

#### Graduate Course on Computer Security

Lecture 6: Case Study II - WEP

Iliano Cervesato iliano@itd.nrl.navy.mil

ITT Industries, Inc @ NRL - Washington DC

http://www.cs.stanford.edu/~iliano/



#### **Outline**

- The 802.11 wireless communication standard
- WEP: Wired Equivalent Privacy
  - > Architecture
  - > Security goals
  - > Attacks
    - Confidentiality
    - Authentication
    - Integrity
  - > Lessons Learned

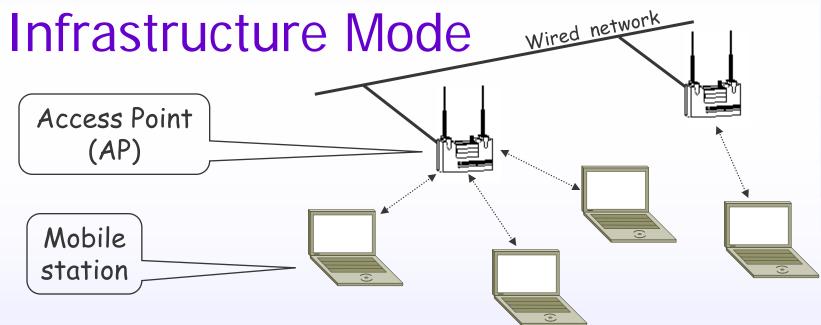


Integrity





WEP Secrecy Access


Integrity Lessons

#### The IEEE 802.11 Standard

# Specifies standard networking functions over radio waves

- > Transparent layer for upper network protocols (IP, TCP, Novell NetWare, ...)
  - Implements wireless networks (WLAN)
  - Integrates seamlessly into a LAN
  - Works on any platform, given drivers
- > Fast: up to 11Mbit/s
  - Ethernet is 10Mbit/s, fast Ethernet 100Mbit/s
  - Range about 30m/100feet
- > Widely deployed
  - PCMCIA cards, ISA bus cards, embedded solutions, ...
  - Offered by major vendors





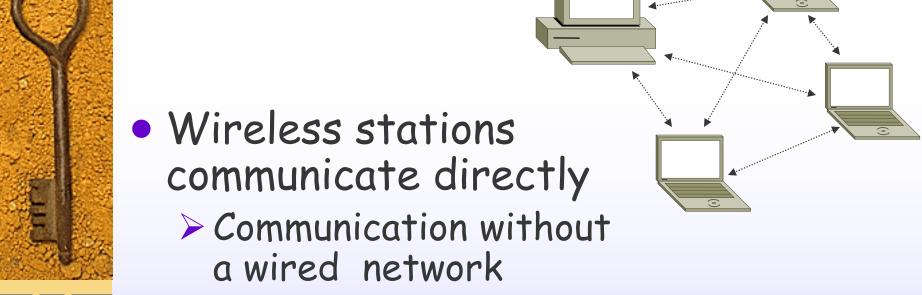
- 802.11
- WEP
  Secrecy
  Access
  Integrity

- Access points connect to wired network
- Multiple mobile stations per AP
  - > Full internet connection for mobile users
    - University campus
    - Coffee shops
    - airport lounges, ...



#### Ad Hoc Mode

- On the fly networking
  - Impromptu meeting
- LAN set up is difficult
  - Monitoring volcanoes
  - Study of jungle canopy
- LAN set up is dangerous
  - War zones




WEP

Secrecy

Access

**Integrity** 





#### **Data Transmission**

#### For both LANs and WLANs

- Communication broken into frames
  - Variable length (up to ~ 1,500 byte)
- Header associated with frame
  - > Source address
  - > Destination address
  - > Frame length, ...
- Packet = header + frame

WEP Secrecy Access

Integrity Lessons



# Subverting Communication

#### WLAN

- Eavesdropping
  - > Hardware widely sold
  - > Proximity of source
    - Parking lot attack
- Injecting traffic
  - > Just send to network
  - May need to modify driver setup
- Removing traffic
  - > Scramble radio signal

#### LAN

- Eavesdropping
  - > Plug in laptop
  - > Need access to wire
    - Hardly unnoticeable
- Injecting traffic
  - > Just send to network
  - May need to modify driver setup
- Removing traffic
  - > Feasible



