Expressing Type-Flaw Attacks in a
| Strongly Typed Language

Tliano Cervesato iliano@itd.nrl.navy.mil

ITT Industries, Inc @ NRL - Washington DC

http.//www.cs.stanford.edu/~iliano/

2"d International Workshop on
Foundations for Secure/Survivable
Systems and Networks Tokyo, October 27t, 2001

Outline Wy

Teeflaws o Type-confusion attacks

Example
Positions
Contribution

MSR 2.0

Example

mrs o Type-Flaw Attacks in MSR

DAS
Execution
Intruder
Type flaws

Simulation

omncer @ Simulation with Dolev-Yao Intruder

Big steps
Type flaws

Expressing Type-Flaw Attacks in a Strongly Typed Language

Type-Flaw Attacks

® Functionalities seen as "types”

> Names
Type flawsl > Nonces
Example
Positions > Keys'

Contribution

MR20 e Violation
Simulation o o
» Principal misinterprets data

¢ Type flaw/confusion attack
» Intruder manipulates message
» Principal led to misuse data

Expressing Type-Flaw Attacks in a Strongly Typed Language

Example: NSL

[Millen]

A I B
Type flaws o Alhe
[Example |
Positions f \
Contribution ®- {I; nB;B}kA {I/ nBv B}kA o
MSR 2.0)
Simulation —

{ng.B, ny, Al

>

{nohe

) 4

"Unlikely type violation”

Expressing Type-Flaw Attacks in a Strongly Typed Language

A— B: {A, nA}kB
B — A:{n,, ng, B},
A — B {nghe

Confusion 1:
name/nonce

Confusion 2:
pair/nonce

B is fooled!

L Advocates

Type-flaw attacks are serious threats

Type flaws

Example

|Positions

G ® Push type-free specifications
Simlation » Catch all "normal” attacks
> ... and type-confusion attacks too

> Types are not reall

Expressing Type-Flaw Attacks in a Strongly Typed Language

" Opponents

Most type-flaw attacks are unrealistic

Type flaws

Example

L=re= 1 ® Push typed specification languages
s > Catch “real” attacks

> Types guide search = fast

» Type-flaw attacks too low-level anyway

Expressing Type-Flaw Attacks in a Strongly Typed Language

L) Prog. Languages vs. Security

® Types in
programming
e flaws lANGUAgeEs

Example

[Positions |
Contribution

MSR 2.0

Simulation ® Types in
security

Interesting
World

| Exciting
World

Ugh!

. Desired
World

Expressing Type-Flaw Attacks in a Strongly Typed Language

... In Reality

Type discriminants
» Data length

Type flaws

- » Redundancy
[Positions | . e

crioatin 3> Explicit checks
MSR 2.0
Simulation

® Resolve many situations ...
e .. but not all

"T so far found only one realistic type-flaw attack” [Meadows]

Expressing Type-Flaw Attacks in a Strongly Typed Language

Contribution

= e Reconcile

> Typed languages

Type flaws . .

Example > Type VIOIGTIOHS

|Coon‘r:I:uTion |

smuaion @ User specifies confusable types
> Flexible
> Abstract

e Support efficient simulation

Expressing Type-Flaw Attacks in a Strongly Typed Language

~ ® Follows the Dolev-Yao abstraction
. e Based on

Type flaws > Multiset rewriting, linear logic, type theory
MsR20 | o Used to prove
P » Undecidability of protocol verification
Sxeaon » Completeness of Dolev-Yao intruder
weflus @ Related to
Simulation
» strands
> CIL

> spi-calculus, ...

