

Graduate Course on Computer Security

Lecture 3: Public-Key Cryptography

Iliano Cervesato iliano@itd.nrl.navy.mil

ITT Industries, Inc @ NRL - Washington DC

http://www.cs.stanford.edu/~iliano/

Outline

- Motivations
- Elements of number theory
- Public-key encryption
 - > Diffie-Hellman key exchange
 - > El Gamal encryption
 - > RSA encryption
- Hash functions
 - > Unkeyed
 - > Keyed MACs
- Digital signatures
- Public-key infrastructures

Motivation
Numbers
DH

El Gamal

RSA

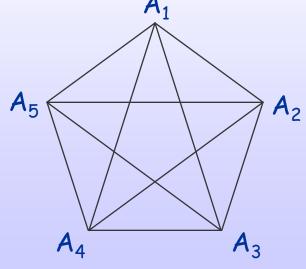
Hashing

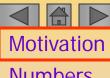
Signature

Naïve Key Management

Principals $A_1, ..., A_n$ want to talk

- Each pair needs a key
 - > n(n-1)/2 keys
- Keys must be established
 - > Physical exchange
 - > Secure channel





Numbers

DH

El Gamal

RSA

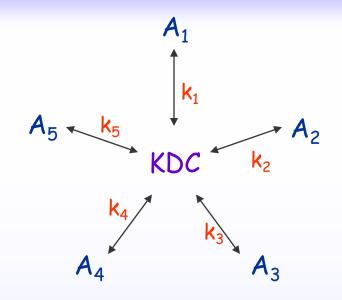
Hashing

Signature

Improved Solution

Centralized keydistribution center

- n key pairs needed
- However
 - > KDC must be trusted
 - KDC is single point of failure
 - Still n direct exchanges



... if A_i wants to talk to A_j ...

- $A_i \rightarrow KDC$: "connect me to A_i "
- KDC generates new key k_{ij}
- $KDC \rightarrow A_i$: $E_{ki}(k_{ij})$
- $KDC \rightarrow A_j$: $E_{kj}(k_{ij}, "A_i \text{ wants to talk"})$

Still naïve

> No authentication

Numbers

El Gamal

El Gallia

RSA

DH

Hashing

Signature

Numbers

El Gamal

Hashing

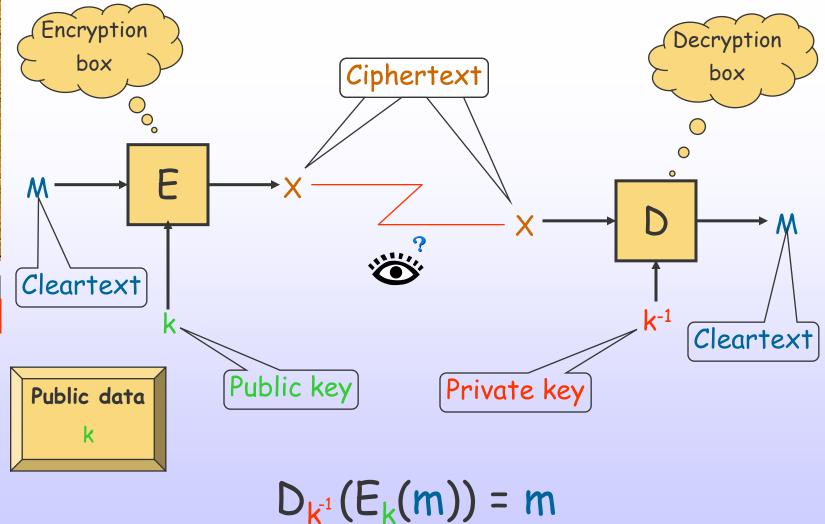
Signature

DH

RSA

PKI

Asymmetric Ciphers



Computer Security: 3 - Public-Key Cryptography

Numbers

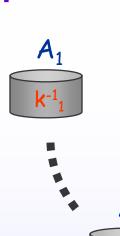
FI Gamal

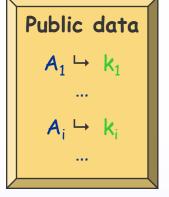
DH

RSA

Public-Key Solution

- Pair (k_i, k_i-1) for each A_i
- k_i's are published
 - > Phonebook
- Simple setup
 - > A_i generates (k_i, k_i^{-1})
 - > Ai publishes ki
 - > ... details later





Hashing

Number Theory – Basics

- $Z = \{..., -1, 0, 1, ...\}$ is a ring
- a|b if ∃c. ac = b
 - > E.g. 3|6
- $gcd(a, b) = largest d \in Z$ s.t. d|a and d|b
 - \triangleright E.g. gcd(18,15) = 3
- p>1 prime if 1 and p are its only divisors
 - ► E.g. 3, 5, 7, ...
- p and q are relatively prime if gcd(p,q) = 1
 - > E.g. 4 and 5 are relative primes

