Evaluating functions as processes

Beniamino Accattoli

Carnegie Mellon University

Accattoli (CMU)

Evaluating functions as processes

- λ -calculus model of functional programming.
- π -calculus model for concurrency.
- λ -calculus can be simulated in the π -calculus (Milner, 1992).
- The simulation is **subtle**, not tight as one would expect.
- Here refined using:
 - Linear logic;
 - DeYoung-Pfenning-Toninho-Caires session types (but no types here);
 - A novel approach to relate terms and proof nets.

• Contribution:

Original and simple presentation, revisiting a work by Damiano Mazza.

The simulation

The expected simulation:

Does not hold, there is a mismatch about reduction. One gets:

where \sim is strong bisimulation (with respect to the environment).

Improved simulation

We refine λ -calculus and (head) β -reduction to a reduction — s.t.:

Novelty: the translation is a strong bisimulation of reductions.

Accattoli (CMU)

- π -calculus evaluates terms in small steps (abstract machine).
- Small-step evaluation $\simeq \lambda$ -calculus + explicit substitutions (ES).
- λ + ES injects in linear logic (LL).
- Pfenning-Caires et al.: linear logic injects in the π -calculus.

• Schema:

$$(\lambda \subseteq) \quad \lambda + ES \subseteq LL \subseteq \pi$$

• Here: we pull back π -reduction to λ + ES, hiding LL.

æ

イロト イヨト イヨト イヨト

Explicit substitutions

• Refine λ -calculus with **explicit substitutions**:

 $t, s, u := x \mid \lambda x.t \mid ts \mid t[x/s]$

• Evaluation contexts (weak head contexts):

$$E := (\cdot) | Es | E[x/s]$$

• Substitution contexts (or Lists of substitutions):

 $L := (\cdot) | L[x/s]$

• Rewriting strategy (closed by evaluation contexts $E \cdot$):

$$L(\lambda x.t)s \rightarrow_{dB} L(t[x/s])$$

 $E(x)[x/s] \rightarrow_{1s} E(s)[x/s]$

Example of evaluation

• Rewriting strategy (closed by evaluation contexts E·):

$$\begin{array}{ccc} L(\lambda x.t)s & \multimap_{dB} & L(t[x/s]) \\ E(x)[x/s] & \multimap_{ls} & E(s)[x/s] \end{array}$$

is **linear weak head reduction** (Game semantics, KAM, Bohm's theorem, Geometry of interaction).

- Use of contexts in rules = **Distance**.
- Example of reduction:

$$\begin{array}{lll} (\lambda x.xx)\lambda y.yy & \multimap_{dB} & (xx)[x/\lambda y.yy] \\ & \multimap_{1s} & ((\lambda y.yy)x)[x/\lambda y.yy] \\ & \multimap_{dB} & ((yy)[y/x])[x/\lambda y.yy] \\ & \multimap_{1s} & ((xy)[y/x])[x/\lambda y.yy] \\ & \multimap_{1s} & (((\lambda y.yy)y)[y/x])[x/\lambda y.yy] & \dots \end{array}$$

NOTE: the hole of an evaluation context is out of all boxes.

 $E := (\cdot)$

Accattoli (CMU)

Evaluating functions as processes

Es

E[x/s]

Multiplicative rule

Accattoli (CMU)

Evaluating functions as processes

æ

Distance

The translation is **not injective**, in particular if $y \notin fv(u)$:

So, both $((\lambda x.t)u)[y/s]$ and $(\lambda x.t)[y/s]u$ have a redex!

Accattoli (CMU)

Rule at a distance:

$$L(\lambda x.t)s \multimap_{dB} L(t[x/s])$$

 $(\lambda x.t)[\cdot/\cdot] \dots [\cdot/\cdot] \ u \to_{\mathrm{B-distance}} t[x/u][\cdot/\cdot] \dots [\cdot/\cdot]$

• Traditionally a configuration like:

 $(\lambda x.t)[y/v] u$

is not a redex, as it is **blocked** by [y/v].

• Here, instead, it is a redex.

Substitution rule

The substitution rule:

 $E(x)[x/s] \longrightarrow E(s)[x/s]$

Corresponds to:

Note: the substituted variable/dereliction is **out of all boxes**.

Accattoli (CMU)

Strong bisimulation

ES at a distance and proof nets satisfy:

and

Idea: distance turns terms in an algebraic language for graphs.

