

Graduate Course on Computer Security

Lecture 2: Shared-Key Cryptography

Iliano Cervesato iliano@itd.nrl.navy.mil

ITT Industries, Inc @ NRL - Washington DC

http://www.cs.stanford.edu/~iliano/

Outline

- Goals of cryptography
- History
- Symmetric ciphers
 - > Attacks
 - > Block ciphers
 - > Stream ciphers
 - > Data Encryption Standard (DES)
- What is a secure cipher?

- Goals
- History

Shared-Key

Attacks

Block C.

Stream C.

DES

Confidentiality

Implement a virtual trusted channel over an insecure medium

History
Shared-Key
Attacks

Block C.

Stream C.

DES

Insecure Channels

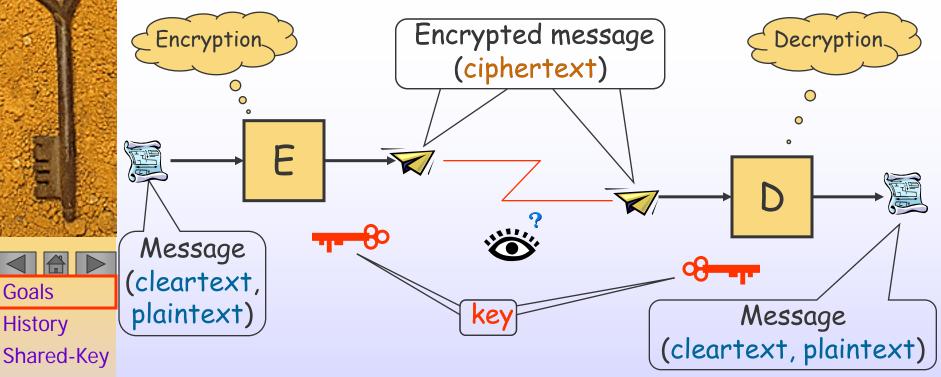
External observer can

- Read traffic
- Inject new traffic
- Erase traffic ... sometimes
- Modify traffic ... sometimes

Goals

History

Shared-Key


Attacks

Block C.

Stream C.

DES

Classical Goals of Cryptography

E, D realize a virtual trusted channel, given key

Block C. Stream C. DES Secure C.

Goals

History

Attacks

Modern Cryptography

Not just about confidentiality!

- Integrity
 - Digital signatures
 - > Hash functions
- Fair exchange
 - > Contract signing
- Anonymity
 - > Electronic cash
 - > Electronic voting
- ...

History

Shared-Key

Attacks

Block C.

Stream C.

DES

A Brief History of Cryptography

- ~2000 years ago: Substitution ciphers
- A few centuries later: Permutation ciphers
- Renaissance: Polyalphabetic ciphers
- 1844: Mechanization
- 1976: Public-key cryptography

Goals

History

Shared-Key

Attacks

Block C.

Stream C.

DES

Substitution Ciphers

Caesar's cipher:

 $D \rightarrow F$ $X \rightarrow A$ $Z \rightarrow C$

 $A \rightarrow C$

Replace each letter with another

- Key: substitution table
- How to break it?
 - \triangleright Brute force? 26! possibilities (= 4×10^{26})
 - > Count the frequencies of letters, pairs, ...
 - Arabs had tabulated the Koran by 1412
 - > Ciphertext is enough: ciphertext-only attack
- Example:

QVAQBCWZQRLWDVEFW

IAMINDECIPHERABLE

 $H \rightarrow L$ $0 \rightarrow S$ $V \rightarrow X$ $I \rightarrow O \mid P \rightarrow R \mid$ $|J \rightarrow N | O \rightarrow I |$ $D \rightarrow C \mid K \rightarrow H \mid R \rightarrow D \mid$ $E \rightarrow W \mid L \rightarrow F \mid S \rightarrow U \mid$ $Z \rightarrow P$ $G \rightarrow O \mid N \rightarrow B \mid U \rightarrow K$

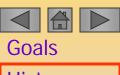
History

Shared-Key

Attacks

Block C. Stream C.

DES



Permutation Ciphers

$$\mathbf{k} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ & & & & \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}$$

Switch letters around by a permutation

- Example: HELLOWORLD → LOLHERDLWO
- Key: permutation
- Breakable with ciphertext-only attack

History

Shared-Key

Attacks

Block C.

Stream C.

DES

Renaissance Ciphers

Use message and key letters for cipher

- Key: a word (CRYPTO)
- Example: WHATANICEDAYTODAY
 - + CRYPTOCRYPT (mod 26)

ZZZJUCLUDTUNWGCQS

- Goals
 History
- Charad V

Shared-Key

Attacks

Block C.

Stream C.

