
Breaking (but not yet Fixing) PKINIT-25

May 1, 2005

1 Overview

The attack is described in detail in Sec. 2. In brief, the intruder inserts herself
into the usual Kerberos 5 message flow using non-Diffie-Hellman public key au-
thentication. This allows the intruder to obtain credentials under her own name,
but she uses the nonces,etc., from the client’s requests in doing so; this allows
the intruder to forge responses to the clients requests that include the appropriate
signatures. At the end of the sequence, the various servers know that they have
interacted with the intruder (who must be a legal user for this attack to work), the
client believes she has authenticated herself to the servers, and the intruder knows
all of the freshly generated keys shared by the client and the various servers. As
a result, the intruder may impersonate the application server in interacting with
the client; alternatively, if the client attempts to interact with the server in a way
that the intruder is allowed to, the interaction will proceed and may be monitored
by the intruder (who knows the associated session key).

This attack is possible because the servers never sign the name of the client
they believe they are interacting with in a way that is visible to the client her-
self. (The servers do encrypt the name of the client for whom they are granting
credentials—in this case, the intruder’s name—but this is inside a ticket which is
opaque to the honest client.)

Also, there appears to be a variant of this attack in which the intruder tampers
with the AS exchange messages and then simply impersonates the servers in all
subsequent exchanges without interacting with them. (We have not examined
this as closely, but it works at an abstract level of formalization.) While the
intruder may impersonate the application server as before, in this case the client
does not share a key directly with this server.

2 The Attack

Figure 1 shows the message flow for the possible attack described here. In the
remainder of this section, we describe the message fields shown and omitted as
well as the actions of the various participants in this message flow.

2.1 The AS exchange

The clientC sends aKRBAS REQmessage, which is intercepted by the intruder
I. Tables 1 and 2 show our treatment of the various fields of this message; we be-
lieve that the omitted fields have no effect on whether this is an actual attack. In
modelingC ’s request toK, we useASRB(C, T, n1) to denote thereq-body
portion of theKRBAS REQmessage.I intercepts this message and constructs a

1



Client (C) Intruder(I) KAS (K) TGS(T ) Server(S)

• •-
tC,Kreq , n2, [ASRB(C, T, n1)], CertC , [tC,Kreq , n2, [ASRB(C, T, n1)]]

kC,priv
, T rustC , ASRB(C, T, n1)

• •-
tC,Kreq , n2, [ASRB(I, T, n1)], CertI, [tC,Kreq , n2, [ASRB(I, T, n1)]]

kI,priv
, T rustC , ASRB(I, T, n1)

•• �
{k, n2, CertK , [k, n2]kK,priv

}kI,pub
, I, {AKey, I, tK,auth, certPath}kT

, {AKey, n1, tK,auth, T}k

•• �
{k, n2, CertK , [k, n2]kK,priv

}kC,pub
, C, {AKey, I, tK,auth, certPath}kT

, {AKey, n1, tK,auth, T}k

• •-
{AKey, I, tK,auth, certPath}kT

, {C}AKey , C, S, n3

• •-
{AKey, I, tK,auth, certPath}kT

, {I}AKey , I, S, n3

•• �
I, {SKey, I}kS

, {SKey, n3, S}AKey

•• �
C, {SKey, I}kS

, {SKey, n3, S}AKey

• •-
{SKey, I}kS

, {C, tC,Sreq}SKey

• •-
{SKey, I}kS

, {I, tC,Sreq}SKey

•• �
{tC,Sreq , k′}SKey

•• �
{tC,Sreq , k′}SKey

Figure 1: Message flow in the purported attack.

2



her ownKRBAS REQmessage using the parameters fromC ’s message, replac-
ing C ’s name with her own. The checksum[ASRB(C, T, n1)] in thepa-data
is an unkeyedSHA1 checksum [], soI is able to generate the appropriate check-
sum[ASRB(I, T, n1)] for the request containing her name. All data signed by
C are sent unencrypted, soI may generate her own signatures in place ofC ’s;
she may also replace the certificates fromC with her own set. The result is a
well-formedKRBAS REQmessage fromI, although constructed using parame-
ters taken fromC ’s KRBAS REQmessage.

WhenK replies with credentials forI, AKey is encrypted underk, which is
encrypted underkI,pub, so the intruder learns both of the freshly generated keys.
She then forges aKRBAS REPmessage toC using the signature[k, n2]kK,priv

and the keysk andAKey; the part formerly encrypted underkI,pub is now en-
crypted underkC,pub. The ticket-granting ticket is opaque toC, so I does not
need to tamper with it (which would be impossible unlesskT is compromised).
Tables 3 and 4 show our formalization of theKRBAS REPmessage.

2.2 The TGS exchange

The clientC initiates the TGS exchange as usual.I intercepts herKRBTGSREQ
message and replacesC ’s name withI’s, both in the plaintext part of the message
and in the authenticator;I can create the corresponding authenticator because she
knowsAKey. I sends this message toT , who replies to this well-formed request
(from I) with credentials forI to use withS. In theKRBTGSREPmessage from
T , I replaces her name withC ’s everywhere except in the ticket forS, which
is opaque toC, and forwards the result toC, who now believes that she has
successfully completed the TGS exchange withT and has a keySKey for use
with S. Note thatI learnsSKey because it is encrypted underAKey.

2.3 The CS exchange

Finally, C sends aKRBAP REQmessage toS. I intercepts this, replacesC ’s
name withI’s throughout, and forwards the result toS; as before,I knows the key
(hereSKey) used to construct the authenticator and so may make the necessary
modifications. (She could also simply return{tC,Sreq}SKey without involving
S.) Finally, I interceptsS’s reply toC. This message may contain a subsession
key, labeled ask′ in Fig. 1, whichI learns because she knowsSKey. Whether
or not the subsession key is present,I forwardsS’s response toC without modi-
fication.

