
Tokyo, October 27th, 2001

2nd International Workshop on
Foundations for Secure/Survivable
Systems and Networks

Expressing Type-Flaw Attacks in a
Strongly Typed Language

Iliano Cervesato

iliano@itd.nrl.navy.mil

ITT Industries, Inc @ NRL –

Washington DC

http://www.cs.stanford.edu/~iliano/

Expressing Type-Flaw Attacks in a Strongly Typed Language 2

Outline

•

Type-confusion attacks

•

Type-Flaw Attacks in MSR

•

Simulation with Dolev-Yao Intruder

Work in progress

Work in progress

MSR 2.0

Type flaws

Simulation

Example
Positions
Contribution

Example
Typing
DAS
Execution
Intruder
Type flaws

Big steps
Type flaws

DY Intruder

Expressing Type-Flaw Attacks in a Strongly Typed Language 3

Type-Flaw Attacks

•

Functionalities seen as “types”


Names



Nonces



Keys, …

•

Violation


Principal misinterprets data

•

Type flaw/confusion attack


Intruder manipulates message



Principal led to misuse data

MSR 2.0

Type flaws

Simulation

Example
Positions
Contribution

Expressing Type-Flaw Attacks in a Strongly Typed Language 4

Example: NSL
[Millen]

A →

B: {A, nA

}kB

B →

A: {nA

, nB

, B}kA

A →

B: {nB

}kB

A I B

{I, nB

, B}kA

{A, I}kB Confusion 1:
name/nonce

{nB

,B, nA

, A}kI

{I,

nB

,B}kA Confusion 2:
pair/nonce

{nB

}kB B is fooled!

“Unlikely type violation”

Type flaws
Example
Positions
Contribution

MSR 2.0
Simulation

Expressing Type-Flaw Attacks in a Strongly Typed Language 5

Advocates

Type-flaw attacks are serious threats

•

Push type-free specifications
Catch all “normal”

attacks

…

and type-confusion attacks too
Types are not real!

Example
Positions

Type flaws

Contribution

MSR 2.0
Simulation

Expressing Type-Flaw Attacks in a Strongly Typed Language 6

Opponents

Most type-flaw attacks are unrealistic

•

Push typed specification languages
Catch “real”

attacks

Types guide search 

fast
Type-flaw attacks too low-level anyway

Positions

Type flaws
Example

Contribution

MSR 2.0
Simulation

Expressing Type-Flaw Attacks in a Strongly Typed Language 7

Desired

 World

Prog. Languages vs. Security

•

Types in
 programming

 languages

•

Types in
security

Positions

Type flaws
Example

Contribution

MSR 2.0
Simulation

Whole

 Wild

 World

Tolerated

 World

Interesting

 World

Exciting

 World

Symbolic

 WorldUgh!

Expressing Type-Flaw Attacks in a Strongly Typed Language 8

… in Reality

Type discriminants
Data length
Redundancy
Explicit checks

•

Resolve many situations …
•

… but not all
“I so far found only one realistic type-flaw attack”

[Meadows]

Positions

Type flaws
Example

Contribution

MSR 2.0
Simulation

Expressing Type-Flaw Attacks in a Strongly Typed Language 9

Contribution

•

Reconcile
Typed languages
Type violations

•

User specifies confusable types
Flexible
Abstract

•

Support efficient simulation

Positions
Contribution

Type flaws
Example

MSR 2.0
Simulation

Expressing Type-Flaw Attacks in a Strongly Typed Language 10

MSR

•

Follows the Dolev-Yao abstraction
•

Based on


Multiset rewriting, linear logic, type theory

•

Used to prove


Undecidability of protocol verification



Completeness of Dolev-Yao intruder

•

Related to


strands



CIL



spi-calculus, …

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws

Expressing Type-Flaw Attacks in a Strongly Typed Language 11

What’s in MSR 2.0 ?

•

Multiset rewriting with existentials

•

Dependent types w/ subsorting

•

Memory predicates

•

Constraints

New

New

New

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws

Expressing Type-Flaw Attacks in a Strongly Typed Language 12

The Dolev-Yao Model of Security



Found in most protocol analysis tools
•

Tractability

•

Black-box cryptography


No guessing of keys

•

Partially abstract data access


Knowledge soup a kakb

s

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws

ka



No bits

01001011010…•

Symbolic data

Expressing Type-Flaw Attacks in a Strongly Typed Language 13

Roles

•

Generic
 roles

•

Anchored
 roles

∃y:τ’.∀x:τ. lhs → rhs
… … …

∃y:τ’.∀x:τ. lhs → rhs

∃L: τ’1(x1)

x … x τ’n(xn)

…

Role state pred.
 var. declarations

∀A

Role
owner

∃L: τ’1(x

1) x … x τ’n(xn)
…

A

Role
owner

∃y:τ’.∀x:τ. lhs → rhs
… … …

∃y:τ’.∀x:τ. lhs → rhs

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws

Expressing Type-Flaw Attacks in a Strongly Typed Language 14

Rules

∃y1

: τ’1

.
 …

 ∃yn’

: τ’n’

.