Euclid's algorithm

Given a > b

- $r_0 = b$, $r_1 = a$
- $r_{i-2} = q_i r_{i-1} + r_i$
- When $r_{n+1} = 0$, set $gcd(a,b) = r_n$
 - $\rightarrow \exists u, v. gcd(a,b) = ua + vb$

Hashing Signature PKI

Motivation

Numbers

El Gamal

DH

RSA

Numbers

DH

El Gamal

RSA

Hashing

Signature

PKI

Arithmetic Modulo a Prime

- p prime number
 - > For us, typically 1024 bits (~ 300 digits)
- $Z_p = \{0, 1, ..., p-1\}$
 - > Addition and multiplication are modulo p
 - > Exponentiation is iterated multiplication
 - \rightarrow x is the inverse of y \neq 0 if xy = 1 mod p
- All non-null elements of Z_p are invertible
 - $x^{-1} = x^{p-2} \mod p$
 - We can solve linear equations in Z*_p
 - If $ax = b \mod p$, then $x = ba^{p-2} \mod p$
- $Z_p^* = \{1, ..., p-1\}$
 - \triangleright Contains all invertible elements of Z_p

Fermat's little theorem

If $a \neq 0$, then $a^{p-1} = 1 \mod p$

Numbers

DH

El Gamal

RSA

Hashing

Signature

PKI

Computing in Z_p

- Let n be the length of p
 - > Usually around 1024 bits
- Addition in Z_p done in O(n)
- Multiplication is O(n²)
 - \triangleright Clever (and practical) algorithms achieve $O(n^{1.7})$
 - > Same for inverse
- x^r mod p computed in O((log r) n²)
 - > Repeated squares

• E.g.:
$$g^{23} = g^{10111} = g \cdot g^2 \cdot g^4 \cdot g^{16}$$
 (7 multiplications)

- Addition chains
 - Saves 20% in average (but shortest chain is NP-complete)
 - $g, g^2, g^3, g^5, g^{10}, g^{20}, g^{23}$ (6 multiplications)

Numbers

DH

El Gamal

RSA

Hashing

Signature

PKI

Complexity in Z_p

- Easy problems
 - Generating p
 - > Addition, multiplication, exponentiation
 - > Inversion, solving linear equations
- Problems believed to be hard
 - DL: Discrete logarithm
 - Given g and $x \in \mathbb{Z}_p$, find r s.t. $x = g^r \mod p$
 - > DH: Diffie-Hellman
 - Given $g, g^r, g^s \in \mathbb{Z}_p$, find $g^{rs} \mod p$
 - > Note
 - DL implies DH
 - Unknown if DH implies DL
 - Best known attack on DL requires space and $O(2^{\sqrt{n}})$ time

Numbers

El Gamal

Hashing

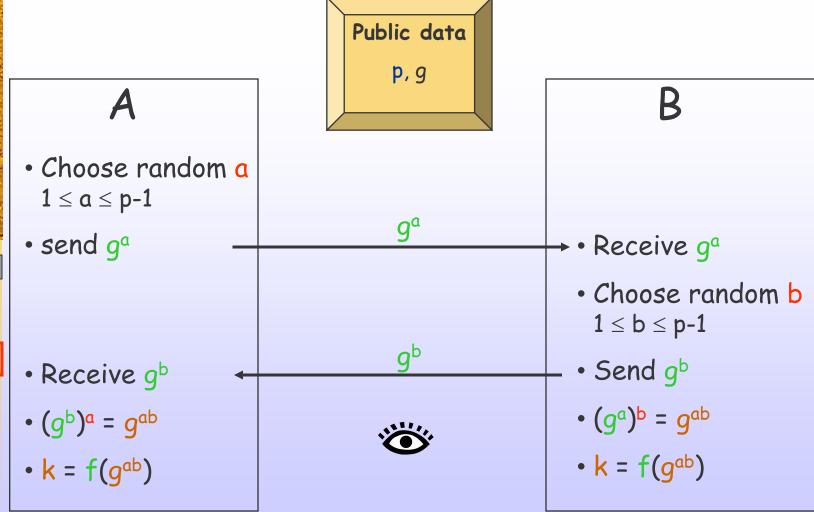
Signature

DH

RSA

PKI

Diffie-Hellman Key Exchange



Computer Security: 3 - Public-Key Cryptography

Diffie-Hellman Key Exchange [2]