2.4 Effects

Once the CS exchange finishes as above,I knowsSKey and any subsession key
k′ that may also be shared betweenC andS. C believes that she has successfully
completed an AS exchange withS and that they shareSKey (and, optionally,
the subsession keyk′). S believes that he has successfully completed the AS
exchange withI—indeed, he has—and that they share the keySKey (and, op-
tionally, k′).

I may impersonate the serverS, responding to further messages fromC di-
rectly. I may also monitor any traffic betweenC andS encrypted usingSKey
(or k′). Note, however, thatC cannot interact withS under her own namebe-
causeS believes the compromised keys belong toI.

3 Preventing the Attack

Inspection of the fields that we have omitted from the various protocol messages
suggests that no combination of these would prevent this apparent attack. We
have given a fairly detailed model of the AS exchange when PKINIT is used.
While the other exchanges are modeled with less detail,I knows all keys thatC

3



believes she shares with the various servers.I can thus forge any data encrypted
or signed byC in C ’s requests, and she can decrypt any data encrypted forC;
there does not appear to be any information in the TGS or CS exchanges signed
by the server and includingC ’s name under the signature.

We believe this apparent attack would be prevented byK including the name
of theclient to whom he is replying in the data that he signs. The signature using
kK,priv in the third (K → I) and fourth (I → C) messages in Fig. 1 would then
be [I, AKey, n2]kK,priv

; C could detect the tampering with the messages if she
were expecting[C,AKey, n2]kK,priv

in the reply fromK.
We have not, however, given a formal proof that this prevents this apparent

attack; we are in the process of a more extensive formal verification of Ker-
beros 5 with PKINIT, and anticipate including in this analysis whatever changes
are made to PKINIT in the event that intruder actions described here do indeed
constitute an attack on the protocol.

Field Name Basic
pvno (omitted)
msg-type (omitted)
padata tC,Kreq, n2, ck, CertC , [tC,Kreq, n2, ck]kC,priv

, T rustC

padata-type (omitted)
padata-value (of typePA-PK-AS-REQ)

signedAuthPack (of typeContentInfo )
contentType (omitted)
content (of typeSignedData )

version (omitted)
digestAlgorithms (omitted)
encapContentInfo tC,Kreq, n2, ck

eContentType (omitted)
eContent tC,Kreq, n2, ck

pkAuthenticator tC,Kreq, n2, ck

cusec tC,Kreq

ctime (merged withcusec )
nonce n2

paChecksum ck = [ASRB(C, T, n1)]

clientPublicValue (omitted—DH only)
supportedCMSTypes (omitted—optional)
clientDHNonce (omitted—DH reuse only)

certificates CertC

crls (omitted—optional)
signerInfos [tC,Kreq, n2, ck]kC,priv

version (omitted)
sid (omitted)
digestAlgorithm (omitted)
signedAttrs (partially merged intosignature )
signatureAlgorithm (omitted)
signature [tC,Kreq, n2, ck]kC,priv

unsignedAttrs (omitted)
trustedCertifiers TrustC

kdcPkId (optional)

Table 1: Fields in theKRBAS REQmessage.
4



Field Name Basic
req-body ASRB(C, T, n1)

kdc-options (omitted)
cname C

realm (omitted)
sname T

from (omitted)
till (omitted)
rtime (omitted)
nonce n1

etype (omitted)
addresses (omitted—optional)
enc-authorization-data (omitted—optional)
additional-tickets (omitted—optional)

Table 2: More fields in theKRBAS REQmessage.

Field Name Basic
pvno (omitted)
msg-type (omitted)
padata {k, n2, CertK , [k, n2]kK,priv

}kC,pub

padata-type (omitted)
padata-value of typeencKeyPack

encKeyPack (of typeContentInfo )
contentType (omitted)
contentField

version (omitted)
originatorInfo (omitted—optional)
recipientInfo

version (omitted)
rid (omitted)
keyEncryptionAlgorithm (omitted)
encryptedKey (omitted)

encryptedContentInfo
contentType (omitted)
contentEncryptionAlgorithm (omitted)
encryptedContent {k, n2, CertK , [k, n2]kK,priv

}kC,pub

version (omitted)
digestAlgorithms (omitted)
encapContentInfo k, n2

eContentType (omitted)
eContent k, n2

replyKey k

nonce n2

certificates CertK

crls (omitted)
signerInfos

version (omitted)
sid (omitted)
digestAlgorithm (omitted)
signedAttrs (partially merged intosignature )
signatureAlgorithm (omitted)
signature [k, n2]kK,priv

unsignedAttrs (omitted—optional)
unprotectedAttrs (optional)

crealm (omitted)
cname C

Table 3: Included fields for theKRBAS REPmessage.

5



Field Name Basic
ticket {AKey, C, tK,auth, certPath}kT

tkt-vno (omitted)
realm (omitted)
sname (omitted)
enc-part {AKey, C, tK,auth, certPath}kT

flags (omitted)
key AKey

crealm (omitted)
cname C

transited (omitted)
authtime tK,auth

starttime (omitted)
endtime (omitted)
renew-till (omitted)
caddr (omitted)
authorization-data certPath

ad-type (omitted)
ad-data certPath

enc-part {AKey, n1, tK,auth, T}k

key AKey

last-req (omitted)
nonce n1

key-expiration (omitted)
flags (omitted)
authtime tK,auth

starttime (omitted)
endtime (omitted)
renew-till (omitted)
srealm (omitted)
sname T

caddr (omitted)

Table 4: More fields for theKRBAS REPmessage.

6