∀x1

: τ1

.
…

 ∀xn

: τn

.
lhs → rhs

• N(t)

Network

• L(t, …, t)

Local state

• MA

(t, …, t)

Memory

• χ

Constraints

• N(t)

Network

• L(t, …, t)

Local state

• MA

(t, …, t)

Memory

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws

Expressing Type-Flaw Attacks in a Strongly Typed Language 15

NSL Initiator

∀A

∀B: princ

 ∀kB: pubK B • → ∃nA

:nonce. L(A,B,kB

,nA

)
 N({A, nA

}kB

)

∀

…

 ∀kA: pubK A

 ∀

k’A: privK kA

∀nA,nB: nonce

L(A,B,kB

,nA

)
 N({nA

,nB

,B}kA

) → N({nB

}kB

)

∃L:

princ x

princ(B)

x

pubK

B x nonce.

A →

B: {A, nA

}kB

B →

A: {nA

, nB, B}kA

A →

B: {nB

}kB

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws

Expressing Type-Flaw Attacks in a Strongly Typed Language 16

NSL Responder

∀B

∀kB: pubK

B

 ∀k’B: privK

kB

∀A: princ

 ∀nA: nonce
∀kA: pubK A

N({A,nA

}kB

) → ∃nB

:nonce. L(B,kB

,k’B

,nB

)
 N({nA

,nB

,B}kA

)

∀

…

 ∀nB: nonce
L(B,kB

,k’B

,nB

)
N({nB

}kB

) → •

∃L:

princ(B)

x

pubK

B(kB)

x privK

kB x nonce.

A →

B:

{A, nA

}kB

B →

A: {nA

, nB, B}kA

A →

B:

{nB

}kB

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws

Expressing Type-Flaw Attacks in a Strongly Typed Language 17

Types of Terms

•

A:

princ
•

n: nonce

•

k:

shK

A B
•

k:

pubK

A

•

k’: privK k

•

…

(definable)

•

A:

princ
•

n: nonce

•

A:

princ
•

n: nonce

•

k:

shK

A B
•

k:

pubK

A

•

k’: privK k

Types can depend
on term
• Captures relations

 between objects

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws

Expressing Type-Flaw Attacks in a Strongly Typed Language 18

Subtyping

•

Allows atomic terms in messages

•

Definable
Non-transmittable terms
Sub-hierarchies

princ

:: msg

 nonce

:: msg

 pubK

A

:: msg

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws

Expressing Type-Flaw Attacks in a Strongly Typed Language 20



Transmission of a long term key

•

Catches:


Encryption with a nonce

Type Checking Σ

|—

P
Γ

|—

t : τ

P

is well-
 typed in Σ

t

has type
τ

in Γ

•

Decidable



Circular key hierarchies, …

•

Static

and dynamic

uses

New

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws

Expressing Type-Flaw Attacks in a Strongly Typed Language 21

Data Access Specification

•

Catches


A

signing/encrypting with B’s key

Σ

‖—

P

Γ

‖—A

r P

is DAS-
 valid in Σ

r

is DAS-valid
for A

in Γ



A

accessing B’s private data, …

•

Static &

Decidable

New

•

Gives meaning to Dolev-Yao intruder


Completeness



Reconstructibility

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws

Expressing Type-Flaw Attacks in a Strongly Typed Language 22

Configurations

C = [S]R
Σ

Active role
 set

Signature
• a : τ
• Ll : τ
• M_: τ

State
•N(t)
•Ll

(t, …, t)
•MA

(t, …, t)

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws

Expressing Type-Flaw Attacks in a Strongly Typed Language 23

Execution Model

•

Activate roles
•

Generates new role state pred. names

•

Instantiate variables
•

Apply rules

•

Skips rules

P



C →

C’

1-step
firing

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws

Expressing Type-Flaw Attacks in a Strongly Typed Language 24

Variable Instantiation

Type checking guarantees proper usage

Σ

|—

t :

τ

[S]R (∀x:τ.r,ρ) A
Σ →

[S]R ([t/x]r,ρ)

A

Σ

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws

Expressing Type-Flaw Attacks in a Strongly Typed Language 25

Rule Application

S, F

→

[S2

]RρA

Σ, c:τ c

not in S1

S, G(c)

[S1

]R(r,ρ)A

Σ

•

Firing

r = F, χ

→ ∃n:τ. G(n)

•

Constraint check
Σ

|=

χ

(constraint handler)MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws

Expressing Type-Flaw Attacks in a Strongly Typed Language 26

Execution with an Attacker

P, PI



C →

C’

•

Selected principal(s):

I

•

Generic capabilities:

PI
Well-typed
DAS-valid

•

Modeled completely within MSR

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder
Type flaws

Expressing Type-Flaw Attacks in a Strongly Typed Language 27

Expressing Type Violations ?