- Allows 2 principals to produce a shared secret
 - > Without secure channel or physical exchange
 - > Without a key distribution center
 - > f is typically a hash function
 - Agreed upon in advance
- However, no authentication
 - > Can be fixed with some infrastructure
- Security relies on hardness of DH

Numbers

DH

El Gamal **RSA** Hashing Signature PKI

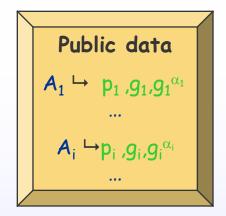
El Gamal Encryption Scheme

A wants to send

A

 $\alpha_{\textbf{A}}$

- Choose random a
- Send g_B^a , $g_B^{\alpha_B a}$ m mod p_B



 g_B^a , $g_B^{\alpha_B a}$ m mod p_B

- Security rests on hardness of DL
- Criticisms
 - > Transmitted message double of m
 - > Public data has to be managed
 - Very slow (~10Kb/sec vs. 250Kb/s of DES)

secret $m \in Z_{p_B}$ to B

B

 α_{B}

- •• Receive g_B^a , $g_B^{\alpha_B a}$ m mod p_B
 - $(g_B^a)^{\alpha_B} = g_B^{\alpha_B a}$
 - Compute $g_B^{-\alpha_B a}$
 - $g_B^{-\alpha_B a} g_B^{\alpha_B a} m \mod p_B$ = m

Signature PKI

Motivation

Numbers

El Gamal

Hashing

DH

RSA

Motivation **Numbers**

DH

El Gamal

RSA

Hashing **Signature** PKI

Arithmetic Modulo a Composite

- n natural number
 - > For us, typically 1024 bits or ~ 300 digits
 - \triangleright Typically n = pq, with p and q primes
- $Z_n = \{0, 1, ..., n-1\}$
 - \triangleright x is inverse of y \neq 0 if xy = 1 mod n
 - \rightarrow x has inverse iff gcd(x,n) = 1
 - ux + vn = 1 by Euclid's algorithm so $x^{-1} = u$
 - Works also in Z_p where more efficient than $x^{-1} = x^{p-2}$
 - \triangleright We can solve linear equations in Z_n
- $Z_n^* = \{x : gcd(x,n) = 1\}$
 - > Contains all invertible elements of Z_n

Euler's Totient Function

- φ(n) is the size of Z^{*}_n
 - > If $n = \prod_{i} p_{i}^{e_{i}}$, then $\phi(n) = \prod_{i} p_{i}^{e_{i-1}}(p_{i}-1)$
 - > If n=pq, then $\phi(n) = (p-1)(q-1) = n - p - q - 1$

Euler's theorem

If $a \in \mathbb{Z}_{n}^{*}$, then $a^{\phi(n)} = 1 \mod n$

Hashing

Signature

RSA

Computing in Z_n

- Easy problems
 - > Generating p
 - > Addition, multiplication, exponentiation
 - > Inversion, solving linear equations
- Hard problems
 - > Factoring
 - Given n, find p,q s.t. n = pq

- Motivation
 Numbers
 DH
- El Gamal

RSA Hashing Signature

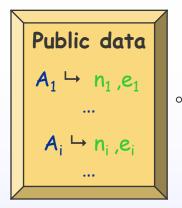
RSA [Rivest, Shamir, Adelman '76]

A wants to send secret $m \in Z_{n_B}$ to B

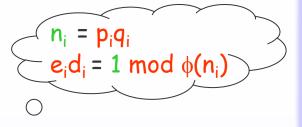
A

 p_A,q_A,d_A

· Send mes mod nB.



 $m^{e_B} \mod n_B$

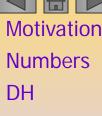


B

 p_B,q_B,d_B

- → Receive m^{e_B} mod n_B
- $(m^{e_B})^{d_B} \mod n_B$ = $m^{e_B d_B} \mod n_B$
 - $= m^{k_{\phi}(n_B)+1} \mod n_B$
 - = $(m^{\phi(n_B)})^k m \mod n_B$
 - = $(1)^k m \mod n_B$
 - $= m \mod n_B$

- Security of RSA rests on
 - > Hard to factorize n = pq
 - Hard to compute $\phi(n)$ from n
- Factoring implies RSA
- Unknown if RSA implies factoring



El Gamal

RSA

Hashing Signature PKI

Motivation Numbers

DH

El Gamal

RSA

Hashing Signature PKI

Attacks on RSA

- Small d for fast decryption
 - > But easy to crack if $d < (n^{1/4})/3$ [Wiener]
 - d should be at least 10⁸⁰
- Small e for fast encryption
 - > If m sent to more than e recipients, then m easily extracted
 - ightharpoonup Popular e = $2^{16} + 1$
 - Same message should not be sent more than 2¹⁶ + 1 times
 - Modify message (still dangerous)
- Timing attacks
 - > Time to compute md mod n for many m can reveal d
- Homomorphic properties of RSA
 - > If $c_i = m_i^e \mod n$ (i=1,2), then $c_1c_2 = (m_1m_2)^e \mod n$
 - Easy chosen plaintext attack
 - > Eliminated in standards based on RSA