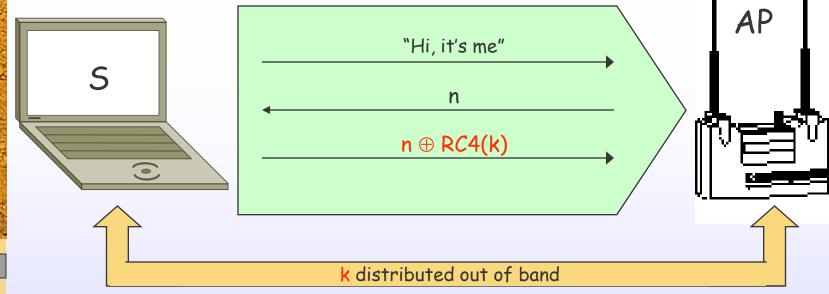
WEP

Secrecy Access Integrity Lessons



# WEP – Wired Equivalent Privacy

Security mechanism for WLANs


- 2 subsystems
  - > Station authentication
    - Simulate wired access control
  - > Data encapsulation
    - Create privacy of wired network
- Part of 802.11 standard

WEP

Secrecy Access Integrity

# 9

#### WEP Authentication



802.11

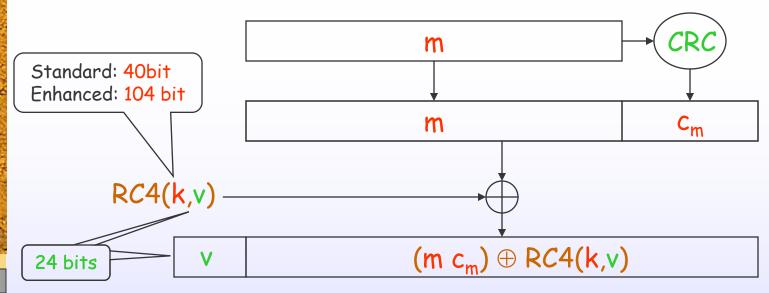
**WEP** 

Secrecy Access Integrity

- S and AP share key k
  - > 802.11 standard: 40 bit
  - Most vendors now offer 104 bits (advertised as 128 bit!)
- n is randomly generated nonce
- S is accepted only if last message decrypts to n



# Data Encapsulation


A wants to send frame m to B

- Encapsulation (A)
  - > Compute CRC-32 integrity checksum cm of m
    - Public algorithm, does not depend on k
  - Compute keystream RC4(k,v)
    - RC4 is secure keystream function (proprietary RSA)
    - v is 24 bit initialization vector (IV)
  - $\triangleright$  Broadcast  $v,x = v, ((m c_m) \oplus RC4(k,v))$
- Decapsulation (B)
  - $\rightarrow x \oplus RC4(k,v)) = m c_m$

WEP

Secrecy Access Integrity Lessons

## ... Pictorially



- Checksum guarantees data integrity
- IV
  - Prevents reuse of keystream
    - WEP does not prescribe modification of IVs
  - > Sent with each packet



**WEP** 

Secrecy Access Integrity Lessons



# WEP Security Goals

- Confidentiality
  - > Prevent eavesdropping
- Access control
  - > Prevent unauthorized access
- Integrity
  - > Prevent tempering with messages

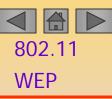
802.11

**WEP** 

Secrecy Access

Integrity

Lessons


WEP does not achieve any of them!



# Keystream Reuse

#### WEP collision

- Figure 1. If  $x_1 = ((m_1 c_{m_1}) \oplus RC4(k,v))$  and  $x_2 = ((m_2 c_{m_2}) \oplus RC4(k,v))$
- > Then  $x_1 \oplus x_2 = (m_1 c_{m_1}) \oplus (m_2 c_{m_2})$
- Independent from key length!
- Recognizing collisions
  - k changes very seldom, if ever
  - Generally, all stations use same k
  - v sent in clear with every packet
  - > Look for packets with the same IV



Secrecy



# Likelihood of Keystream Reuse

Given  $r_1$ , ...  $r_n \in [0, 1, ..., B]$ If  $n \ge 1.2\sqrt{B}$ , then  $Prob[\exists i \ne j : r_i = r_j] > \frac{1}{2}$ 

- Ideal case
  - > By birthday paradox
    - 50% chances of collision after ~5000 packets
    - 4 minutes at 5Mbit/s (packets of 1500 bytes)
    - All  $2^{24}$  keystreams recovered in  $\frac{1}{2}$  day
- In practice, IVs are poorly generated
  - > Many PCMCIA cards
    - IV=0 when inserted
    - incremented by 1 at each packet
  - > Few thousand IVs determine most traffic
- 802.11 does not require changing IV



Secrecy



### **Attacks**

```
If x_1 = ((m_1 c_{m_1}) \oplus RC4(k,v))
and x_2 = ((m_2 c_{m_2}) \oplus RC4(k,v))
then x_1 \oplus x_2 = (m_1 c_{m_1}) \oplus (m_2 c_{m_2})
```