Expressing Type-Flaw Attacks in a Strongly Typed Language 10

3 What's in MSR@ ?

| ® Multiset rewriting with existentials

Type flaws

msrzo] ® Dependent types w/ subsorting —pé®

Typing
DAS

et @ Memory predicates "

Intruder
Type flaws
Simulation

e Constraints ne"

Expressing Type-Flaw Attacks in a Strongly Typed Language

11

e Symbolic data 0 k
__ » No bits
Type flaws o

lMSR 2.0 I
xample

Typing
DAS

Black-box cr'yp’rography
> No guessing of keys

Execution

mwer — © Partially abstract data access

Type flaws Rl

Simulation > Knowledge soup

s®

> Found in most protocol analysis tools
Tractability

Expressing Type-Flaw Attacks in a Strongly Typed Language 12

Role state pred.

Roles var. declarations
] (oo ! \WVA
® Generic 4L T 1(><1) X ... XT n(x”) P
* roles

Type flaws

lMSR 2.0 |

Typinz

DAS

Execution

Intruder

Type flaws

Simulation
® Anchored [34 71 x . x 7,00 1A

roles - w

Expressing Type-Flaw Attacks in a Strongly Typed Language 13

Yyt Ty
S lhs — rhs
ype flaws . Lo
VX, T, Ay, T .

|MSR 2.0 | n
xample

Typing
DAS
Execution

Intruder
Type flaws (N(’r) Network —
Simulation e N(1) Network

e [(t,..,1t) Local state
e [(t,..,1) Local state
e M,(t, ..., T) Memory
\-MA(T, ., 1) Memor'y/

Q(Cons‘rminﬁ

Expressing Type-Flaw Attacks in a Strongly Typed Language

14

Type flaws
MSR 2.0

[Example |
Typing

DAS
Execution

Intruder
Type flaws
Simulation

nB:nonce

NSL Initiator

(B) x

—> dn,

B x nonce.

L(A,B,kg,n,)
N({n..ng.B}xa)

Expressing Type-Flaw Attacks in a Strongly Typed Language

A — B {A, nA}kB
— A:{n,, ng, B} 4

A — B {nghe

L(A,B,ky,ny)
N({A, nahe)

N({ng}ye)

J

VA

15

— B: {A, n e

7 NSL Responder B > /1 {ny, N, Bl
t — B: {nge
[| \VB
AL: ®) x BkB) x privK ky x nonce.
Type flaws
MSR 2.0
|_|E_xa.mple |
yping
s L(B Ko K'n.N)
xecution N A,n — dn . B/ BB
]Ein’rr'uc;rer' ({ A}kB) ° N({nAlnB lB}kA)
Type flaws
Simulation
VR A ‘
N(iNgske
\ J

Expressing Type-Flaw Attacks in a Strongly Typed Language 16

) Types of Terms

® A: princ
' ® n: nonce

Type flaws

('
MSR 2.0
f::'rxarir:‘ple Q k: ShK A B ™ Types CC(n depend
DAS on term
e @ K pubK A~ < .
Type flaws ', . ® CGPTUI"ZS I‘ZIGTIOHS
sindation @ K't privk K y between objects

-

® .. (definable)

Expressing Type-Flaw Attacks in a Strongly Typed Language

17

~ Subtyping

princ i msg
nonce :: msg
_ pubK A :: msg
Type flaws
"Soie e Allows atomic terms in messages
|Txein9 I 9

DAS
Execution

mrie @ Definable
Type flaws

Simulafion > Non-transmittable terms
> Sub-hierarchies

Expressing Type-Flaw Attacks in a Strongly Typed Language

18

Type Checking e > |— P

t has type F—t:7
TinT .
P is well-

Type flaws . ’ryped in =
wer2o @ Catches:

Example . .

— > Encryption with a nonce

Erenstio > Transmission of a long term key

Intruder

Type flaws > Circular key hierarchies, ...

Simulation

® Static and dynamic uses

e Decidable

Expressing Type-Flaw Attacks in a Strongly Typed Language

20

Data Access Specification e

r is DAS-valid >|—P

for AinT

I'||—,r P is DAS-
Typeflaws o Catches A valid in 2
MSR 2.0 o . : :
Example > A Slg“'hg/encrypt|n9 WlTh BS key
|Ey::9 | > A accessing B's private data, ...

Execution

ntruder . .
s ® Static & Decidable
Simulation

® Gives meaning to Dolev-Yao intruder
» Completeness
» Reconstructibility

Expressing Type-Flaw Attacks in a Strongly Typed Language 21

' Configurations

Active role
set

Type flaws C = [S]RZ

MSR 2.0
Example
Typing
DAS
[Execution |
e /S’ra’re SignaTur;
ype flaws
Simulation ’N(T) cq: T
‘Ll(T, ey 1') ® |A'/|\: 1
\ ’MA(T, ey w \ ® ! 1 /

Expressing Type-Flaw Attacks in a Strongly Typed Language

Execution Model

O

PoCsC°

Type flaws

MR20 - o Activate roles

Typing

DAS ® Generates new role state pred. names

[Execution |
Intruder

weis ® LNStantiate variables
Simulation

e Apply rules

® Skips rules

Expressing Type-Flaw Attacks in a Strongly Typed Language 23

. Variable Instantiation

Type flaws Z |_ T v T

MSR 2.0

o [S]R (Vxitrp) SN [S]R ([+/xIr.p)*
Typing > 2
DAS

[Execution |

Intruder

Type flaws

smdation Type checking guarantees proper usage

Expressing Type-Flaw Attacks in a Strongly Typed Language

24

I Rule Application

r= F,% — 3dn:T. G(n)

“ @ Constraint check

Tyflas
MSR 2.0 > |= (constraint handler)

Example

Typing
DAS

[Execution | @ Fir'ing

Intruder

Simulation [SIJR(r‘,p)A2 — [SZ]RpAZ, cr S not in S,
— —
S.F S, 6(c)

Expressing Type-Flaw Attacks in a Strongly Typed Language 25

' Execution with an Attacker

P, Pr>C—>C
Type flaws . .
msez0 @ Selected principal(s): I
xample
Typing
[[:?:escuﬂon . Generic CGPGbi“Ti@S: PI

e > Well-typed
Simulation > DAS-valid

® Modeled completely within MSR

Expressing Type-Flaw Attacks in a Strongly Typed Language

26

| Expressing Type Violations ?

® Tmpossible !

Type flaws

MSR 2.0 .
Example @-D
Typing

DAS

Execution [S]R (Vx:t.r,p) AZ — [S]R ([t/x]r.p) AZ

Intruder

[Type flaws |
Simulation

Typing forces principal to play by the rules

Expressing Type-Flaw Attacks in a Strongly Typed Language

27

How things

i o should b
Distinguish O s
» Static type-checking ~

Tyeeflas 3> Dynamic type-checking

MSR 2.0 How Things]

Example .
= are in realty

DAS
Execution

Intruder

[Type flaws |
Simulation

Expressing Type-Flaw Attacks in a Strongly Typed Language 28

' Subtyping Revisited

® Most rules have /[r' i s “]

a rigid format

Type flaws

500 e Subtyping provides hook

Execution ', |_ -
Intruder T 't T r T ' T
[Type flaws |

Simulation I'|—1t:71

Extend subtyping with confusable types

Expressing Type-Flaw Attacks in a Strongly Typed Language

29

{A, T}e
[

S] . »®
L J A First Solution o TreBlu (re Bl

{ng.B, n,, Al
o »@®

princ I msg
honce : msg ¢~ static
pubK A i msg _

Type flaws
MSR 2.0 princ .+ honce

Example

Typing Msg .« nNonce _
DAS
Execution

Intruder ® Worlks

=

- dynamic extension

[Type flaws |
Simulation

e .. but very raw
> not every msg mistaken as a nonce
» unwanted recursion

Expressing Type-Flaw Attacks in a Strongly Typed Language

) Towards a Polymorphic MSR

princ i msg honce* i msg
honce :: msg princ i hohce*
pubK A i msg honce :: nonce*
Type flaws ! i ;
mer20 Ralr o il msg pair princ nonce :: nhonce*

Example

Typing
DAS
Execution
Intruder

pair : type -> type -> type.
i s o=> B -> pair o f. Confusable
[Type flaws |
Simulation)) AlelieEs
> Fine grained

» Captures what we want
» Recursion is up to us

Expressing Type-Flaw Attacks in a Strongly Typed Language

Summary

® Type violation (attacks) expressible in MSR

Type flaws @ S|mp|e

MSR 2.0
Example .
g\gpsing e Flexible
Execution > You decide confusable types

Intruder

Ferws] > Shades of gray in black/white positions

Simulation

Types are good

Expressing Type-Flaw Attacks in a Strongly Typed Language 32

Simulation

e No attacker

» Prototype
Type flaws
MSR 2.0
Simulation] @ With attacker
ntruder
s > Verification

= Model checking
» Theorem proving
= Process equivalence

Expressing Type-Flaw Attacks in a Strongly Typed Language

33

3 The Dolev-Yao Intruder

: > Intercept / emit messages
' » Decrypt / encrypt with known key

Type flaws

werzo > Split / form pairs
simdation 5. | ook up public information

IDY Intruder |

sgstees % Generate fresh data

Type flaws

» Found in most protocol analysis tools

» Modeled completely within MSR
» Generated automatically (mostly)

Expressing Type-Flaw Attacks in a Strongly Typed Language 34

Intruder Simulation Approaches

® Take protocol text into account?
> Blind / Focused

Type flaws
MSR 2.0

"recn e Size of intruder steps

IDY Intruder |

S » Small / Big

® Intruder representation
> Explicit / Implicit

Expressing Type-Flaw Attacks in a Strongly Typed Language

35

Graphically...

MSR
O

Paulson
spi

Type flaws
MSR 2.0
Simulation

IDY Intruder |
Big steps
Type flaws

W big Good for
proving

theorems

Expressing Type-Flaw Attacks in a Strongly Typed Language

36

Intruder Activity

Type flaws
MSR 2.0
Simulation

IDY Intruder |
Big steps
Type flaws

\/ \/

No need to No need to
remember construct

Expressing Type-Flaw Attacks in a Strongly Typed Language 37

Intruder Activity Comparison

Disassembly Assembly
| @ Blind e Blind
Type flaws > Take pieces apart » Put pieces together
MSR 2.0 until until meaningful
=l = Atomic message is built
IED; ﬂ:;lsjderl = Key unavailable
et e Focused ® Focused
> Anticipate message > Build only usable
contents messages
» Memorize only what
is needed

Expressing Type-Flaw Attacks in a Strongly Typed Language 38

® Take typing derivation of
' (incoming) messages

Type flaws
MSR 2.0

Simulation @ Encr‘ypTlOn d€f|nes

DY Intruder

==] regions

Type flaws

¢ 1 role for each message
» 1 rule for each region
> Interface rule

Expressing Type-Flaw Attacks in a Strongly Typed Language

F|—t:7

39

A — B {A nhe

© NSL — 15t Message B > A: {n, ng, Bl
A — B: {nB}kB
I
- dL: princ X msg. A
L(I,m)
Type flaws . l
Mng e Vm: msg N(m) — M (m)
Simulation A
DY Intruder \v4 . Pl"inC L(I, {A, nA}kB)
I%?p:%;%l Vk'B pUbK B MI({A, nA}kB) — MI(nA)
VK'g: privK kg M:(K'p) M:(K'p)
_ Vh,: honce /