Motivation Numbers

DH

El Gamal

RSA

Hashing Signature PKI

One-Way Functions

 $f: \{0,1\}^{n'} \rightarrow \{0,1\}^n$ is a 1-way function if

- \succ There is an efficient algorithm that given x outputs f(x)
 - polynomial
- Fiven y, there is no known efficient algorithm to find x s.t. y = f(x) for non-negligible fraction of y's

Examples

- \rightarrow f(x) = DES_x(m) for a given m
- \rightarrow f(x) = g^x mod p for given g and p as in DH

 $f_p:\{0,1\}^{n'} \rightarrow \{0,1\}^n$ is a 1-way function with trapdoor

- \rightarrow f_p(x) is 1-way if p is unknown
- \rightarrow Given p, $f_p(x)$ has efficient algorithm

Examples

- \rightarrow $f_d(x) = x^e \mod n$ for given e and n as in RSA
- \rightarrow f_k(x) = DES_k(x)

Cryptographic Hashing

- $f: \{0,1\}^{n'} \rightarrow \{0,1\}^n$ is a 1-way hash function if
 - > n is short
 - > n' may be unbounded

Two families

- Non-keyed
 - $h: \{0,1\}^* \to \{0,1\}^n$ (e.g. n = 160)
 - > h(m) is the message digest of m
 - Used for password protection, digital signatures, ...
- Keyed
 - $h_k: \{0,1\}^* \to \{0,1\}^n$ (e.g. n = 96)
 - > Used for message integrity

Motivation
Numbers
DH

Preimage Resistance

 $h: \{0,1\}^* \to \{0,1\}^n \text{ is } PR \text{ if }$

- Given random y
 - > It is hard to find m s.t. h(m) = y

Applications:

- Protect password files
 - /etc/passwd in Unix

username ₁	h(pwd ₁)
username ₂	h(pwd ₂)
	•••

Motivation			
Numbers			
DH			
El Gamal			
RSA			

Hashing

Signature

Second Preimage Resistance

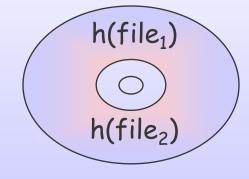
 $h: \{0,1\}^* \to \{0,1\}^n \text{ is } 2PR \text{ if }$

- Given random m
 - \triangleright It is hard to find m' s.t. h(m) = h(m')

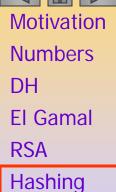
Applications:

- Virus protection
 - E.g. Tripwire
 - file and h(files) must be kept separate





2PR implies PR



Collision Resistance

 $h: \{0,1\}^* \to \{0,1\}^n \text{ is } CR \text{ if }$

• It is hard to find m and m' s.t. h(m) = h(m')

Applications:

- Digital signatures
 - $Sig_k(h(m))$
 - Assume attacker knows m and m's.t. h(m) = h(m')
 - Ask principal to sign m
 - Has automatically signature on h(m')
- CR implies 2PR (implies PR)
 - > Easier to construct CR than 2PR
 - > From now on, we focus on CR

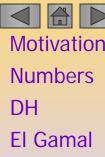
El Gamal

RSA

Birthday Paradox

There is a 0.5 probability that 2 people have the same birthday in a room of 25

- Given $r_1, ..., r_n \in [0, 1, ..., B]$ independent integers
 - > If $n \ge 1.2\sqrt{B}$, then Prob[∃ $i \ne j : r_i = r_j$] > $\frac{1}{2}$
- For message digest 64 bits long
 - \triangleright Collision can be found with around 2^{32} tries
 - > Typical digest size is 160 bits (SHA-1)
 - Collision time is 280 tries



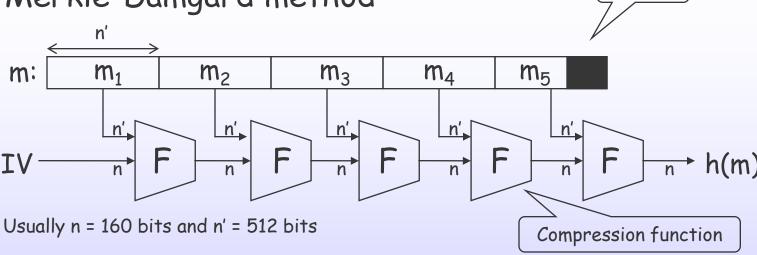
Hashing

RSA

Constructions

Always iterated

Merkle-Damgard method



- If F (compression function) is CR, then Merkle-Damgard hash is CR
 - > Enough to construct a CR compression function
 - Based on block ciphers (typically slow)
 - Customized design (faster)

