Evaluating functions as processes

Beniamino Accattoli

Carnegie Mellon University

Functions as processes

- λ-calculus model of functional programming.
- π-calculus model for concurrency.
- λ-calculus can be simulated in the π-calculus (Milner, 1992).
- The simulation is subtle, not tight as one would expect.
- Here refined using:
- Linear logic;
- DeYoung-Pfenning-Toninho-Caires session types (but no types here);
- A novel approach to relate terms and proof nets.
- Contribution:

Original and simple presentation, revisiting a work by Damiano Mazza.

The simulation

The expected simulation:

Does not hold, there is a mismatch about reduction. One gets:

where \sim is strong bisimulation (with respect to the environment).

Improved simulation

We refine λ-calculus and (head) β-reduction to a reduction \multimap s.t.:

and

Novelty: the translation is a strong bisimulation of reductions.

Intuitions

- π-calculus evaluates terms in small steps (abstract machine).
- Small-step evaluation $\simeq \lambda$-calculus + explicit substitutions (ES).
- $\lambda+$ ES injects in linear logic (LL).
- Pfenning-Caires et al.: linear logic injects in the π-calculus.
- Schema:

$$
(\lambda \quad \subseteq) \quad \lambda+E S \quad \subseteq \quad L L \quad \subseteq \quad \pi
$$

- Here: we pull back π-reduction to $\lambda+\mathrm{ES}$, hiding LL.

Outline

(1) TERM(s and) GRAPH(s)

(2) π-calculus

Explicit substitutions

- Refine λ-calculus with explicit substitutions:

$$
t, s, u \quad:=x \quad|\quad \lambda x . t \quad| \quad t s \quad \mid \quad t[x / s]
$$

- Evaluation contexts (weak head contexts):

$$
E:=0 \cdot D \quad|\quad E s \quad| \quad E[x / s]
$$

- Substitution contexts (or Lists of substitutions):

$$
L:=0 \cdot 0 \quad \mid \quad L[x / s]
$$

- Rewriting strategy (closed by evaluation contexts E.):

$$
\begin{array}{lll}
L(\lambda x . t) s & \multimap_{\mathrm{dB}} & L(t[x / s]) \\
E(x)[x / s] & \multimap_{1 \mathrm{~s}} & E(s)[x / s]
\end{array}
$$

Example of evaluation

- Rewriting strategy (closed by evaluation contexts E.):

$$
\begin{array}{cll}
L(\lambda \lambda x . t) s & \multimap_{\mathrm{dB}} & L(t t[x / s]] \\
E(x)[x / s] & \multimap_{1 \mathrm{~s}} & E(s)[x / s]
\end{array}
$$

is linear weak head reduction
(Game semantics, KAM, Bohm's theorem, Geometry of interaction).

- Use of contexts in rules $=$ Distance .
- Example of reduction:

$$
\begin{array}{rll}
(\lambda x \cdot x x) \lambda y \cdot y y & \multimap_{\mathrm{dB}} & (x x)[x / \lambda y \cdot y y] \\
& \multimap_{1 \mathrm{~s}} & ((\lambda y \cdot y y) x)[x / \lambda y \cdot y y] \\
& \multimap_{\mathrm{dB}} & ((y y)[y / x])[x / \lambda y \cdot y y] \\
& \multimap_{1 \mathrm{~s}} & ((x y)[y / x])[x / \lambda y \cdot y y] \\
& \multimap_{1 \mathrm{~s}} & (((\lambda y \cdot y y) y)[y / x])[x / \lambda y \cdot y y]
\end{array} \quad \ldots
$$

NOTE: the hole of an evaluation context is out of all boxes.

$$
E:=0 \cdot D \quad|\quad E s \quad| \quad E[x / s]
$$

Multiplicative rule

$$
(\lambda x . t) u
$$

$$
\rightarrow \quad t[x / u]
$$

Distance

The translation is not injective, in particular if $y \notin f v(u)$:

$$
\underline{((\lambda x . t) u)[y / s]}=\frac{(\lambda x . t)[y / s] u}{\dot{j}}=
$$

So, both $((\lambda x . t) u)[y / s]$ and $(\lambda x . t)[y / s] u$ have a redex!