•

Impossible !

Σ |—

t :

τ

[S]R (∀x:τ.r,ρ) A
Σ →

[S]R ([t/x]r,ρ)

A

Σ

Typing forces principal to play by the rules

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder

Type flaws

Expressing Type-Flaw Attacks in a Strongly Typed Language 28

Expressing Type Violations !

Σ |—D

t :

τ

[S]R (∀x:τ.r,ρ) A
Σ →

[S]R ([t/x]r,ρ)

A

Σ

How things

 should be

 on paper

How things

 are

in realty

Distinguish
Static

type-checking

Dynamic

type-checking

|—D

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder

Type flaws

Expressing Type-Flaw Attacks in a Strongly Typed Language 29

Subtyping Revisited

•

Most rules have
 a rigid format

Γ, a:τ,

Γ’

|—

a :

τ

τ’

::

τ

Γ

|—

t :

τ’
Γ

|—

t :

τ

•

Subtyping

provides hook

Extend subtyping with confusable types

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder

Type flaws

Expressing Type-Flaw Attacks in a Strongly Typed Language 30

A First Solution

princ

:: msg

 nonce

:: msg

 pubK

A

:: msg
static

princ

:: nonce

 msg

:: nonce dynamic extension

•

…

but very raw


not every msg

mistaken as a nonce



unwanted recursion

•

Works …

{I, nB

, B}kA

{nB

,B, nA

, A}kI

{A, I}kB

{I, nB

,B}kA

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder

Type flaws

Expressing Type-Flaw Attacks in a Strongly Typed Language 31

Towards a Polymorphic MSR

Fine grained
Captures what we want
Recursion is up to us

princ

::

msg

 nonce

::

msg

 pubK

A

::

msg
 pair α β ::

msg

nonce+

::

msg

 princ

::

nonce+

 nonce

::

nonce+

 pair princ

nonce

::

nonce+

Confusable
 nonces

pair

: type -> type -> type.

 ,

: α

-> β

-> pair α β.

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder

Type flaws

Expressing Type-Flaw Attacks in a Strongly Typed Language 32

Summary

•

Type violation (attacks) expressible in MSR

•

Simple

•

Flexible


You decide confusable types



Shades of gray in black/white positions

Types are good

MSR 2.0

Type flaws

Simulation

Example
Typing
DAS
Execution
Intruder

Type flaws

Expressing Type-Flaw Attacks in a Strongly Typed Language 33

Simulation

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder

•

No attacker
Prototype

•

With attacker
Verification


Model checking


Theorem proving


Process equivalence

Expressing Type-Flaw Attacks in a Strongly Typed Language 34

The Dolev-Yao Intruder

 Intercept / emit messages
Decrypt / encrypt with known key
Split / form pairs
 Look up public information
Generate fresh data

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder



Found in most protocol analysis tools



Modeled completely within MSR


Generated automatically (mostly)

Expressing Type-Flaw Attacks in a Strongly Typed Language 35

Intruder Simulation Approaches

•

Take protocol text into account?
Blind / Focused

•

Size of intruder steps
Small / Big

•

Intruder representation
Explicit / Implicit

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder

Expressing Type-Flaw Attacks in a Strongly Typed Language 36

Graphically…

small big

bl
in

d
fo

cu
se

d

Strands
 MSR, …

NPA

Paulson
 spi

CAPSL ?
 Casper ?

Good for
 proving

 theorems

MSR

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder

Expressing Type-Flaw Attacks in a Strongly Typed Language 37

Intruder Activity

No need to
 remember

No need to
 construct

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder

Expressing Type-Flaw Attacks in a Strongly Typed Language 38

Intruder Activity Comparison

Disassembly
•

Blind


Take pieces apart
until


Atomic


Key unavailable
•

Focused


Anticipate message
contents



Memorize only what
is needed

Assembly
•

Blind


Put pieces together
until meaningful
message is built

•

Focused


Build only usable
messages

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder

Expressing Type-Flaw Attacks in a Strongly Typed Language 39

Big-Step Message Disassembly

•

Take typing derivation of
(incoming) messages

•

Encryption defines
regions

•

1 role for each message
 1 rule for each region
Interface rule

Γ

|—

t :

τ

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder

Expressing Type-Flaw Attacks in a Strongly Typed Language 40

NSL – 1st Message

•

MI

(m)

“forgotten”

as soon as k’B

is known

A →

B: {A, nA

}kB

B →

A: {nA

, nB, B}kA

A →

B: {nB

}kB

I

∀m: msg → L(I,m)
 MI

(m)

∀

A: princ

 ∀kB: pubK

B

 ∀k’B: privK

kB

∀nA: nonce

L(I, {A, nA

}kB

)
 MI

({A, nA

}kB

)
 MI

(k’B

)
→

MI

(A)
 MI

(nA

)
 MI

(k’B

)

∃L: princ x msg.