Motivation
Numbers
DH

El Gamal

RSA

Hashing

Signature

PKI

padding

Motivation Numbers

DH

RSA

Actual Compression Functions

- Based on block ciphers (e.g. DES)
 - \triangleright Given block cipher $E_k(m)$
 - \succ F(m,h_i) = E_{m⊕k_{i-1}}(m)
 - \triangleright If $E^k(m)$ is ideal cipher, finding collisions takes $2^{n/2}$ tries
 - Best possible, but black-box security
- Customized compression functions

Name	n	Speed	Comment
MD4	128	?	Proprietary (RSA labs); broken in time 2 ²⁶
MD5	128	28.5 Mb/s	Collision for compression function
SHA-1	160	15.25 Mb/sec	NIST
RIPE-MD	160	12.6 Mb/s	RIPE

On 200MHz Pentium

El Gamal

Keyed Hash Functions

$$h_k: \{0,1\}^* \to \{0,1\}^n$$

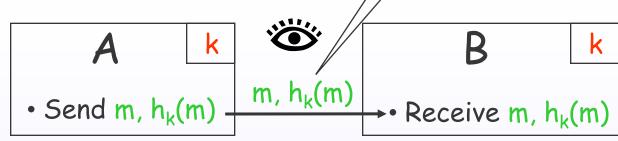
- k needed to evaluate function
- Main application:
 - Message authentication codes (MAC)
 - Guarantees message integrity
- H_k(m) is a cryptographic checksum
 - > Ensures that m has not been tampered

Motivation
Numbers
DH
El Gamal

Hashing

Example

Network



MAC

- > Adversary can't build MAC for m' = m
- > Note: MAC used for integrity, not secrecy
- > Digital signature work, but are too slow
- File system

 file

 h_{pwd}(file)
 - > MAC verified when file is accessed
 - > pwd needed to modify file

RSA

Constructing MACs

2 methods

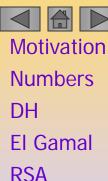
- Cryptographic MACs
 - > CBC-MAC
 - Based on block ciphers
 - > HMAC
 - Based on non-keyed hash functions

Performance

Name	n	Speed
3DES	64	1.6Mb/sec
IDEA	64	3Mb/sec
MD5	128	28.5 Mb/s
SHA-1	160	15.25 Mb/sec

On 200MHz Pentium

- Information-theoretic MACs
 - > Based on universal hashing

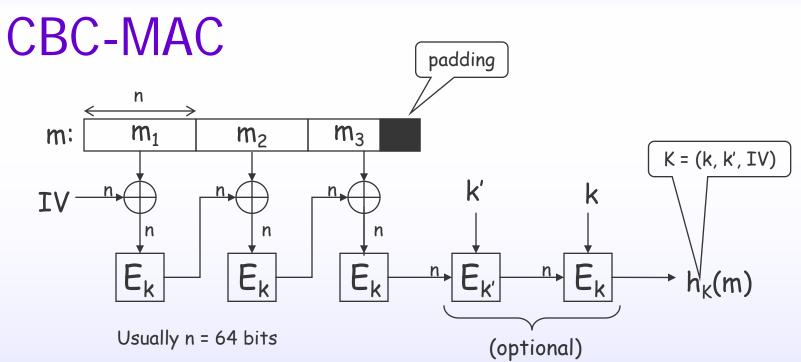


Hashing Signature

El Gamal

RSA

Hashing



- Most commonly used in banking industry
- If E is a MAC, then CBC-E is also a MAC
- Note: no birthday attack
 - > MACS can be shorter then message digests

Motivation Numbers DH

El Gamal

RSA

Hashing

Signature PKI

Hash-Based MACs

h non-keyed hash function

- Attempt: $MAC_k(m) = h(k m)$
 - > Extension attack with Merkle-Damgard method:
 - $MAC_k(m m') = h(MAC_k(m) m')$
- Attempt: MAC_k(m) = h(m k)
 - Birthday paradox attack
- Envelope method
 - \rightarrow MAC_{k,k'}(m) = h(k m k')
- Prefered method: HMAC
 - \rightarrow HMAC_k(m) = h(k pad₁ h(k pad₂ m))
 - > If compression function in h is a MAC and h is CR, then HMAC is a MAC
 - IPSec and SSL use 96 bit HMAC

