MSR

A Framework for Security
Protocols and their Meta-Theory

Tliano Cervesato iliano@itd.nrl.navy.mil

ITT Industries, Inc @ NRL - Washington DC

http.//www.cs.stanford.edu/~iliano/

Carnegie Mellon University Feb. 2nd, 2001

szszs Outline

I. Mis-specification languages

II. MSR
> Overview > Execution
» Typing » Properties
> Access control » Example

ITI. The most powerful attacker
> Dolev-Yao intruder

MSR, a Framework for Security Protocols and their Meta-Theory

Part I

Mis-Specification Languages

MSR, a Framework for Security Protocols and their Meta-Theory

sz \\Why Is Protocol Analysis Difficult?

® Subtle cryptographic primitives
» Dolev-Yao abstraction

7. ® Distributed hostile environment

» "Prudent engineering practice”

¢ Tnadequate specification languages
> ... the devil is in details ..

MSR, a Framework for Security Protocols and their Meta-Theory

s#=e Dolev-Yao Abstraction

> No guessing of keys

® Public knowledge soup
» Magic access to data

MSR, a Framework for Security Protocols and their Meta-Theory

&= | anguages to Specify What?

e Message flow

. ® Message constituents
e Operating environment

® Protocol goals

MSR, a Framework for Security Protocols and their Meta-Theory

&= Desirable Properties

e Unambiguous
® Simple

¢ Flexible
~ > Adapts to protocol

e Powerful
> Applies to a wide class of protocols

e Insightful
» Gives insight about protocols

MSR, a Framework for Security Protocols and their Meta-Theory

“Usual Notation”

A — B:i{n,, Als

B— A:{n,, na}ia

A — B: {nghae

MSR, a Framework for Security Protocols and their Meta-Theory

&= How does It do?

e Flow
»Expected run
| ® Constituents
B2 > Side remarks

e Environment
» Side remarks

® Goals
» Side remarks

e Unambiguous &

® Simple
e Flexible
e Powerful

e Tnsightful

MSR, a Framework for Security Protocols and their Meta-Theory

©

® © O

A

A

{nAl A}kB

N

{na, Nalya

v
v

{ng}ke

{ng}ke

MSR, a Framework for Security Protocols and their Meta-Theory

10

g How do they do?

® Flow e Unambiguous &
»Role-based |
| ® Constifuents * Simple O

» Informal math.
® Environment
» Side remarks e Powerful

® Goals
» Side remarks e Tnsightful

e Flexible

© ©® O

MSR, a Framework for Security Protocols and their Meta-Theory

: MSR 1.x - Initiator
Message

N transmission
once
generation
O

& Tag(A) = Lo(A), Tao(A)

- o
LO(A)I TCAI(B) — 3n/\' Ll(A,B,nA), N({nAIA}kB)l TCAI(B)
Ll(AlenA)l N({nA'nB}kA) — LZ(AlBInAlnB)
L,(A.B.inang) — Lg(A,B.ngng), N({ngle)

where msq(A) = Pr(A), Prvk(A k, 1)
mA1(B) = Pr(B), Pubk(B kg)

MSR, a Framework for Security Protocols and their Meta-Theory 12

== MSR 1.x - Responder

Role state
predicate

Lo
Tgo(B) — Lo(B), po(B)

Lo(A), mg1(A), N({na,Ala) = Li(A.B.ny), ay(A)
L(A.B.ns) — 3ng. L(A,B,ny,ng), N({ny,nphya)
L,(A.B.nang), N({ngha) — L3(A,B.nyng)

Persistent
Info.

where mgo(B) = PA(B), Prvk(B k1) - O
ng1(A) = P(A), PubK(A k,)

MSR, a Framework for Security Protocols and their Meta-Theory

13

&= How did we do?

® Flow e Unambiguous ©)
»Role-based |
| ® Constifuents * Simple S

> Persistent info.
e Environment

> In part e Powerful
-2 Goals—

e Flexible

© ® O

e Tnsightful

MSR, a Framework for Security Protocols and their Meta-Theory

&= How wi/fwe do?

® Flow e Unambiguous ©
»Role-based |
| ® Constifuents * Simple O

» Strong typing
® Environment

> In part ® Powerful
-2 Goals—

e Flexible

© © O

e Tnsightful

MSR, a Framework for Security Protocols and their Meta-Theory

Part IT

MSR

MSR, a Framework for Security Protocols and their Meta-Theory

16

What's In MSR@ ?

