A Concurrent Logical Framework

Iliano Cervesato iliano@itd.nrl.navy.mil

ITT Industries, inc @ NRL Washington, DC

http://www.cs.stanford.edu/~iliano

(Joint work with Frank Pfenning, David Walker, and Kevin Watkins)

CS Department, UMBC

February 27-28 2003

CLF

▲ Where it comes from ▲ Logical Frameworks ▲ The LF approach → What it is ▲ True concurrency ▲ Monadic encapsulation ▲ A canonical approach What's next?

All about Logical Frameworks

Represent and reason about object systems

▲ Languages, logics, ...

- ▲ Often semi-formalized as deductive systems
- Reasoning often informal

Benefits

- ▲ Formal specification of object system
- ▲ Automate verification of reasoning arguments
- ▲ Feed back into other tools
 - ▲ Theorem provers, PCC, ...

The LF Way

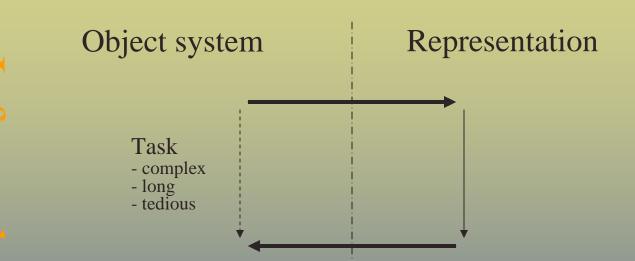
Identify fundamental mechanisms and build them into the framework (soundly!)

> done (right) once and for all instead of each time

- $Modular constructions: [\Sigma-Algebras]$ App f a
- A Variable binding, α-renaming, substitution [LF] $\lambda x. x+1$
 - Disposable, updateable cell [LLF]
 - $\wedge \lambda^{s'}. f^{s}$

True concurrency [CLF]

It's all about Adequacy



Adequacy: correctness of the transcription LF: make adequacy as simple as possible rather than (Gödel numbers)

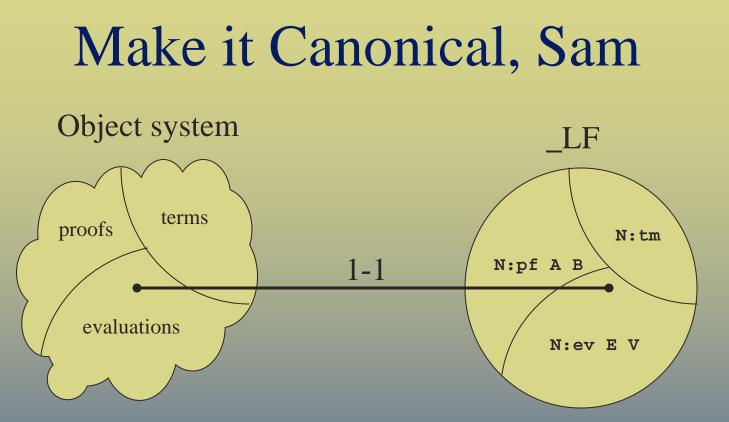
Representation Targets

Mottos, mottos, mottos ...

▲ LF: judgments-as-types / proofs-as-objects ▲ 3+5=8 \Rightarrow N: ev (+ 3 5) 8Judgment object type (a statement we want to make)

LLF: state-as-linear-hypotheses / imperative-computations-aslinear-functions

CLF: concurrent-computations-as-monadic-expressions / ...



Each object of interest has exactly 1 representation
Canonical objects:
η-long, β-normal _LF term
Decidable, computable

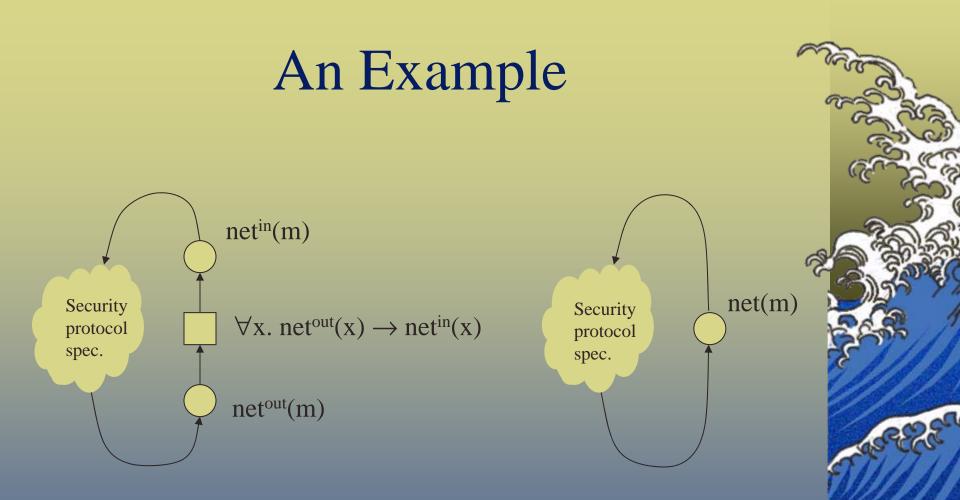
But what is LLF?