DES

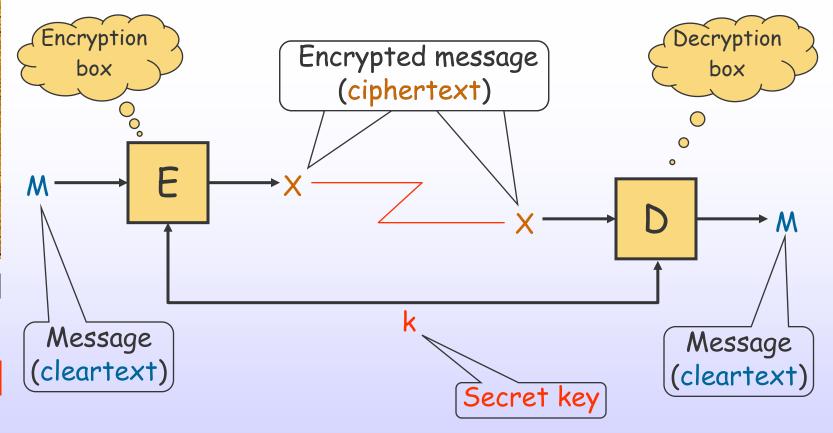
- Polyalphabetic cipher:
 - > Encryption of letter is context-dependent
- Seed of modern cryptography

- 1844: invention of telegraph
 - > Beginning of civilian crypto
- Rotor machines
 - > Key: initial position of rotors
 - > Culminate in WW II
- 1975: DES
 - > 1996-2000 AES
- 1976: Public key cryptography

We will examine in some detail

History

Shared-Key


Attacks

Block C.

Stream C.

DES

Symmetric Ciphers

$$D_k(E_k(m)) = m$$

Shared-Key

Attacks

Block C.

Stream C.

DES

Properties of a Good Cipher

E, D:
$$\{0,1\}^n \times \{0,1\}^l \rightarrow \{0,1\}^n$$

- $D_k(E_k(m)) = m$
 - \triangleright For every k, E_k is an injection with inverse D_k
- E_k(m) is <u>easy</u> to compute, given m and k
- $D_k(x)$ is easy to compute, given x and k
 - Polynomial in max{n,l} often linear
- If $x = E_k(m)$, it is hard to find m without k
 - > Exponential in min{n,l}

- Goals
 History
- Shared-Key

Attacks

Block C.

Stream C.

DES

Open Design

Kerchoff's Principle (1883)

The security of a cryptosystem must not depend on keeping the algorithm secret

No security by obscurity

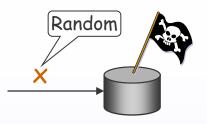
Better

- > Lots of smart but innocuous people dissect it
- > Than a single smart malicious

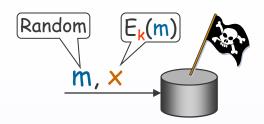
Goals History

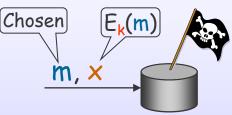
Shared-Key

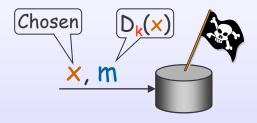
Attacks

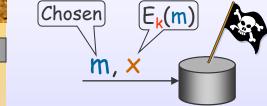

Block C.

Stream C.


DES


Attack Models


Ciphertext Only


Known Plaintext

Chosen Plaintext

Known Plaintext

Attacks

Shared-Key

Goals

History

Block C.

Stream C.

DES

Secure C.

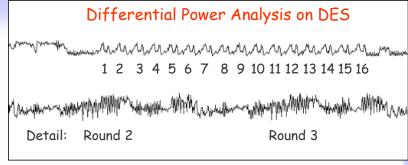
Good ciphers resist all attack models

Successful Attacks

Decrypt future messages coded with k

- Recover k
 - > Hard
- Often not needed!
 - > Exploit properties of the cipher
 - > See Lecture 5 (WEP)

- Goals
 History
 Shared-Key
- Attacks


Block C.

Stream C.

DES

Sneaky Attacks

From http://www.cryptography.com/dpa/technical

- Obtain the key somehow
 - > Network sniffers, worms, backup tapes, ...
 - Blackmail, bribery, torture, ...

Be careful!

- Side-channel cryptanalysis
 - ➤ Power consumption ⇒ off-peak computation
 - ➤ Encryption time ⇒ random noise
 - ➤ Radiation ⇒ physical shielding

Better implementation and design

Attacks

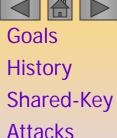
Block C.

Stream C.