® Multiset rewriting with existentials

~| ® Dependent types w/ subsorting "
® Memory predicates n@"

e Constraints ne"

MSR, a Framework for Security Protocols and their Meta-Theory

17

® Atomic terms
» Principal names A
> Keys
> Nonces n
> .. y

® Term constructors

> ()
> UL \
>[_]

> .. y

=
Y

O —0T O3 ==K

MSR, a Framework for Security Protocols and their Meta-Theory 18

(N(’r) Network
e [(t,..,1t) Local state
e M,(t, ..., T) Memory

Jy;: T
rhs

ElYn': T'n'-

(I\I(’r) Network

e [(t,..,1) Local state

Q(Cons‘rrainﬁ

\-MA(T, ., 1) Memor'y/

MSR, a Framework for Security Protocols and their Meta-Theory

19

sz Types of Terms

® k: pubK A
® k: privK k

® .. (definable)

> <

(Types can depend
on term

e Captures relations
between objects

e Subsumes persistent
information

» Static
> Local

\ » Mandatory

MSR, a Framework for Security Protocols and their Meta-Theory 20

Subtyping
T I msg

® Allows atomic terms in messages

e Definable

> Non-transmittable terms
> Sub-hierarchies

MSR, a Framework for Security Protocols and their Meta-Theory

21

&= Role state predicates
L(A L, .., T)

e Hold data local to a role instance
> Lifespan = role

e Tnvoke next rule

> L, = control
» (AT, .., 1) = data

MSR, a Framework for Security Protocols and their Meta-Theory

22

sz Memory Predicates i

M,(t, ..., 1)

® Hold private info. across role exec.

| ® Support for subprotocols
~— » Communicate data
> Pass control

¢ Tnterface to outside system
¢ Implements intruder

MSR, a Framework for Security Protocols and their Meta-Theory

23

== Constraints

X

® Guards over interpreted domain
> Abstract
» Modular

e Tnvoke constraint handler

e Eg.: fimestamps
» (Te=Ta+ Ty)
» (T < Te)

MSR, a Framework for Security Protocols and their Meta-Theory

24

= Type of predicates

(Zxny

® Dependent sums -

je

® Forces associations among arguments

la 0

T X)

»E.g.: princi®) x pubK Ak« x privK k,

MSR, a Framework for Security Protocols and their Meta-Theory

25

Roles

® Generic
roles

® Anchored
roles

MSR, a Framework for Security Protocols and their Meta-Theory

Role state pred.

var. declarations

VA

rhs

rhs

26

HB:HOHCZ

s MSR 2.0 — NS Initiator

(B) x B x nonce.

— dn,

L(A,B,kg,n,)
N({na.ng}ka)

L(A,B,kg,n,)
N({n.,Ale)

N({ng}xs)

J

MSR, a Framework for Security Protocols and their Meta-Theory

VA

27

= MSR 2.0 — NS Responder

[3L (8) x (A) x BkB) x
X honce X A X honce.

N({n,,Alp) — 3Ing

L(B kg K, ANy Kyg)
N{nghe)

ke A

| L(...)

N({na.nglka)

MSR, a Framework for Security Protocols and their Meta-Theory

VB

28

= Type Checking —n* > |—P

t has type F|—1t:1
TinT

Pis well-

typed in =
e Catches:

» Encryption with a nonce
> Transmission of a long term key
» Circular key hierarchies, ...

® Static and dynamic uses
¢ Decidable

MSR, a Framework for Security Protocols and their Meta-Theory 29

&= Access Control

>||l—P
ris AC-valid
for AinT Pis AC-
1B ”—A r valid in X

® Catches
| > A signing/encrypting with B's key
> A accessing B's private dafta, ...

¢ Fully static
e Decidable

® Gives meaning to Dolev-Yao intruder

MSR, a Framework for Security Protocols and their Meta-Theory

30

= Snapshots

*N(t)
’LI(T, ey T)

_ M,(T, ..., w

Active role
set

Sighature
°a:T
® Ll . I

oMt

MSR, a Framework for Security Protocols and their Meta-Theory

31

2 ® Activate roles
® Generates new role state pred. names
® Instantiate variables
® Apply rules
® Skips rules

MSR, a Framework for Security Protocols and their Meta-Theory

32

F. X — 3n:z. 6(n)

Constraint check
Z |: X (COnSTr'ClinT hand|er')

[Sl]Rz —> [Sz]Rz cT c nhot in S,

MSR, a Framework for Security Protocols and their Meta-Theory

33

Properties
® Admissibility of parallel firing
® Type preservation

® Access control preservation

® Completeness of Dolev-Yao
intfruder

MSR, a Framework for Security Protocols and their Meta-Theory

eV

34

&= Completed Case-Studies

e Full Needham-Schroeder public-key

e OFT group key management
e Dolev-Yao intruder

MSR, a Framework for Security Protocols and their Meta-Theory

N . Neuman-Stubblebine repeated auth.

35

Part ITI

The Most Powerful
Attacker

MSR, a Framework for Security Protocols and their Meta-Theory

36

#== Execution with an Attacker

P, Pr>C—>C

o Selected principal(s): I
® Generic capabilities: P;
> Well-typed
> AC-valid

® Modeled completely within MSR

MSR, a Framework for Security Protocols and their Meta-Theory

37

The Dolev-Yao Intruder

e Specific protocol suite Ppy
| ® Underlies every protocol analysis tool

® Completeness still unproved !l

MSR, a Framework for Security Protocols and their Meta-Theory

38

e Intercept / emit messages

o Split / form pairs

® Decrypt / encrypt with known key
® Look up public information

® Generate fresh data

MSR, a Framework for Security Protocols and their Meta-Theory

39

sz== DY Intruder — Data access
e M (1) : Intruder knowledge

[VA: princ. « — MI(A)]I

I
[Vk: shkIA 7 Mx(k)] + dual

I I
Vk: pubK I :
[Vk: pubK A * MI(k)] [Vk': privkK k * MI(k)]

¢ No nonces, no other keys, ...

MSR, a Framework for Security Protocols and their Meta-Theory 40

=== DY Intruder — Data Generation

e Safe data

[- — dn:nonce. MI(n)] ' [- — dm:msg. Mr(m)]I

& e Anything else ?

(VA Biprinc.« — Fkishk A B.M() " 227

® Tt depends on the protocol !l
» Automated generation ?

MSR, a Framework for Security Protocols and their Meta-Theory 41

== DY Intruder Stretches AC to Limit

Well-typed
AC-valid

/

Dolev-Yao
intruder

MSR, a Framework for Security Protocols and their Meta-Theory

&= Completeness of D-Y Intruder

o Tf P> [SIR, — [S'Ry
with all well-typed and AC-valid

® Then

P, Ppy > [§]B; — [E]B;

MSR, a Framework for Security Protocols and their Meta-Theory

43

= Encoding of P, S, X

P Remove roles anchored on I

¢ S Map I's state / mem. pred. using M;

> Remove I's role state pred.; add M;

MSR, a Framework for Security Protocols and their Meta-Theory

z=2= Fncoding of R

¢ No encoding on structure of R
> Lacks context!

e Encoding on AC-derivation for R

A: X|—R

» Associate roles from Pyy to each AC rule

MSR, a Framework for Security Protocols and their Meta-Theory

45

sz Completeness proof

- @ Induction on execution sequence

® Simulate every step with Py

» Rule application
= Tnduction on AC-derivation for R

= Every AC-derivation maps to execution
sequence relative to Pyy

> Rule instantiation
= AC-derivations preserved
» Encoding unchanged

MSR, a Framework for Security Protocols and their Meta-Theory

46

g Consequences

e Justifies design of current tools

® Support optimizations

» D-Y intr. often too general/inefficient
= Generic optimizations
= Per protoco/ optimizations
= Restrictive environments

® Caps multi-intruder situations

MSR, a Framework for Security Protocols and their Meta-Theory

47

zz= Conclusions

e Framework for specifying protocols
> Precise
> Flexible
> Powerful

® Provides

> Type /AC checking
» Sequential / parallel execution model
» Insights about Dolev-Yao intruder

MSR, a Framework for Security Protocols and their Meta-Theory

48

Future work

® Experimentation
» Clark-Jacob library
> Fair-exchange protocols
> More multicast

® Pragmatics

> Type-reconstruction
» Operational execution model(s)
» Implementation

® Automated specification techniques

MSR, a Framework for Security Protocols and their Meta-Theory

49

	MSR�A Framework for Security Protocols and their Meta-Theory
	Outline
	Slide Number 3
	Why is Protocol Analysis Difficult?
	Dolev-Yao Abstraction
	Languages to Specify What?
	Desirable Properties
	“Usual Notation”
	How does it do?
	Strands
	How do they do?
	MSR 1.x - Initiator
	MSR 1.x - Responder
	How did we do?
	How will we do?
	Slide Number 16
	What’s in 	MSR 2.0	?
	Terms
	Rules
	Types of Terms
	Subtyping
	Role state predicates
	Memory Predicates
	Constraints
	Type of predicates
	Roles
	MSR 2.0 – NS Initiator
	MSR 2.0 – NS Responder
	Type Checking
	Access Control
	Snapshots
	Execution Model
	Rule application
	Properties
	Completed Case-Studies
	Slide Number 36
	Execution with an Attacker
	The Dolev-Yao Intruder
	Capabilities of the D-Y Intruder
	DY Intruder – Data access
	DY Intruder – Data Generation
	DY Intruder Stretches AC to Limit
	Completeness of D-Y Intruder
	Encoding of P, S, S
	Encoding of R
	Completeness proof
	Consequences
	Conclusions
	Future work