Accattoli (CMU)

14 / 26

TERM(s and)GRAPH(s)

æ

イロト イヨト イヨト イヨト

Accattoli (CMU)

• Processes:

 $P, Q, R := 0 | \overline{x} \langle y \rangle | \overline{x} \langle y, z \rangle | \nu x P | x(y, z) P | !x(y) P | P | Q$

• Non-blocking contexts:

$$N := (\cdot) | N | Q | P | N | \nu x N$$

• Structural congruence \equiv : closure by $N(\cdot)$ of

$$\begin{array}{c|c}
\hline P \mid 0 \equiv P \\
\hline \hline P \mid (Q \mid R) \equiv (P \mid Q) \mid R \\
\hline \hline P \mid Q \equiv Q \mid P \\
\hline \hline \nu x 0 \equiv 0 \\
\hline \hline P \mid \nu x Q \equiv \nu x . (P \mid Q) \\
\hline \hline \nu x \nu y P \equiv \nu y \nu x P \\
\hline \end{array}$$

3

イロト イポト イヨト イヨト

- Substitution of y to x in P is $P\{x/y\}$.
- The rewriting rules (closed by $N(\cdot)$ and \equiv):

$$\overline{x}\langle y, z \rangle \mid x(y', z').P \rightarrow_{\otimes} P\{y'/y\}\{z'/z\}$$

$$\overline{x}\langle y \rangle \mid !x(z).P \qquad \rightarrow_! \quad P\{z/y\} \mid !x(z).Q$$

- Binary communication = multiplicative cut-elimination
- Unary communication = exponential cut-elimination
- Variation on the rules due to **Pfenning-Caires et al**.

- The translation from $\lambda + ES$ to π is **parametrized by a name**.
- Minor variation over Milner's translation:

$$\begin{split} \llbracket x \rrbracket_{a} &:= \overline{x} \langle a \rangle \\ \llbracket \lambda x.t \rrbracket_{a} &:= a(x,b).\llbracket t \rrbracket_{b} \\ \llbracket ts \rrbracket_{a} &:= \nu b \nu x(\llbracket t \rrbracket_{b} \mid \overline{b} \langle x,a \rangle \mid !x(c).\llbracket s \rrbracket_{c}) \qquad x \text{ is fresh} \\ \llbracket t[x/s] \rrbracket_{a} &:= \nu x(\llbracket t \rrbracket_{a} \mid !x(b).\llbracket s \rrbracket_{b}) \end{split}$$

- Red names correspond to multiplicative formulas.
- Usual names (x,y,...) correspond to exponential formulas.

Proof nets as processes

Lemma (action on contexts)	
$\llbracket E(\cdot) \rrbracket_{a} = N(\llbracket \cdot \rrbracket_{a'})$	

Proof.

Straightforward induction on $E(\cdot)$.

Theorem (Strong simulation)

$$\mathbf{D} t \multimap_{\mathrm{dB}} s \text{ implies } [t]_a \Rightarrow_{\otimes} \equiv [s]_a$$

•
$$t \multimap_{1s} s \text{ implies } [t]_a \Rightarrow_! \equiv [s]_a$$

Proof.

By induction on $t \multimap_{dB} s$ and $t \multimap_{ls} s$, using the lemma.

Image: Image:

Converse relation and distance

- **Distance for** $\pi \Rightarrow$ simpler converse relation.
- The traditional rewriting rules (closed by $N(\cdot)$ and \equiv):

$$\overline{x}\langle y,z\rangle \mid x(y',z').P \rightarrow_{\otimes} P\{y'/y\}\{z'/z\}$$

$$\overline{x}\langle y \rangle \mid !x(z).P \qquad \rightarrow_! \quad P\{z/y\} \mid !x(z).Q$$

• The rewriting rules at a distance (closed by N'((·)) only):

 $N(\overline{x}\langle y, z \rangle) \mid M(x(y', z').P) \mapsto_{\otimes} M(N(P\{y'/y\}\{z'/z\}))$ $N(\overline{x}\langle y \rangle) \mid M(!x(z).P) \mapsto_{!} M(N(P\{z/y\} \mid !x(z).P))$

Lemma (reflection of reduction contexts)

If $N(P) \Rightarrow N(Q)$ then $\exists E(\cdot) s.t. [E(\cdot)]_a = N(\cdot).$

Theorem (strong converse simulation)

• If
$$\llbracket t \rrbracket_a \Rightarrow_{\otimes} Q$$
 then exists $s \ s.t. \ t \multimap_{dB} s$ and $\llbracket s \rrbracket_a \equiv Q$.
• If $\llbracket t \rrbracket_a \Rightarrow_{!} Q$ then exists $s \ s.t. \ t \multimap_{ls} s$ and $\llbracket s \rrbracket_a \equiv Q$.

Improved simulation

Summing up we obtain:

æ

(日) (周) (三) (三)

- The same approach can be applied to the call-by-value λ -calculus.
- There is a **CBV translation** of λ -calculus in **linear logic**.
- I obtained a calculus strongly bisimilar to CBV proof nets [LSFA'12].
- One gets exactly the same strong bisimulation.
- A notion of CBV linear weak head reduction, which is new.

- Distance = rewriting rules via contexts = Term rewriting matching graph rewriting.
- General technique, developed for ES, working also for π .
- Distance provides a simple and elegant re-understanding of $\lambda \hookrightarrow \pi$.
- Catching also the call-by-value case.
- Unification of λ + ES, linear logic, π -calculus (session types).

THANKS!

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト