
Tokyo, October 27th, 2001

2nd International Workshop on
Foundations for Secure/Survivable
Systems and Networks

Expressing Type-Flaw Attacks in a 
Strongly Typed Language

Iliano Cervesato
 

iliano@itd.nrl.navy.mil

ITT Industries, Inc @  NRL –
 

Washington DC

http://www.cs.stanford.edu/~iliano/



Expressing Type-Flaw Attacks in a Strongly Typed Language 2

Outline

•
 

Type-confusion attacks

•
 

Type-Flaw Attacks in MSR

•
 

Simulation with Dolev-Yao Intruder

Work in progress

Work in progress

MSR 2.0

Type flaws

Simulation

Example
Positions
Contribution

Example
Typing
DAS
Execution
Intruder
Type flaws

Big steps
Type flaws

DY Intruder
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Type-Flaw Attacks

•
 

Functionalities seen as “types”


 
Names



 
Nonces



 
Keys, …

•
 

Violation


 
Principal misinterprets data

•
 

Type flaw/confusion attack


 
Intruder manipulates message



 
Principal led to misuse data

MSR 2.0

Type flaws

Simulation

Example
Positions
Contribution
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Example: NSL 
[Millen]

A →

 

B: {A, nA

 

}kB

B →

 

A: {nA

 

, nB

 

, B}kA

A →

 

B: {nB

 

}kB

A I B

{I, nB

 

, B}kA

{A, I}kB Confusion 1:
name/nonce

{nB

 

,B, nA

 

, A}kI

{I,

 

nB

 

,B}kA Confusion 2:
pair/nonce

{nB

 

}kB B is fooled!

“Unlikely type violation”

Type flaws
Example
Positions
Contribution

MSR 2.0
Simulation
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Advocates

Type-flaw attacks are serious threats

•
 

Push type-free specifications
Catch all “normal”

 
attacks

…
 

and type-confusion attacks too
Types are not real!

Example
Positions

Type flaws

Contribution

MSR 2.0
Simulation
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Opponents

Most type-flaw attacks are unrealistic

•
 

Push typed specification languages
Catch “real”

 
attacks

Types guide search  
 

fast
Type-flaw attacks too low-level anyway

Positions

Type flaws
Example

Contribution

MSR 2.0
Simulation
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Desired

 World

Prog. Languages vs. Security

•
 

Types in
 programming

 languages

•
 

Types in 
security

Positions

Type flaws
Example

Contribution

MSR 2.0
Simulation

Whole

 Wild

 World

Tolerated

 World

Interesting

 World

Exciting

 World

Symbolic

 WorldUgh!
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… in Reality

Type discriminants
Data length
Redundancy
Explicit checks

•
 

Resolve many situations …
•

 
… but not all
“I so far found only one realistic type-flaw attack”

 

[Meadows]

Positions

Type flaws
Example

Contribution

MSR 2.0
Simulation



Expressing Type-Flaw Attacks in a Strongly Typed Language 9

Contribution

•
 

Reconcile
Typed languages
Type violations

•
 

User specifies confusable types 
Flexible
Abstract

•
 

Support efficient simulation

Positions
Contribution

Type flaws
Example

MSR 2.0
Simulation
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MSR

•
 

Follows the Dolev-Yao abstraction
•

 
Based on


 
Multiset rewriting, linear logic, type theory

•
 

Used to prove


 
Undecidability of protocol verification



 
Completeness  of Dolev-Yao intruder

•
 

Related to


 
strands



 
CIL



 
spi-calculus, …

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws
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What’s in MSR 2.0 ?

•
 

Multiset rewriting with existentials

•
 

Dependent types w/ subsorting

•
 

Memory predicates

•
 

Constraints

New

New

New

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws
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The Dolev-Yao Model of Security


 

Found in most protocol analysis tools
•

 
Tractability

•
 

Black-box cryptography


 
No guessing of keys

•
 

Partially abstract data access


 
Knowledge soup a kakb

s

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws

ka



 
No bits

01001011010…•
 

Symbolic data
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Roles

•
 

Generic
 roles

•
 

Anchored
 roles

∃y:τ’.∀x:τ. lhs → rhs
… … …

∃y:τ’.∀x:τ. lhs → rhs

∃L: τ’1(x1)
 

x … x τ’n(xn) 

…

Role state pred.
 var. declarations

∀A

Role  
owner

∃L: τ’1(x

 

1) x … x τ’n(xn) 
…

A

Role  
owner

∃y:τ’.∀x:τ. lhs → rhs
… … …

∃y:τ’.∀x:τ. lhs → rhs

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws
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Rules

∃y1

 

: τ’1
 

.
 …

 ∃yn’

 

: τ’n’

 

.

