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Teeflaws o Type-confusion attacks
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Execution
Intruder
Type flaws
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Type flaws
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Type-Flaw Attacks

® Functionalities seen as "types”

> Names
Type flawsl > Nonces
Example
Positions > Keys'

Contribution

MR20 e Violation
Simulation o o
» Principal misinterprets data

¢ Type flaw/confusion attack
» Intruder manipulates message
» Principal led to misuse data

Expressing Type-Flaw Attacks in a Strongly Typed Language



Example: NSL

[Millen]

A I B
Type flaws o Alhe
[Example |
Positions f \
Contribution ®- {I; nB;B}kA {I/ nBv B}kA o
MSR 2.0 )
Simulation —

{ng.B, ny, Al

>

{nohe

) 4

"Unlikely type violation”
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A— B: {A, nA}kB
B — A:{n,, ng, B},
A — B {nghe

Confusion 1:
name/nonce

Confusion 2:
pair/nonce

B is fooled!




L Advocates

Type-flaw attacks are serious threats

Type flaws

Example

|Positions

G ® Push type-free specifications
Simlation » Catch all "normal” attacks
> ... and type-confusion attacks too

> Types are not reall

Expressing Type-Flaw Attacks in a Strongly Typed Language



" Opponents

Most type-flaw attacks are unrealistic

Type flaws

Example

L=re= 1 ® Push typed specification languages
s > Catch “real” attacks

> Types guide search = fast

» Type-flaw attacks too low-level anyway
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L) Prog. Languages vs. Security

® Types in
programming
e flaws  lANGUAgeEs

Example

[Positions |
Contribution

MSR 2.0

Simulation ® Types in
security

Interesting
World

| Exciting
World

Ugh!

. Desired
World
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... In Reality

Type discriminants
» Data length

Type flaws

- » Redundancy
[Positions | . e

crioatin 3> Explicit checks
MSR 2.0
Simulation

® Resolve many situations ...
e .. but not all

"T so far found only one realistic type-flaw attack” [Meadows]
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Contribution

= e Reconcile

> Typed languages

Type flaws . .

Example > Type VIOIGTIOHS

|Coon‘r:I:uTion |

smuaion @ User specifies confusable types
> Flexible
> Abstract

e Support efficient simulation

Expressing Type-Flaw Attacks in a Strongly Typed Language



~ ® Follows the Dolev-Yao abstraction
. e Based on

Type flaws > Multiset rewriting, linear logic, type theory
MsR20 | o Used to prove
P » Undecidability of protocol verification
Sxeaon » Completeness of Dolev-Yao intruder
weflus @ Related to
Simulation
» strands
> CIL

> spi-calculus, ...
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3 What's in MSR@ ?

| ® Multiset rewriting with existentials

Type flaws

msrzo ] ® Dependent types w/ subsorting —pé®

Typing
DAS

et @ Memory predicates "

Intruder
Type flaws
Simulation

e Constraints  ne"
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e Symbolic data 0 k
__ » No bits
Type flaws o

lMSR 2.0 I
xample

Typing
DAS

Black-box cr'yp’rography
> No guessing of keys

Execution

mwer — © Partially abstract data access

Type flaws Rl

Simulation > Knowledge soup

s®

> Found in most protocol analysis tools
Tractability
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Role state pred.

Roles var. declarations
] ( oo ! \WVA
® Generic 4L T 1(><1) X ... XT n(x”) P
*  roles

Type flaws

lMSR 2.0 |

Typinz

DAS

Execution

Intruder

Type flaws

Simulation
® Anchored [34 71 x . x 7,00 1A

roles - w
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Yyt Ty
S lhs — rhs
ype flaws . Lo
VX, T, Ay, T .

|MSR 2.0 | n
xample

Typing
DAS
Execution

Intruder
Type flaws (N(’r) Network —
Simulation e N(1) Network

e [(t,..,1t) Local state
e [(t,..,1) Local state
e M,(t, ..., T) Memory
\-MA(T, ., 1) Memor'y/

Q( Cons‘rminﬁ
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Type flaws
MSR 2.0

[Example |
Typing

DAS
Execution

Intruder
Type flaws
Simulation

nB:nonce

NSL Initiator

(B) x

—> dn,

B x nonce.