- Passive attacks
  - > Exploit message redundancy
    - Many fields of IP header are predictable
    - Login sequences (e.g. Password: )
    - Transfer of shared libraries, ...
- Active attacks
  - > Send spam to mobile host
  - > Have mobile host send you email, ...
- Dumb attacks
  - > Some APs send frames unencrypted also

802.11 WEP

Secrecy

Access

Integrity Lessons

Computer Security: 6 - Case Study II, WEP



# **Decryption Dictionaries**

- Once packet is revealed, keystream is known
- Build table of intercepted keystreams
  - $\triangleright$  Maps every v to RC4(k,v))
  - > Requires ~24Gb for 2<sup>24</sup> for 1,500 byte frames
  - > Less than 1Gb with PCMCIA IV generation
- Then, can decrypt all traffic

Secrecy



# Key Management

- 802.11 does not specify how to
  - > Generate
  - > Distribute
  - > Update shared key (and how often)
- In practice
  - > Key is loaded in device by hand when set up
    - Often keep manufacturer's default
  - Never updated again
  - > Attacker has years to compromise key
    - A few hours are enough for 40 bit version

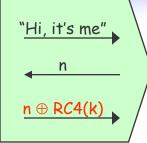


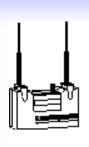

Secrecy



# Restoring Confidentiality

- IV is too short
  - > Collisions frequency reduced with longer IVs
  - > Relatively small decryption dictionary
- IV update unspecified (and non required)
  - > Force collision resistant IV generation
  - > From keyed random number generator
- Key management inexistent
  - > Introduce mandatory key update protocol
  - > Force different key for each host





Secrecy



# **Gaining Access**







#### Trivial!

- Record one authentication exchange
  - $\succ$  from (n, n  $\oplus$  RC4(k)), recover RC4(k)
  - Use it to encrypt all future authentication challenges
- Remedy
  - > Use different cipher for authentication
    - A block cipher would do

802.11
WEP
Secrecy

Access

Integrity



# Perturbing Traffic

Integrity protected by CRC-32 checksum

Checksums are linear w.r.t. ⊕

$$c_{m \oplus m'} = c_m \oplus c_{m'}$$

• Then for any  $\Delta$ , xor'ing any ciphertext  $\times$  with  $(\Delta c_{\Delta})$  will go undetected


- Remedy
  - > ... exercise

Integrity



# Targeted Traffic Alteration

- Linearity of CRC limited to flipping bits
- Use format of frames to force bit values
  - E.g. IP header
- Build decryption dictionary




Integrity



# Analysis of a Débacle

#### Why is WEP so bad??

- > International standard
- Backed by big vendors (IBM, 3COM, Apple, ...)
- Written by communication engineers
  - "Keep packet length small"
  - "Be conservative in what you send, liberal in what you accept"
  - Not security people involved
  - > Opaque design (no public review before standardization)
  - > Could have profited from IPSec experience
- Should operate with limited resource
  - > Cell phones, PDAs, ...



Access

Integrity



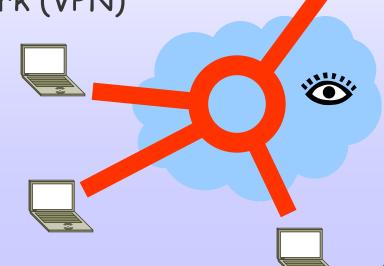
#### The Future of WEP

#### Proposal for a new standard 802.1X

- Use stream cipher based on AES
- Sequence number to avoid replays
- Replace CRC with MAC
- Authentication based on Kerberos






#### Should You Go Wireless?

#### YES!

• 802.11 is a fine communication suite

Handle security at higher levels

- Virtual Private Network (VPN)
- > IPSec
- > ... or just what you normally use!



802.11
WEP
Secrecy
Access
Integrity
Lessons

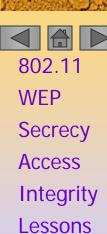


# Readings

- N. Borisov, I. Goldberg and D. Wagner, *Intercepting Mobile Communications: the Insecurity of 802.11*, 2001
- W. Arbaugh, N. Shankar, and Y. Wan, Your 802.11
   Wireless Network has no Clothes, 2001
- IEEE 802.11 Working Group web page, http://grouper.ieee.org/groups/802/11
- Jesse Walker, "Overview of 802.11 Security", 2001



#### Exercises for Lecture 6


- Prove that
  - $\rightarrow$  if  $x = ((m c_m) \oplus RC4(k,v)),$
  - Then  $x \oplus (\Delta c_{\Delta})$  has a correct checksum for every  $\Delta$
- Suggest a remedy for traffic perturbation

802.11
WEP
Secrecy
Access
Integrity
Lessons



#### Next ...

Specification Languages