More on distance

- Rule at a distance:

$$
\begin{gathered}
L(\lambda x . t) s \rightarrow_{\mathrm{dB}} \quad L(t[x / s]) \\
(\lambda x . t)[\cdot / \cdot] \ldots[\cdot / \cdot] u \rightarrow_{\mathrm{B}-\text { distance }} t[x / u][/ / \cdot] \ldots[/ / \cdot]
\end{gathered}
$$

- Traditionally a configuration like:

$$
(\lambda x . t)[y / v] u
$$

is not a redex, as it is blocked by $[y / v]$.

- Here, instead, it is a redex.

Substitution rule

The substitution rule:

$$
E(x)[x / s] \quad \multimap_{1 s} \quad E(s)[x / s]
$$

Corresponds to:

Note: the substituted variable/dereliction is out of all boxes.

Strong bisimulation

ES at a distance and proof nets satisfy:

and

Idea: distance turns terms in an algebraic language for graphs.

Outline

(1) TERM(s and)GRAPH(s)

(2) π-calculus

π-calculus

- Processes:

$$
P, Q, R:=0|\bar{x}\langle y\rangle| \bar{x}\langle y, z\rangle|\nu x P| x(y, z) . P|!x(y) . P| P \mid Q
$$

- Non-blocking contexts:

$$
N:=0 \cdot D|N| Q|P| N \mid \quad \nu \times N
$$

- Structural congruence \equiv : closure by $N(\cdot)$ of

$$
\begin{array}{lcc}
\hline P \mid 0 \equiv P & P|(Q \mid R) \equiv(P \mid Q)| R & \quad \overline{P|Q \equiv Q| P} \\
\overline{\nu x 0 \equiv 0} & \frac{x \notin \operatorname{fn}(P)}{P \mid \nu x Q \equiv \nu x .(P \mid Q)} & \overline{\nu x \nu y P \equiv \nu y \nu x P}
\end{array}
$$

π-calculus

- Substitution of y to x in P is $P\{x / y\}$.
- The rewriting rules (closed by $N(\cdot)$ and \equiv):

$$
\begin{array}{lll}
\bar{x}\langle y, z\rangle \mid x\left(y^{\prime}, z^{\prime}\right) \cdot P & \rightarrow \otimes & P\left\{y^{\prime} / y\right\}\left\{z^{\prime} / z\right\} \\
\bar{x}\langle y\rangle \mid!x(z) \cdot P & \rightarrow! & P\{z / y\} \mid!x(z) \cdot Q
\end{array}
$$

- Binary communication $=$ multiplicative cut-elimination
- Unary communication $=$ exponential cut-elimination
- Variation on the rules due to Pfenning-Caires et al.

Milner's translation with ES

- The translation from $\lambda+E S$ to π is parametrized by a name.
- Minor variation over Milner's translation:

$$
\begin{array}{rll}
\llbracket x \rrbracket_{a} & :=\bar{x}\langle a\rangle \\
\llbracket \lambda x . t \rrbracket_{a} & :=a(x, b) \cdot \llbracket t \rrbracket_{b} \\
\llbracket t s \rrbracket_{a} & :=\nu b \nu x\left(\llbracket t \rrbracket_{b}|\bar{b}\langle x, a\rangle|!x(c) \cdot \llbracket s \rrbracket_{c}\right) & x \text { is fresh } \\
\llbracket t\left[x / s \rrbracket_{a}\right. & :=\nu x\left(\llbracket t \rrbracket_{a} \mid!x(b) \cdot \llbracket s \rrbracket_{b}\right) &
\end{array}
$$

- Red names correspond to multiplicative formulas.
- Usual names (x, y, \ldots) correspond to exponential formulas.

