
Decentralized Execution of Multiset Rewriting Rules for Ensembles
Edmund S. L. Lam and Iliano Cervesato Carnegie Mellon University, Qatar

1. Challenges of Parallel and Distributed Programming

IA notoriously laborious and difficult endeavor
IWide range of technical difficulties (e.g. deadlock, atomicity, fault-tolerance).
I Traditional computational problems (e.g. correctness, completeness, termination).
IWhile ensuring scalability and performance effectiveness.

IOpen research problem:
IDistributed programming frameworks (e.g. Map reduce [DG08], Graph Lab

[LGK+10], Pregel [MAB+10], Mizan [KKAJ10])
IDistributed programming languages (e.g. Erlang [AV90], X10 [SSvP07], NetLog

[GW10], Meld [CARG+12])
IHigh-level programming abstractions (e.g. Join Patterns [TR11], Parallel CHR

[LS11])
IWe seek an approach that is declarative, based on logical foundations,

expressive and concise.
IMotivated by chemical reaction equations:

6CO2 + 6H2O → C6H12O6 + 6O2

2. Introducing Rule-Based Multiset Rewriting

IConstraint Handling Rules (CHR) [Frü98]
IRule-based constraint logic programming language.
IBased on multiset rewriting over first order predicate terms, called CHR constraints.
IConcurrent, committed choice and declarative.

ICHR programs consist of a set of CHR rules of the following form:
r : P \ S ⇐⇒ G | B

I Informally means: If we have P and S such that G is satisfiable, replace S with B.
IExample: Greatest common divisor (GCD)

base : gcd(0)⇐⇒ true
reduce : gcd(N) \ gcd(M)⇐⇒ 0 < N ∧ N ≤ M | gcd(M-N)

*gcd(9), gcd(6), gcd(3)+ reduce : gcd(6)\gcd(9)⇐⇒ 0 < 6 ∧ 6 ≤ 9 | gcd(3)
� *gcd(3), gcd(6), gcd(3)+ reduce : gcd(3)\gcd(6)⇐⇒ 0 < 3 ∧ 6 ≤ 9 | gcd(3)
� *gcd(3), gcd(3), gcd(3)+ reduce : gcd(3)\gcd(3)⇐⇒ 0 < 3 ∧ 6 ≤ 9 | gcd(0)
� *gcd(0), gcd(3), gcd(3)+ base : gcd(0)⇐⇒ true

� *gcd(3), gcd(3)+ reduce : gcd(3)\gcd(3)⇐⇒ 0 < 3 ∧ 6 ≤ 9 | gcd(0)
� *gcd(0), gcd(3)+ base : gcd(0)⇐⇒ true

� *gcd(3)+

3. CHRe, Distributed Multiset Rewriting for Ensembles

IElements are distributed across distinct locations (k1, k2, etc..), each
possessing its own multiset of elements.

*edge(k2, 1), ..+@k1 ←→ *edge(k1, 2), edge(k3, 8), ..+@k2

↖ ↓
*edge(k1, 10)+@k3

IRewrite rules explicitly reference the relative location of constraints:
base rule : [X]edge(Y ,D)\.⇐⇒ [X]path(Y ,D).
elim rule : [X]path(Y ,D1)\[X]path(Y ,D2)⇐⇒ D1 < D2 | true.
trans rule : [X]edge(Y ,D), [Y]path(Z ,D′)⇐⇒ X!=Z | [X]path(Z ,D + D′).

[l]c specifies that matching c is located at l .
IRewrite rules can specify “local” rewriting:

*edge(k2, 1), path(k2, 1), path(k2, 10)+@k1 ...

� *edge(k2, 1), path(k2, 1)+@k1 ... [k1]path(k2, 1)\[k1]path(k2, 10)⇐⇒ 1 < 10 | true.

IRewrite rules can specify link-restricted rewriting:
*edge(k2, 1), ..+@k1 ←→ *path(k3, 8), edge(k1, 2), edge(k3, 8), ..+@k2

↖ ↓
*edge(k1, 10)+@k3

�
*edge(k2, 1), path(k3, 9), ..+@k1 ←→ *path(k3, 8), edge(k1, 2), edge(k3, 8), ..+@k2

↖ ↓
*edge(k1, 10)+@k3

[k1]edge(k2, 1), [k2]path(k3, 8)⇐⇒ k1!=k3 | [k1]path(k3, 9)

4. Example: Parallel Mergesort

Parallel mergesort: Assumes tightly coupled ensembles (multicore,
shared memory, etc..)
[X]unsorted([I])⇐⇒ [X]sorted([I]).
[X]unsorted(Xs) ⇐⇒ len(Xs) > 2 | exists Y . exists Z . let (Ys, Zs) = split(Xs).

[Y]parent(X), [Y]unsorted(Ys), [Z]parent(X), [Z]unsorted(Zs).
[X]sorted(Xs), [X]parent(Y )⇐⇒ [Y]unmerged(Xs).
[X]unmerged(Xs1), [X]unmerged(Xs2)⇐⇒ [X]sorted(merge(Xs1,Xs2))

INew locations “dynamically” created to solve sub-problems.
I completed sub-problems are transmitted to the “parent” location.

5. Example: Distributed Hyper-Quicksort

Distributed Hyper-Quicksort: Assumes loosely coupled ensembles
(network, message passing interface, etc..)

- - “Local” sorting algorithm Parallel merge sort rules
...

- - Distributed Hyper quicksort rules
[X]sorted(Xs), [X]leader()\[X]leaderLinks(G)⇐⇒ len(G) > 1 |

let LG,GG=split(G). [X]leaderLinks(LG),
[head(GG)]leader(), [head(GG)]leaderLinks(GG),
{[Y]median(Xs[len(Xs)/2]) | Y in G}
{[Y]partnerLink(Z) | Y , Z in zip(LG,GG)}

[X]median(M), [X]sorted(Xs)⇐⇒ let Ls,Gs=partition(Xs,M).[X]leqM(Ls), [X]grM(Gs)
[X]partnerLink(Y ), [X]grM(Xs), [Y]leqM(Ys)⇐⇒ [X]leqM(Ys), [Y]grM(Xs)
[X]leqM(Ls1), [X]leqM(Ls2)⇐⇒ [X]sorted(merge(Ls1, Ls2))
[X]grM(Gs1), [X]grM(Gs2)⇐⇒ [X]sorted(merge(Gs1,Gs2))

IData (unsorted numbers) initially distributed across 2n locations.
I In termination (quiescence), 2n locations are in total order.

6. Main Challenges

IEffective execution of multiset rewriting in decentralized context:
I Incremental matching
I Termination on quiescence
I Interrupt (event) driven matching

IExecution of link-restricted rewrite rules is non-trivial:
[X]partnerLink(Y ), [X]grM(Xs), [Y]leqM(Ys)⇐⇒ [X]leqM(Ys), [Y]grM(Xs)
IRequires that locations X and Y rewrites respective multisets atomicity .
I In general (n locations involved), its essentially n-consensus problem.

IDesigning effective mappings from locations to computation resources
I Initialization: How are “locations” distributed across actual distributed system?
I Load-balancing: How are dynamically created “locations” distributed?

IDesigning the Language:
IWhat are the minimal core language features?
IWhat extended language features do we need?
IWhat kind of type safety guarantees can we provide?

IExisting woes and challenges of distributed programming:
I Fault tolerance and recovery.
ISerializability of distributed execution.

7. Current Contributions and Results

IDeveloped an operational semantics for 0-link restricted rewriting
IBased on CHR refined operational semantics [DSdlBH04].
IDecentralized, Incremental, interrupt driven execution.
IProven soundness and completeness (exhaustiveness) of rewriting

IFormalized encoding of n-link restricted rewriting into 0-link restricted
rewriting
IBased on 2 Phase commit n-consensus protocol [ML85].
IOptimized encoding for 1-link restricted rewriting
IGeneral encoding for n-link restricted rewriting

IPrototype implementation
I Implemented in Python, decentralized execution via OpenMPI bindings and thread

scheduling via multi-threading libraries.
ICHR based optimization of multiset matching (e.g. optimal join ordering, indexing

for non-linear patterns, early guard scheduling)
IBasic resource mapping: Initial locations mapped to OpenMPI nodes, dynamically

created locations mapped to threaded computation at source of creation.

8. Future Works

IFinalizing language design and high performance implementation
IC, C++ or Haskell(GHC) as source language
I Improving high-level feature encodings
IExplore implementation via Pregel [MAB+10] or Mizan [KKAJ10].

I Improve language design
IAggregates, linear comprehensions, Datalog style retraction
IExtending core language
INew features via encoding in core language

IDealing with unreliable communications and faulty computation
resources
I Fault tolerance backends and fault recovery interfaces
I Improved n-link restriction encodings (via 3 Phase commit [KD95] or Paxos

Algorithm [Lam98])

∗ Funded by the Qatar National Research Fund as project NPRP 09-667-1-100
(Effective Programming for Large Distributed Ensembles)

http://www.qatar.cmu.edu/˜sllam/ sllam@qatar.cmu.edu