L(A,B,kg,n,)
N({n..ng.B}xa)
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A — B {A, nA}kB
— A:{n,, ng, B} 4

A — B {nghe

L(A,B,ky,ny)
N({A, nahe)

N({ng}ye)

J

VA
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— B: {A, n e

7 NSL Responder B > /1 {ny, N, Bl
t — B: {nge
[ | \VB
AL: ®) x BkB) x privK ky x nonce.
Type flaws
MSR 2.0
|_|E_xa.mple |
yping
s L(B Ko K'n.N)
xecution N A,n — dn . B/ BB
]Ein’rr'uc;rer' ({ A}kB) ° N({nAlnB lB}kA)
Type flaws
Simulation
VR A ‘
N(iNgske
\ J
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) Types of Terms

® A: princ
' ® n: nonce

Type flaws

('
MSR 2.0
f::'rxarir:‘ple Q k: ShK A B ™ Types CC(n depend
DAS on term
e @ K pubK A~ < .
Type flaws ', . ® CGPTUI"ZS I‘ZIGTIOHS
sindation @ K't privk K y between objects

-

® .. (definable)

Expressing Type-Flaw Attacks in a Strongly Typed Language

17



~ Subtyping

princ i msg
nonce :: msg
_ pubK A :: msg
Type flaws
"Soie e Allows atomic terms in messages
|Txein9 I 9

DAS
Execution

mrie @ Definable
Type flaws

Simulafion > Non-transmittable terms
> Sub-hierarchies

Expressing Type-Flaw Attacks in a Strongly Typed Language

18



Type Checking e > |— P

t has type F—t:7
TinT .
P is well-

Type flaws . ’ryped in =
wer2o @ Catches:

Example . .

— > Encryption with a nonce

Erenstio > Transmission of a long term key

Intruder

Type flaws > Circular key hierarchies, ...

Simulation

® Static and dynamic uses

e Decidable
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Data Access Specification e

r is DAS-valid >|—P

for AinT

I'||—,r P is DAS-
Typeflaws o Catches A valid in 2
MSR 2.0 o . : :
Example > A Slg“'hg/encrypt|n9 WlTh BS key
|Ey::9 | > A accessing B's private data, ...

Execution

ntruder . .
s ® Static & Decidable
Simulation

® Gives meaning to Dolev-Yao intruder
» Completeness
» Reconstructibility
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' Configurations

Active role
set

Type flaws C = [ S ]RZ

MSR 2.0
Example
Typing
DAS
[Execution |
e /S’ra’re SignaTur;
ype flaws
Simulation ’N(T) cq: T
‘Ll(T, ey 1') ® |A'/|\: 1
\ ’MA(T, ey w \ ® ! 1 /
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Execution Model

O

PoCsC°

Type flaws

MR20 - o Activate roles

Typing

DAS ® Generates new role state pred. names

[Execution |
Intruder

weis  ® LNStantiate variables
Simulation

e Apply rules

® Skips rules
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. Variable Instantiation

Type flaws Z |_ T v T

MSR 2.0

o [S]R (Vxitrp) SN [S]R ([+/xIr.p)*
Typing > 2
DAS

[Execution |

Intruder

Type flaws

smdation Type checking guarantees proper usage
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I Rule Application

r= F,% — 3dn:T. G(n)

“ @ Constraint check

Tyflas
MSR 2.0 > |= (constraint handler)

Example

Typing
DAS

[Execution | @ Fir'ing

Intruder

Simulation [SIJR(r‘,p)A2 — [SZ]RpAZ, cr S not in S,
— —
S.F S, 6(c)
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' Execution with an Attacker

P, Pr>C—>C
Type flaws . .
msez0 @ Selected principal(s): I
xample
Typing
[[:?:escuﬂon . Generic CGPGbi“Ti@S: PI

e > Well-typed
Simulation > DAS-valid

® Modeled completely within MSR

Expressing Type-Flaw Attacks in a Strongly Typed Language
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| Expressing Type Violations ?