Numbers

DH

El Gamal

RSA

Hashing

Signature

PKI

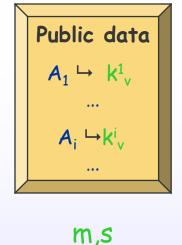
Digital Signatures

- Paper signature guarantees non-repudiation for
 - > Identity
 - > Contract signing
- Digital signature
 - > binds a secret k to a document m
 - s = f(m,k)
 - > s can be generated only knowing k
 - > s can be verified by anyone knowing m
- Should guaranty
 - > Non-repudiation
 - Non-malleability
 - Signature cannot be cut and pasted to other documents
 - > Non-forgeability

Signature Process

A wants to sign m and send it to B

- $s = Sig_{k^As}(h(m))$
- · Send m,s



• Receive m,s

ExecuteVer_{kAv}(s, h(m))

$$Ver_{k^{-1}}(s,m) = \begin{cases} Ok & \text{if } s = Sig_k(m) \\ No & \text{otherwise} \end{cases}$$

h makes signature short

Numbers
DH
El Gamal
RSA
Hashing

Motivation

Signature PKI k^Bs

Attacks on Digital Signatures

- Signature break
 - Adversary can recover k_s from k_v and intercepted messages
- Selective forgery
 - Adversary can forge signature s for message m of his choice
- Existential forgery
 - Adversary can forge signature s for arbitrary message m

- Motivation
 Numbers
 DH
- El Gamal

Hashing

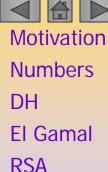
RSA

Signature

Constructions

Signature schemes based on

- RSA
 - E.g.: PKCS#1, Fiat-Shamir, ...
 - > Easy to verify but hard to generate
 - Ok for certificates
 - Relatively long (1024 bit)
- DL
 - El Gamal , DSS, ...
 - > Hard to verify, but easy to generate
 - Ok for smart cards
 - > Short (320 bit)
- General 1-way functions
 - > Lamport, Merkle, ...
 - Impractical



Hashing

PKI

Signature

Computer Security: 3 - Public-Key Cryptography

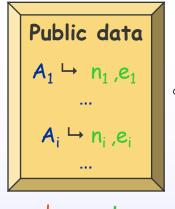
Naïve RSA Signature

A wants to send signed $m \in Z_{n_A}$ to B

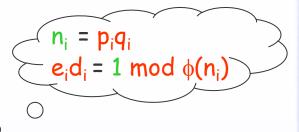
A

 p_A,q_A,d_A

· Send mdA mod nA-



mda mod na



 p_B,q_B,d_B

- →• Receive m^d mod n_A
 - $(m^{d_A})^{e_A} \mod n_A$ = $m^{k\phi(n_A)+1} \mod n_A$ = $m \mod n_A$

- Signature = RSA decryption
 - > Achieves confidentiality as well
- Verification = RSA encryption

Motivation
Numbers
DH
El Gamal
RSA
Hashing

Signature

PKI

Computer Security: 3 - Public-Key Cryptography

Attacks on Naïve RSA Signature

- Existential forgery
 - \triangleright Ver_d(s^e,s) = Ok for any s
- Blinding attack
 Adversary wants signature of A on m
 - \triangleright Pick $r \in Z_{n_A}$
 - > Get A to sign m' = mre mod nA
 - \triangleright A returns s' = $(mr^e)^d \mod n_A$
 - \triangleright Deduce then $s = s'/r = m^d \mod n_A$
 - > Then (m, s) is a valid signature pair

Motivation
Numbers
DH

El Gamal

RSA

Hashing

Signature

Motivation

Numbers

El Gamal

DH

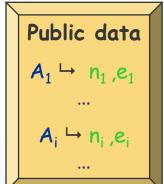
RSA

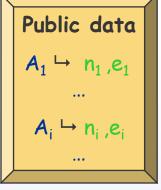
RSA Signatures – PKCS#1

A wants to send signed $m \in Z_{n_A}$ to B

 p_A,q_A,d_A

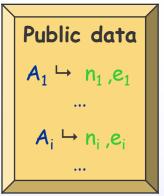
- Compute s = $(PD h(m))^{d_A} \mod n_A$
- · Send m,s