N(m)

•

Special case if k’B

known right away

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder

Expressing Type-Flaw Attacks in a Strongly Typed Language 41

Big-Step Message Assembly

•

Take typing derivation of
(outgoing) messages

•

Encryption defines regions

•

1 role for each region

•

Extras for generated data
Γ

|—

t :

τ

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder

Expressing Type-Flaw Attacks in a Strongly Typed Language 42

NSL – 1st Message
A →

B: {A, nA

}kB

B →

A: {nA

, nB, B}kA

A →

B: {nB

}kB

What about confusable types ?

∀m: msg → N(m)MI

(m)
I

I
∀A,B: princ

 ∀kB: pubK

B

 ∀nA: nonce

N({A, nA

}kB

)
 MI

(A),MI

(nA

),MI

(kB

)→
MI

(A)
 MI

(nA

)
 MI

(kB

)
I

∀A,B: princ

 ∀kB: pubK

B

∃nA

:nonce.
 N({A, nA

}kB

)
 MI

(A),MI

(nA

),MI

(kB

)
→MI

(A)
 MI

(kB

)

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder

Expressing Type-Flaw Attacks in a Strongly Typed Language 43

Creating Confusion

•

Mark confusable objects
•

Add rules for each option

I

∀A,B: princ

∀kB

: pubK

B

∀n: nonce+

N({A, n}kB

)

MI

(A),MI

(kB

)→
L(I,n)

MI

(A)

MI

(kB

)

∀C: princ

 ∀n: nonce
L(I, (C,n))

 MI

(C),MI

(n)→MI

(C)
 MI

(n)
∀n: nonce L(I, n), MI

(n)→MI

(n)

∀C: princ L(I, C), MI

(C)→MI

(C)

∃L:

princ x

nonce+.

+ similar

 rule

 with

 ∃n:nonce

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder

Expressing Type-Flaw Attacks in a Strongly Typed Language 44

Making Sense of Confusion
I

∀

A: princ

∀kB

: pubK

B

∀k’B

: privK

kB

∀nA

: nonce+

L(I, {A, nA

}kB

)

MI

({A, nA

}kB

)

MI

(k’B

)
→

MI

(A)

L'(I,nA

)

MI

(k’B

)

∃L: princ x msg.

∀m: msg →
L(I,m)

MI

(m)N(m)

∀n: nonce L'(I,n) → MI

(n)

∀A: princ L'(I,A) → MI

(A)

∀A: princ

 ∀n: nonce L'(I,(A,n)) → MI

(A)
 MI

(n)

∃L’: princ x

nonce+.

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder

Expressing Type-Flaw Attacks in a Strongly Typed Language 45

Further Optimizations

•

Fold added rules in
 (unless confusion type is recursive)

Type-check in static type system
Bigger steps

•

Simplify result using DAS rules
More compact
Formalizes “regions”
Automation

MSR 2.0
Type flaws

Simulation

Big steps
Type flaws

DY Intruder

Expressing Type-Flaw Attacks in a Strongly Typed Language 46

Future Work

•

Polymorphic MSR

•

StrategiesMSR 2.0
Type flaws

Simulation

	Expressing Type-Flaw Attacks in a Strongly Typed Language
	Outline
	Type-Flaw Attacks
	Example: NSL�[Millen]
	Advocates
	Opponents
	Prog. Languages vs. Security
	… in Reality
	Contribution
	MSR
	What’s in 	MSR 2.0	?
	The Dolev-Yao Model of Security
	Roles
	Rules
	NSL Initiator
	NSL Responder
	Types of Terms
	Subtyping
	Type Checking
	Data Access Specification
	Configurations
	Execution Model
	Variable Instantiation
	Rule Application
	Execution with an Attacker
	Expressing Type Violations ?
	Expressing Type Violations !
	Subtyping Revisited
	A First Solution
	Towards a Polymorphic MSR
	Summary
	Simulation
	The Dolev-Yao Intruder
	Intruder Simulation Approaches
	Graphically…
	Intruder Activity
	Intruder Activity Comparison
	Big-Step Message Disassembly
	NSL – 1st Message
	Big-Step Message Assembly
	NSL – 1st Message
	Creating Confusion
	Making Sense of Confusion
	Further Optimizations
	Future Work