® Tmpossible !

Type flaws

MSR 2.0 .
Example @-D
Typing

DAS

Execution [S]R (Vx:t.r,p) AZ — [S]R ([t/x]r.p) AZ

Intruder

[ Type flaws |
Simulation

Typing forces principal to play by the rules
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How things

i o should b
Distinguish O s
» Static type-checking ~

Tyeeflas 3> Dynamic type-checking

MSR 2.0 How Things]

Example .
= are in realty

DAS
Execution

Intruder

[ Type flaws |
Simulation
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' Subtyping Revisited

® Most rules have /[r' i s “]

a rigid format

Type flaws

500 e Subtyping provides hook

Execution ', |_ -
Intruder T 't T r T ' T
[ Type flaws |

Simulation I'|—1t:71

Extend subtyping with confusable types

Expressing Type-Flaw Attacks in a Strongly Typed Language
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{A, T}e
[

S ] . »®
L J A First Solution o TreBlu  (re Bl

{ng.B, n,, Al
o »@®

princ I msg
honce : msg ¢~ static
pubK A i msg _

Type flaws
MSR 2.0 princ .+ honce

Example

Typing Msg .« nNonce _
DAS
Execution

Intruder ® Worlks

=

- dynamic extension

[ Type flaws |
Simulation

e .. but very raw
> not every msg mistaken as a nonce
» unwanted recursion
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) Towards a Polymorphic MSR

princ i msg honce* i msg
honce :: msg  princ i hohce*
pubK A i msg  honce :: nonce*
Type flaws ! i ;
mer20  Ralr o il msg  pair princ nonce :: nhonce*

Example

Typing
DAS
Execution
Intruder

pair : type -> type -> type.
i s o=> B -> pair o f. Confusable
[ Type flaws |
Simulation ) ) AlelieEs
> Fine grained

» Captures what we want
» Recursion is up to us
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Summary

® Type violation (attacks) expressible in MSR

Type flaws @ S|mp|e

MSR 2.0
Example .
g\gpsing e Flexible
Execution > You decide confusable types

Intruder

Ferws] > Shades of gray in black/white positions

Simulation

Types are good
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Simulation

e No attacker

» Prototype
Type flaws
MSR 2.0
Simulation] @ With attacker
ntruder
s > Verification

= Model checking
» Theorem proving
= Process equivalence

Expressing Type-Flaw Attacks in a Strongly Typed Language
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3 The Dolev-Yao Intruder

: > Intercept / emit messages
' » Decrypt / encrypt with known key

Type flaws

werzo > Split / form pairs
simdation 5. | ook up public information

IDY Intruder |

sgstees % Generate fresh data

Type flaws

» Found in most protocol analysis tools

» Modeled completely within MSR
» Generated automatically (mostly)
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Intruder Simulation Approaches

® Take protocol text into account?
> Blind / Focused

Type flaws
MSR 2.0

"recn e Size of intruder steps

IDY Intruder |

S » Small / Big

® Intruder representation
> Explicit / Implicit

Expressing Type-Flaw Attacks in a Strongly Typed Language

35



Graphically...