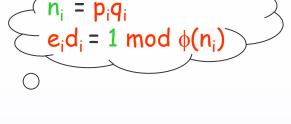




m,s

- PD = 00 01 11 11 ... 11 00 (864 bit)
- h(m) is 160 bit
- Security is unproved
 - > ISO standards use other PD's





 p_B,q_B,d_B

Receive m,s

 Check if (mda)ea mod na = $(PD h(m))^{d_A} mod n_A$

Signature

Hashing

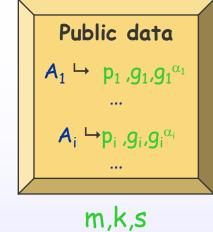
El Gamal Signature

A wants to send

A

 $\alpha_{\textbf{A}}$

- Choose random r
- Compute
 - $-k = g^r \mod p_A$
 - $r^{-1} \mod (p_A 1)$
 - $-s = r^{-1}(h(m) k\alpha)$ mod (p_A-1)
- Send m,k,s



secret $m \in Z_{p_B}$ to B

B

 α_{B}

k,s → • Receive m,k,s

- Check 1 < k < n
 - $1 \le k \le p_A 1$ $q^k k^s = q^{h(m)} \mod p_A$

- Why does it work?
 - > Exercise

El Gamal RSA Hashing

Motivation

Numbers

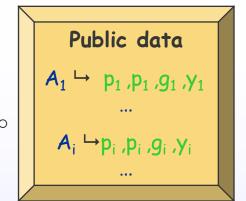
Signature

PKI

DH

DSS – Digital Signature Standard

A wants to send $\underline{signed} \ m \in \ Z_{n_A} \ to \ B$



- Pick random $r \in Z^*_{q_A}$
- Compute
 - $-k = (g_A^r \mod p_A) \mod q_A$
 - $-s = r^{-1}(h(m)+k\alpha_A) \mod q_A$
- · Send m,k,s

E

m,k,s

- Jenu III, K, S
- p is 1042 bits
- q is 160 bits
- Signature k,s is only 360 bits
- Fast verification methods exist

- Receive m,k,s
 - · Check

$$1 \le k,s < p_A$$

$$k = g_A^{s-1h(m)}$$

$$(y_A^{s-1w} \mod p_A)$$

$$\mod q_A$$

Hashing

Signature

Motivation

Numbers

El Gamal

DH

RSA

PKI

Computer Security: 3 - Public-Key Cryptography

Lamport Signatures

Given CR hash function h

- Key generation
 - \triangleright Pick random $x_i^{(j)} \in \{0,1\}^n$, for i=1..n, j=0,1
 - > Public key: $v_i^{(j)} = h(x_i^{(j)})$, for i=1..n, j=0,1
 - ightharpoonup Private key: $x_i^{(j)}$, for i=1..n, j=0,1
- Signature of $m = m_1, ..., m_n \in \{0,1\}^n$
 - $> s = (x_1^{(m_1)}, ..., x_n^{(m_n)})$
- Verification
 - \rightarrow h(s_i) = x_i(m_i), for i=1..n
- Comments
 - > Can be used only once
 - Very fast
 - Lots of public data

PKI

RSA

Hashing

Signature

Hashing vs. MAC vs. Signatures

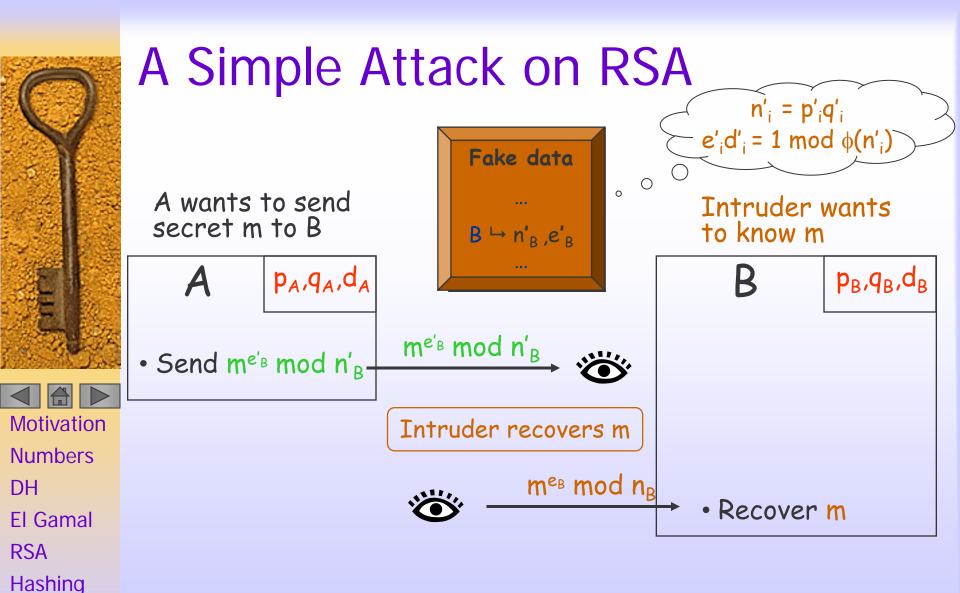
- Hashing: private checksum
 - > Produce footprint of a message
 - > Must be stored separated from message
- MAC: cryptographic checksum
 - > Footprint protected with shared key
 - > Can be transmitted over public channel
- Digital signature: taking responsibility
 - > Footprint protected with private key
 - > No shared secrets with verifier

- Motivation
 Numbers
 DH
- El Gamal

Hashing

RSA

Signature



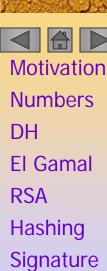
How is the public table implemented?