▲ Types ("asynchronous" constructors of ILL) ▲ A ::= $a \mid \Pi x$:A. B $\mid A - o B \mid A \& B \mid T$ ▲ Terms

 $\mathbf{A} \mathbf{N} ::= \mathbf{x} | \lambda \mathbf{x}: \mathbf{A} \cdot \mathbf{N} | \mathbf{N}_1 \mathbf{N}_2 \\ \lambda^* \mathbf{x}: \mathbf{A} \cdot \mathbf{N} | \mathbf{N}_1^* \mathbf{N}_2 | \\ < \mathbf{N}_1, \mathbf{N}_2 > | \text{ fst } \mathbf{N} | \text{ snd } \mathbf{N}$

Main judgment $\land \Gamma$; $\land |-N:A$

CLF



Many instances can be executing concurrently

LLF Encoding

- net : *step* o- net^{out} m o- (netⁱⁿ m -o *step*).
- ▲ LLF forces continuation-passing style
- Consider 2 independent applications:

 λnⁱ₁. net ^ n°₁ ^ (λnⁱ₂. net ^ n°₂ ^ C)
 λnⁱ₂. net ^ n°₂ ^ (λnⁱ₁. net ^ n°₁ ^ C)

 Should be indistinguishable (*true concurrency*)
 Equate them at the meta-level same-trace T₁ T₂ o- ...
 - Never-ending even for small system!

Encoding in Linear logic

 $\forall m. net^{out} m - o net^{in} m$

- ▲ <u>Much</u> simpler
- ▲ In general, requires "synchronous" operators
 ▲ ⊗ and 1

▲ Concurrency given by "commuting conversions" let $x_1 \otimes y_1 = N_1$ in (let $x_2 \otimes y_2 = N_2$ in M) $= \text{let } x_2 \otimes y_2 = N_2 \text{ in (let } x_1 \otimes y_1 = N_1 \text{ in } M) \quad \text{if } x_{i}, y_i \notin FV(R_{2,i})$

... looks like what we want ...

However ...

Commuting conversions are too wild
 Allow permutations we don't care for

Synchronous types destroy uniqueness of canonical forms

A nat:type. z:nat. s:nat->nat. c:1.

▲ Natural numbers: z, s z, s (s z), ...

▲ What about let 1 = c in z? What if c is linear?

No good! \otimes

Monadic Encapsulation

Separate synchronous and asynchronous types

- *Outside* the monad
 LLF types (asynchronous)
 η-long, β-normal forms
- ▲ *Inside* the monad
 - Synchronous types
 Commuting conversions
 Concurrency equation η-long, β-normal forms
 - Monad is a sandbox for synchronous behavior

CLF

▲ Types ▲ A ::= a | Π x:A. B | A -o B | A & B | T | {S} ▲ S ::= A | !A | S₁ ⊗ S₂ | 1 | ∃x:A. S

▲ Terms

▲ N ::= x | λ x:A. N | N₁ N₂ | λ^{x} :A. N | N₁^N₂ | <N₁,N₂> | fst N | snd N | <> | {E} ▲ E ::= M | let {p} = N in E ▲ M ::= N | !N | M₁ ⊗ M₂ | 1 | [N,M] ▲ p ::= x | !x | p₁ ⊗ p₂ | 1 | [x,p]

Example in CLF

net : netⁱⁿ m -o { net^{out} m }.

A Relating the 2 specifications \checkmark 2 sets of CLF declarations ▲ Meta-level definition of trace transformation simplify-net $\{T^{i/o}\}$ $\{T\}$ ▲ Trivial mapping ▲ Permutations handled automatically No need to take action Critical for more complex examples

Examples and Applications

- $\checkmark \pi$ -calculus
 - ▲ Synchronous
 - ▲ Asynchronous
- ▲ Concurrent ML
- ▲ Petri nets
 - ▲ Execution-sequence semantics
 - ▲ Trace semantics
 - MSR security protocol specification language

No implementation ... yet ...

Conclusions

CLF

- A logical framework that internalizes true concurrency
- Monadic encapsulation tames commuting conversions
- Canonical approach to meta-theory
- ▲ Good number of examples

This is just the beginning ... plenty more to do!