∀x1

 

: τ1

 

. 
…

 ∀xn

 

: τn

 

.
lhs → rhs

• N(t)

 

Network

• L(t, …, t)

 

Local state

• MA

 

(t, …, t)

 

Memory

• χ
 

Constraints

• N(t)

 

Network

• L(t, …, t)

 

Local state

• MA

 

(t, …, t)

 

Memory

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws
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NSL Initiator

∀A

∀B: princ

 ∀kB: pubK B • → ∃nA

 

:nonce. L(A,B,kB

 

,nA

 

)
 N({A, nA

 

}kB

 

)

∀

 

…

 ∀kA: pubK A

 ∀

 

k’A: privK kA

 
∀nA,nB: nonce

L(A,B,kB

 

,nA

 

)
 N({nA

 

,nB

 

,B}kA

 

) → N({nB

 

}kB

 

)

∃L:

 

princ  x

 

princ(B)

 

x

 

pubK

 

B x  nonce.

A →

 

B: {A, nA

 

}kB

B →

 

A: {nA

 

, nB, B}kA

A →

 

B: {nB

 

}kB

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws
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NSL Responder

∀B

∀kB: pubK

 

B

 ∀k’B: privK

 

kB

 
∀A: princ

 ∀nA: nonce 
∀kA: pubK A

N({A,nA

 

}kB

 

) → ∃nB

 

:nonce. L(B,kB

 

,k’B
 

,nB

 

)
 N({nA

 

,nB

 

,B}kA

 

)

∀

 

…

 ∀nB: nonce
L(B,kB

 

,k’B
 

,nB

 

) 
N({nB

 

}kB

 

) → •

∃L:

 

princ(B)

 

x

 

pubK

 

B(kB)

 

x privK

 

kB  x nonce.

A →

 

B:

 

{A, nA

 

}kB

B →

 

A: {nA

 

, nB, B}kA

A →

 

B:

 

{nB

 

}kB

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws
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Types of Terms

•
 

A:
 

princ
•

 
n: nonce

•
 

k:
 

shK
 

A B
•

 
k:

 
pubK

 
A

•
 

k’: privK k

•
 

…
 

(definable)

•
 

A:
 

princ
•

 
n: nonce

•
 

A:
 

princ
•

 
n: nonce

•
 

k:
 

shK
 

A B
•

 
k:

 
pubK

 
A

•
 

k’: privK k

Types can depend
on term
• Captures relations

 between objects

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws
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Subtyping

•
 

Allows atomic terms in messages

•
 

Definable
Non-transmittable terms
Sub-hierarchies

princ
 
:: msg

 nonce
 
:: msg

 pubK
 

A
 

:: msg

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws
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

 
Transmission of a long term key

•
 

Catches:


 
Encryption with a nonce

Type Checking Σ
 

|—
 

P
Γ

 
|—

 
t : τ

P
 

is well-
 typed in Σ

t
 

has type 
τ

 
in Γ

•
 

Decidable



 
Circular key hierarchies, …

•
 

Static
 

and dynamic
 

uses

New

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws
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Data Access Specification

•
 

Catches


 
A

 
signing/encrypting with B’s key

Σ
 

‖—
 

P

Γ
 

‖—A
 

r P
 

is DAS-
 valid in Σ

r
 

is DAS-valid 
for A

 
in Γ



 
A

 
accessing B’s private data, …

•
 

Static  &
 

Decidable

New

•
 

Gives meaning to Dolev-Yao intruder


 
Completeness



 
Reconstructibility

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws
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Configurations

C = [S]R
Σ

Active role
 set

Signature
• a : τ
• Ll : τ
• M_: τ

State
•N(t)
•Ll

 

(t, …, t)
•MA

 

(t, …, t)

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws
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Execution Model

•
 

Activate roles
•

 
Generates new role state pred. names

•
 

Instantiate variables
•

 
Apply rules

•
 

Skips rules

P
 


 