MSR
O

Paulson
spi

Type flaws
MSR 2.0
Simulation

IDY Intruder |
Big steps
Type flaws

W big Good for
proving

theorems
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Intruder Activity

Type flaws
MSR 2.0
Simulation

IDY Intruder |
Big steps
Type flaws

\/ \/

No need to No need to
remember construct

Expressing Type-Flaw Attacks in a Strongly Typed Language 37



Intruder Activity Comparison

Disassembly Assembly
| @ Blind e Blind
Type flaws > Take pieces apart » Put pieces together
MSR 2.0 until until meaningful
=l = Atomic message is built
IED; ﬂ:;lsjderl = Key unavailable
et e Focused ® Focused
> Anticipate message > Build only usable
contents messages
» Memorize only what
is needed
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® Take typing derivation of
' (incoming) messages

Type flaws
MSR 2.0

Simulation @ Encr‘ypTlOn d€f|nes

DY Intruder

== ]  regions

Type flaws

¢ 1 role for each message
» 1 rule for each region
> Interface rule

Expressing Type-Flaw Attacks in a Strongly Typed Language

F|—t:7
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A — B {A nhe

© NSL — 15t Message B > A: {n, ng, Bl
A — B: {nB}kB
I
- dL: princ X msg. A
L(I,m)
Type flaws . l
Mng e Vm: msg N(m) — M (m)
Simulation A
DY Intruder \v4 . Pl"inC L(I, {A, nA}kB)
I%?p:%;%l Vk'B pUbK B MI({A, nA}kB) — MI(nA)
VK'g: privK kg M:(K'p) M:(K'p)
\_ Vh,: honce /

e M:(m) “forgotten” as soon as k' is known

® Special case if k'y known right away
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® Take typing derivation of
' (outgoing) messages

Type flaws
MSR 2.0

simdation @ Encryption defines regions

DY Intruder

Big steps
Type flaws

® 1 role for each region

® Extras for generated data

Expressing Type-Flaw Attacks in a Strongly Typed Language

vV

F|—t:7

41



A — B {A, ne

NSL — 1St Message B 5 A: {ny, ng, Bl
A — B: {ng}s
] I
Vm: msg M:(m) — N(m)]
> (vag Ik
Type flaws ,Bt princ N({A n
MSR 2.0 vkg: pubk B Mz(n,) — ({A, /\?\}'25\) )
Simulation Vh,: nonce I\''A
DY Intruder ~ J
ol In,:nonce 1t
o VA,B: princ A’ -
vKg: pubK B — N(@{A, ’/‘VA\}IE?‘) )
\Na

\

What about confusable types ?
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| Creating Confusion

® Mark confusable objects
~ ® Add rules for each option

Type flaws

. : + I
MSR 2.0 (3L princ X nonce*. 2\
Simulation .
DY Intruder VC pr'lnC — L(Il (C,n))
Big steps Vn: nonce M:(n) M(") |+ similar
[ Type flaws | — nule
Vn: nonce M:(n) — L, n), Mi(n) > with
VC: princ RN L(T, C) R dn:nonce
VA,B: princ L(T,n)
N{A, n}yg)
kg: pubK B M; (A kB
. zn:BngrL:ce+ Ming)) - M1(A) My(kp) y
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Type flaws
MSR 2.0

Simulation

DY Intruder
Big steps

[ Type flaws |

Making Sense of Confusion

-

3L: princ X msq.

Vm: msg

vV A: princ
VKg: pubK B
VK'g: privK kg
Vn,: honce*

¥n: nonce
VA: princ

VA: princ
Yn: nonce

/" princ x nonce*.

N(m)

LT, {A, n}e)

M:({A, naie)
M(K'g)

L' (I,n)
L'(I,A)

L'(I,(An)

%

%

%

Expressing Type-Flaw Attacks in a Strongly Typed Language

L(I,m)
M:(m)

M (A)
L'(Tn,)
M(k'p)

M:(n)

M)



" Further Optimizations

. o Fold added rules in
(unless confusion type is recursive)

U » Type-check in static type system

MSR 2.0

Simulation > Blgger' ST@PS
DY Intruder
Big steps

[ Type flaws |

e Simplify result using DAS rules
> More compact
» Formalizes "regions”
» Automation

Expressing Type-Flaw Attacks in a Strongly Typed Language
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‘C ) Future Work

® Polymorphic MSR

Type flaws
Wskz0 e Strategles

Simulation

Expressing Type-Flaw Attacks in a Strongly Typed Language
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