Proof nets as processes

$\llbracket x \rrbracket_{a}=$	$\llbracket t s \rrbracket_{a}=$	$\llbracket \lambda x . s \rrbracket_{a}=$	$\llbracket t[x / s] \rrbracket_{a}=$
		\ddagger	
$=\bar{x}\langle a\rangle$	$=\nu b \nu x\left(\llbracket t \rrbracket_{b}\|\bar{b}\langle x, a\rangle\|!x(c) . \llbracket \rrbracket_{\rrbracket_{c}}\right)$	$=a(x, b) . \llbracket t \rrbracket_{b}$	$=\nu x\left(\llbracket t \rrbracket_{a} \mid!x(b) . \llbracket s \rrbracket_{b}\right)$

Term reductions to process reductions

Lemma (action on contexts)
 $\llbracket E(\cdot) \rrbracket_{a}=N\left(\llbracket \cdot \rrbracket_{a^{\prime}}\right)$

Proof.

Straightforward induction on $E(\cdot)$.

Theorem (Strong simulation)

(1) $t \multimap_{\mathrm{dB}} s$ implies $\llbracket t \rrbracket_{a} \Rightarrow_{\otimes} \equiv \llbracket s \rrbracket_{a}$.
(2) $t \multimap_{1 s} s$ implies $\llbracket t \rrbracket_{a} \Rightarrow_{!} \equiv \llbracket s \rrbracket_{a}$.

Proof.

By induction on $t \multimap_{\mathrm{dB}} s$ and $t \multimap_{1 \mathrm{~s}} s$, using the lemma.

Converse relation and distance

- Distance for $\pi \Rightarrow$ simpler converse relation.
- The traditional rewriting rules (closed by $N(\cdot)$ and \equiv):

$$
\begin{array}{lll}
\bar{x}\langle y, z\rangle \mid x\left(y^{\prime}, z^{\prime}\right) \cdot P & \rightarrow \otimes & P\left\{y^{\prime} / y\right\}\left\{z^{\prime} / z\right\} \\
\bar{x}\langle y\rangle \mid!x(z) \cdot P & \rightarrow! & P\{z / y\} \mid!x(z) \cdot Q
\end{array}
$$

- The rewriting rules at a distance (closed by $N^{\prime}(\cdot)$ only):

$$
\begin{array}{lll}
N(\bar{x}\langle y, z\rangle) \mid M\left(x\left(y^{\prime}, z^{\prime}\right) \cdot P\right) & \mapsto_{\otimes} & M\left(N\left(P\left\{y^{\prime} / y\right\}\left\{z^{\prime} / z\right\}\right) D\right. \\
N(\bar{x}\langle y\rangle) \mid M(!x(z) \cdot P) & \mapsto! & M(N(P\{z / y\}|!x(z) \cdot P| D
\end{array}
$$

Reflecting process reductions

```
Lemma (reflection of reduction contexts)
If \(N(P) \Rightarrow N(Q)\) then \(\exists E(\cdot)\) s.t. \(\llbracket E(\cdot) \rrbracket_{a}=N(\cdot)\).
```

Theorem (strong converse simulation)
(1) If $\llbracket t \rrbracket_{a} \Rightarrow_{\otimes} Q$ then exists s s.t. $t \rightarrow_{\mathrm{dB}} s$ and $\llbracket s \rrbracket_{a} \equiv Q$.
(2) If $\llbracket t \rrbracket_{a} \Rightarrow$! Q then exists s s.t. $t \multimap_{1 \mathrm{~s}} s$ and $\llbracket s \rrbracket_{a} \equiv Q$.

Improved simulation

Summing up we obtain:

and

Call-by-value

- The same approach can be applied to the call-by-value λ-calculus.
- There is a CBV translation of λ-calculus in linear logic.
- I obtained a calculus strongly bisimilar to CBV proof nets [LSFA'12].
- One gets exactly the same strong bisimulation.
- A notion of CBV linear weak head reduction, which is new.

Conclusions

- Distance $=$ rewriting rules via contexts $=$ Term rewriting matching graph rewriting.
- General technique, developed for ES, working also for π.
- Distance provides a simple and elegant re-understanding of $\lambda \hookrightarrow \pi$.
- Catching also the call-by-value case.
- Unification of $\lambda+$ ES, linear logic, π-calculus (session types).

THANKS!