e M:(m) “forgotten” as soon as k' is known

® Special case if k'y known right away

Expressing Type-Flaw Attacks in a Strongly Typed Language 40

® Take typing derivation of
' (outgoing) messages

Type flaws
MSR 2.0

simdation @ Encryption defines regions

DY Intruder

Big steps
Type flaws

® 1 role for each region

® Extras for generated data

Expressing Type-Flaw Attacks in a Strongly Typed Language

vV

F|—t:7

41

A — B {A, ne

NSL — 1St Message B 5 A: {ny, ng, Bl
A — B: {ng}s
] I
Vm: msg M:(m) — N(m)]
> (vag Ik
Type flaws ,Bt princ N({A n
MSR 2.0 vkg: pubk B Mz(n,) — ({A, /\?\}'25\))
Simulation Vh,: nonce I\''A
DY Intruder ~ J
ol In,:nonce 1t
o VA,B: princ A’ -
vKg: pubK B — N(@{A, ’/‘VA\}IE?‘))
\Na

\

What about confusable types ?

Expressing Type-Flaw Attacks in a Strongly Typed Language 42

| Creating Confusion

® Mark confusable objects
~ ® Add rules for each option

Type flaws

. : + I
MSR 2.0 (3L princ X nonce*. 2\
Simulation .
DY Intruder VC pr'lnC — L(Il (C,n))
Big steps Vn: nonce M:(n) M(") |+ similar
[Type flaws | — nule
Vn: nonce M:(n) — L, n), Mi(n) > with
VC: princ RN L(T, C) R dn:nonce
VA,B: princ L(T,n)
N{A, n}yg)
kg: pubK B M; (A kB
. zn:BngrL:ce+ Ming)) - M1(A) My(kp) y

Expressing Type-Flaw Attacks in a Strongly Typed Language 43

Type flaws
MSR 2.0

Simulation

DY Intruder
Big steps

[Type flaws |

Making Sense of Confusion

-

3L: princ X msq.

Vm: msg

vV A: princ
VKg: pubK B
VK'g: privK kg
Vn,: honce*

¥n: nonce
VA: princ

VA: princ
Yn: nonce

/" princ x nonce*.

N(m)

LT, {A, n}e)

M:({A, naie)
M(K'g)

L' (I,n)
L'(I,A)

L'(I,(An)

%

%

%

Expressing Type-Flaw Attacks in a Strongly Typed Language

L(I,m)
M:(m)

M (A)
L'(Tn,)
M(k'p)

M:(n)

M)

" Further Optimizations

. o Fold added rules in
(unless confusion type is recursive)

U » Type-check in static type system

MSR 2.0

Simulation > Blgger' ST@PS
DY Intruder
Big steps

[Type flaws |

e Simplify result using DAS rules
> More compact
» Formalizes "regions”
» Automation

Expressing Type-Flaw Attacks in a Strongly Typed Language

45

‘C) Future Work

® Polymorphic MSR

Type flaws
Wskz0 e Strategles

Simulation

Expressing Type-Flaw Attacks in a Strongly Typed Language

46

	Expressing Type-Flaw Attacks in a Strongly Typed Language
	Outline
	Type-Flaw Attacks
	Example: NSL�[Millen]
	Advocates
	Opponents
	Prog. Languages vs. Security
	… in Reality
	Contribution
	MSR
	What’s in 	MSR 2.0	?
	The Dolev-Yao Model of Security
	Roles
	Rules
	NSL Initiator
	NSL Responder
	Types of Terms
	Subtyping
	Type Checking
	Data Access Specification
	Configurations
	Execution Model
	Variable Instantiation
	Rule Application
	Execution with an Attacker
	Expressing Type Violations ?
	Expressing Type Violations !
	Subtyping Revisited
	A First Solution
	Towards a Polymorphic MSR
	Summary
	Simulation
	The Dolev-Yao Intruder
	Intruder Simulation Approaches
	Graphically…
	Intruder Activity
	Intruder Activity Comparison
	Big-Step Message Disassembly
	NSL – 1st Message
	Big-Step Message Assembly
	NSL – 1st Message
	Creating Confusion
	Making Sense of Confusion
	Further Optimizations
	Future Work