C →
 

C’

1-step 
firing

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws
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Variable Instantiation

Type checking guarantees proper usage

Σ
 

|—
 

t :
 

τ

[S]R (∀x:τ.r,ρ) A
Σ →

 
[S]R ([t/x]r,ρ)

 

A

Σ

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws
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Rule Application

S, F

→
 
[S2

 

]RρA

Σ, c:τ c
 

not in S1

S, G(c)

[S1
 

]R(r,ρ)A

Σ

•
 

Firing

r =   F, χ
 

→ ∃n:τ. G(n)

•
 

Constraint check
Σ

 
|=

 
χ

 
(constraint handler)MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws
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Execution with an Attacker

P, PI
 


 

C →
 

C’

•
 

Selected principal(s):
 

I

•
 

Generic capabilities:
 

PI
Well-typed
DAS-valid

•
 

Modeled completely within MSR

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws
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Expressing Type Violations ?

•
 

Impossible !

Σ |—
 

t :
 

τ

[S]R (∀x:τ.r,ρ) A
Σ →

 
[S]R ([t/x]r,ρ)

 

A

Σ

Typing forces principal to play by the rules

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder

Type flaws
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Expressing Type Violations !

Σ |—D
 

t :
 

τ

[S]R (∀x:τ.r,ρ) A
Σ →

 
[S]R ([t/x]r,ρ)

 

A

Σ

How things

 should be

 on paper

How things

 are

 

in realty

Distinguish
Static

 
type-checking

Dynamic
 

type-checking

|—D

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder

Type flaws
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Subtyping Revisited

•
 

Most rules have
 a rigid format

Γ, a:τ,

 

Γ’

 

|—

 

a :

 

τ

τ’
 

::
 

τ
 

Γ
 

|—
 

t :
 

τ’
Γ

 
|—

 
t :

 
τ

•
 

Subtyping
 

provides hook

Extend subtyping with confusable types

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder

Type flaws
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A First Solution

princ
 
::  msg

 nonce
 
::  msg

 pubK
 

A
 

::  msg
static

princ
 
::  nonce

 msg
 

::  nonce dynamic extension

•
 

…
 

but very raw


 
not every msg

 
mistaken as a nonce



 
unwanted recursion

•
 

Works …

{I, nB

 

, B}kA

{nB

 

,B, nA

 

, A}kI

{A, I}kB

{I, nB

 

,B}kA

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder

Type flaws
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Towards a Polymorphic MSR

Fine grained
Captures what we want
Recursion is up to us

princ
 
::

 
msg

 nonce
 
::

 
msg

 pubK
 

A
 

::
 

msg
 pair α β ::

 
msg

nonce+

 
::

 
msg

 princ
 

::
 

nonce+

 nonce
 

::
 

nonce+

 pair princ
 

nonce
 

::
 

nonce+

Confusable
 nonces

pair

 

: type -> type -> type.

 _,_

 

: α

 

-> β

 

-> pair α β.

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder

Type flaws
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Summary

•
 

Type violation (attacks) expressible in MSR

•
 

Simple

•
 

Flexible


 
You decide confusable types



 
Shades of gray in black/white positions

Types are good

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder

Type flaws
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Simulation

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder

•
 

No attacker
Prototype

•
 

With attacker
Verification


 
Model checking


 
Theorem proving


 
Process equivalence
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The Dolev-Yao Intruder

 Intercept / emit messages
Decrypt / encrypt with known key
Split / form pairs
 Look up public information
Generate fresh data

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder


 

Found in most protocol analysis tools


 

Modeled completely within MSR


 
Generated automatically (mostly)
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Intruder Simulation Approaches

•
 

Take protocol text into account?
Blind / Focused

•
 

Size of intruder steps
Small / Big

•
 

Intruder representation
Explicit / Implicit

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder
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Graphically…

small big

bl
in

d
fo

cu
se

d

Strands
 MSR, …

NPA

Paulson
 spi

CAPSL ?
 Casper ?

