL lo))) >k maskHi
= run (takeLo n (withHi (evL lo) (evH hi))) >k maskHi

where

maskHi = liftHi(ug (A_.hg))
for fixed hg € H.

Proof Sketch

To show:

run (takeLo n (withoutHi (evL lo))) >« maskHi
= run (takeLo n (withHi (evL lo) (evH hi))) > maskHi

Follows from sequencing, atomic non-inter., and monad laws

(1> h1> ... gy > h<k+1) > n()) > maskHi

{sequencing} =11 > h1 > ...> l41) > maskHi
{lry#maskHi} = l1 > h1 > ... > maskHi > l;41)
{ind. hyp.} = l1 >> > > maskH/ > l(k—l—l)
hi excised
{l;# maskHi} =0L>...> l(k—l—l) > maskHi

* (X # y) means x,y are atomically non-interfering.

Enhancing system by refining the underlying monads

Additions to Beh Language

A
message 5 interdomain
passing 2 communication
fork io
% thread-level
multitasking 3 -~ control flow
: 28 >3 dynamic
i scheduling
1 ———
“RTL" /'d) basc J—— - = I_ngiy_l
separation
0= >
shared-state &% ij %) 7"@
concurrency 2. N 5
. <. % Z,
! % o2
2 o

Refinements to Monad Transformers

Domain Separation by Construction

= Our approach unifies “security by design” with formal trace-
based security models

= Implementations directly in higher-order typed functional
languages
= Reason about systems at the level of denotational semantics

= Promise of the approach: Scalability/Modularity of systems &
their verifications through monads
= Monads provide an algebraic theory of effects useful in formal
specification & verification
= Verification promoted via “by construction” properties of monads

= System development through refinement to underlying monads
» Cost of re-verification of a refined system can be minimal