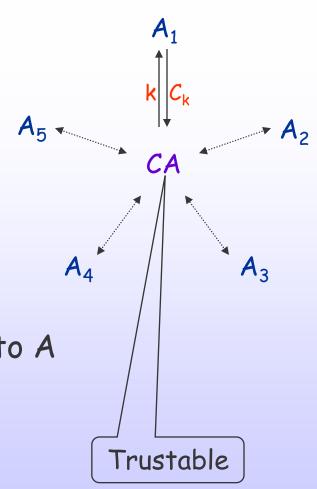
Signature

Certification of Published Data

A generates public/private key pair (k,k⁻¹) and wants to publish k on public table

- 1. A sends k to CA
 - > Certification Authority
- 2. CA verifies that A knows k-1
 - > Challenge-Response exchange
- 3. CA generates C_k and sends it to A
- A forwards C_k when using k
 - \triangleright Either A volunteers C_k (push)
 - > or sends it on demand (pull)
 - > CA not needed on-line





Certificates

$$C_k = (A, k, t_{exp}, priv, ..., sig_{CA})$$

- \rightarrow t_{exp} = expiration date
- priv = privileges
- > ... = possibly more information
- Everyone knows the verification key of CA
 - > Single point of failure
 - > Vulnerability as number of principals grows

- Motivation
 Numbers
 DH
- El Gamal RSA
- Hashing
- Signature

Motivation **Numbers**

DH

El Gamal

RSA

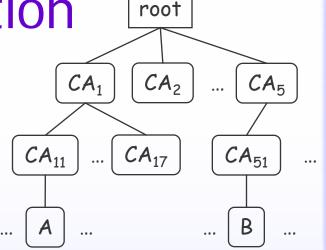
Hashing

Signature

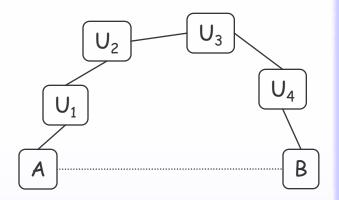
PKI

Hierarchical Certification

- Certificate chains
 - > Contain certificates of all the nodes to the root
 - > Exchanged certificates limited to first common ancestor
- Root signature is trusted and recognizable
 - > Redundancy can reduce vulnerability
- Used in SET
 - > Developed by Visa/Mastercard
 - > Root key distributed among 4 sites



"Web of Trust"



- Users give ratings of keys they used
 - > Validity (binding to other user)
 - > Trust (none, partial, complete)
- Used in PGP

Motivation
Numbers
DH
El Gamal
RSA
Hashing
Signature

Certificate Revocation

Certificates may be revoked

- > A's key is stolen
- > Employee leaves the company
- Wait till t_{exp}
 - > May be too late
- Certification Revocation List
 - > May get blocked
- Validate certificates at fixed intervals

Signature

Comparison with KDC

Symmetric keys

- KDC on-line, used at every session
- KDC knows secret key
- If KDC compromised, past and future messages exposed
- Fast

Public key

- CA off-line except for key generation
- CA knows only public key
- If CA compromised, only future messages exposed
- Slow

Motivation
Numbers
DH
El Gamal
RSA
Hashing
Signature

Signature

PKI

New Trends in Cryptography

- Elliptic-curve cryptography
 - \triangleright Groups (like Z_n^*) with very hard crypto-analysis
 - > Fast and small keys (190 bit ~ 1024 bit of RSA)
 - > Complex underlying mathematics
- Quantum cryptography
 - > Measuring particle properties destroys them
 - E.g. polarization
 - No eavesdropping without perturbing transmission

Readings

... references from lecture 2, and also

 Douglas Stinson, Cryptography: theory and practice, 1995

 Michael Luby, Pseudorandomness and Cryptographic Applications, 1996

Motivation
Numbers
DH
El Gamal
RSA
Hashing
Signature
PKI

Exercises for Lecture 3

- Show that Euler's theorem is a generalization of Fermat's little theorem
- Show that El Gamal and DSS signature verifications are correct

El Gamal

DH

RSA

Next ...

Authentication Protocols