Good for
 proving

 theorems

MSR

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder
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Intruder Activity

No need to
 remember

No need to
 construct

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder
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Intruder Activity Comparison

Disassembly
•

 
Blind


 
Take pieces apart 
until


 

Atomic


 

Key unavailable
•

 
Focused


 
Anticipate message 
contents



 
Memorize only what 
is needed

Assembly
•

 
Blind


 
Put pieces together 
until meaningful 
message is built

•
 

Focused


 
Build only usable 
messages

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder
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Big-Step Message Disassembly

•
 

Take typing derivation of 
(incoming) messages

•
 

Encryption defines 
regions

•
 

1 role for each message
 1 rule for each region
Interface rule

Γ
 

|—
 

t :
 

τ

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder
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NSL – 1st Message

•
 

MI

 

(m)
 

“forgotten”
 

as soon as k’B
 

is known

A →

 

B: {A, nA

 

}kB

B →

 

A: {nA

 

, nB, B}kA

A →

 

B: {nB

 

}kB

I

∀m: msg → L(I,m)
 MI

 

(m)

∀

 

A: princ

 ∀kB: pubK

 

B

 ∀k’B: privK

 

kB

 
∀nA: nonce

L(I, {A, nA

 

}kB

 

)
 MI

 

({A, nA

 

}kB

 

)
 MI

 

(k’B
 

)
→

MI

 

(A)
 MI

 

(nA

 

)
 MI

 

(k’B
 

)

∃L: princ  x  msg.

N(m)

•
 

Special case if k’B
 

known right away

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder
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Big-Step Message Assembly

•
 

Take typing derivation of 
(outgoing) messages

•
 

Encryption defines regions

•
 

1 role for each region

•
 

Extras for generated data
Γ

 
|—

 
t :

 
τ

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder
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NSL – 1st Message
A →

 

B: {A, nA

 

}kB

B →

 

A: {nA

 

, nB, B}kA

A →

 

B: {nB

 

}kB

What about confusable types ?

∀m: msg → N(m)MI

 

(m)
I

I
∀A,B: princ

 ∀kB: pubK

 

B

 ∀nA: nonce

N({A, nA

 

}kB

 

)
 MI

 

(A),MI

 

(nA

 

),MI

 

(kB

 

)→
MI

 

(A)
 MI

 

(nA

 

)
 MI

 

(kB

 

)
I

∀A,B: princ

 ∀kB: pubK

 

B

∃nA

 

:nonce.
 N({A, nA

 

}kB

 

)
 MI

 

(A),MI

 

(nA

 

),MI

 

(kB

 

)
→MI

 

(A)
 MI

 

(kB

 

)

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder
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Creating Confusion

•
 

Mark confusable objects
•

 
Add rules for each option

I

∀A,B: princ

 
∀kB

 

: pubK

 

B

 
∀n: nonce+

N({A, n}kB

 

)

 
MI

 

(A),MI

 

(kB

 

)→
L(I,n)

 
MI

 

(A)

 
MI

 

(kB

 

)

∀C: princ

 ∀n: nonce
L(I, (C,n))

 MI

 

(C),MI

 

(n)→MI

 

(C)
 MI

 

(n)
∀n: nonce L(I, n), MI

 

(n)→MI

 

(n)

∀C: princ L(I, C), MI

 

(C)→MI

 

(C)

∃L:

 

princ  x

 

nonce+.

+ similar

 rule

 with

 ∃n:nonce

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder
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Making Sense of Confusion
I

∀

 

A: princ

 
∀kB

 

: pubK

 

B

 
∀k’B

 

: privK

 

kB

 

∀nA

 

: nonce+

L(I, {A, nA

 

}kB

 

)

 
MI

 

({A, nA

 

}kB

 

)

 
MI

 

(k’B

 

)
→

MI

 

(A)

 
L'(I,nA

 

)

 
MI

 

(k’B

 

)

∃L: princ  x  msg.

∀m: msg →
L(I,m)

 
MI

 

(m)N(m)

∀n: nonce L'(I,n) → MI

 

(n)

∀A: princ L'(I,A) → MI

 

(A)

∀A: princ

 ∀n: nonce L'(I,(A,n)) → MI

 

(A)
 MI

 

(n)

∃L’: princ  x

 

nonce+.

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder
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Further Optimizations

•
 

Fold added rules in
 (unless confusion type is recursive)

Type-check in static type system
Bigger steps

•
 

Simplify result using DAS rules
More compact
Formalizes “regions”
Automation

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder
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Future Work

•
 

Polymorphic MSR

•
 

StrategiesMSR 2.0
Type flaws

Simulation
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