DES

Encrypting Long messages

Most algorithms operate on fixed sizes


• E.g. 64 bits for DES

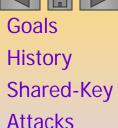
Block ciphers

- \triangleright Slice m into $m_1, ..., m_n$
 - Add padding to last block
- \triangleright Use E_k to produce $x_1, ..., x_n$
- \triangleright Use D_k to recover $m_1, ..., m_n$

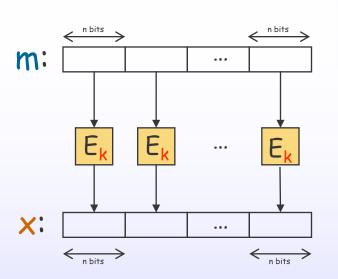
Stream ciphers

> Rely on pseudo-random sequence

Block C.


Stream C. DES

Electronic Codebook Mode – ECB


- Any identical block encrypted identically
- Lots of ciphertext with the same k
- Dictionary attack
 - > Attacker records blocks
 - > Substitute them back when appropriate
 - Encryption guarantees secrecy, not integrity

Block C.

Stream C. DES

Exclusive OR

Fundamental operation of many ciphers

У	Z	y⊕z
0	0	0
0	1	1
1	1	0
1	0	1

Properties

$$\rightarrow$$
 y \oplus y = 0

$$\rightarrow$$
 y \oplus 1 = \overline{y}

$$\rightarrow$$
 y \oplus z \oplus z = y

History
Shared-Key
Attacks

Block C.

Goals

Stream C.

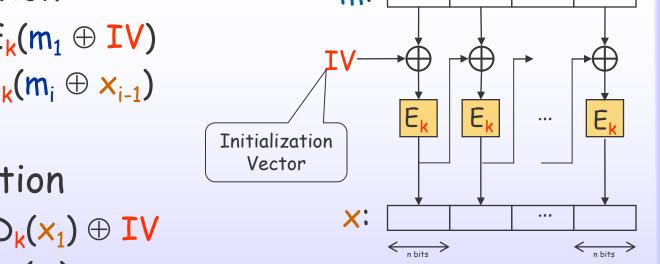
DES

Cipher Block Chaining – CBC

Encryption

$$> x_1 = E_k(m_1 \oplus IV)$$

$$\succ x_i = E_k(m_i \oplus x_{i-1})$$


Decryption

$$\succ m_1 = D_k(x_1) \oplus IV$$

$$\succ m_i = D_k(x_i) \oplus x_{i-1}$$

Widely used

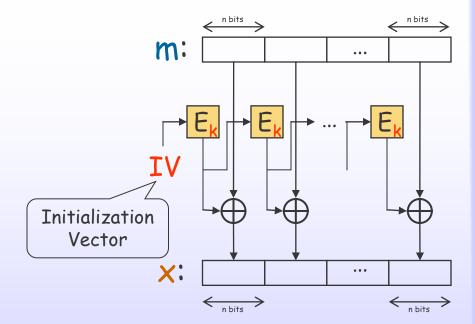
> E.g IPSec

Shared-Key

Goals

History

Stream C. DES


Output Feedback Mode – OFB

Encryption

$$> x_i = m_i \oplus E_k(IV)^i$$

Decryption

$$> m_i = x_i \oplus D_k(IV)^i$$

Goals
History
Shared-Key
Attacks

Block C.

Stream C.

DES

Secure C.

NB: encryption is never applied to m

One-Time Pad

$$E_k(m) = m \oplus k$$

- $D_k(x) = x \oplus k$
- Requires |m| = |k|
- Very fast
- Perfect secrecy
 - Prob[quessing m] = Prob[quessing m|x]
- k should never be reused again!

$$\begin{array}{c} \succ x_1 = m_1 \oplus k \\ \succ x_2 = m_2 \oplus k \end{array} \right\} x_1 \oplus x_2 = m_1 \oplus m_2$$

- k very large for long messages
 - How to distribute it?

History Shared-Key

Attacks

Block C.

Stream C.

DES

Pseudo-Random Bit Generators

- Deterministic functions
 - > RNG: $\{0,1\}^n \to \{0,1\}^\infty$
- Stretch fixed-size seed to an unbounded sequence that looks random
- Computable approximation of one-time pad
- Example: RC4

```
Goals
History
Shared-Key
```

Shared-Key
Attacks

Block C.

Stream C.

DES Secure C.

```
Example:
```

```
i := 0
i := 0
do forever
    i := i+1 mod 256
    j := j+s[I] mod 256
    swap s[i],s[j]
    t := s[i]+s[j] mod 256
    output s[t]
```

Seed: initial value of s

Size of state: $(2^{256})^{256}$

Stream Ciphers

One-time pad using a RNG

- Use k as seed?

Typical usage (e.g., with DES)

$$E_{k}(m) = DES_{k}(s)$$
, $m \oplus RNG(s)$

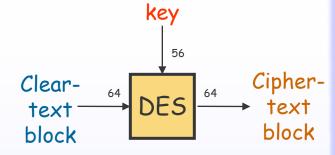
strong fast

 $E_{k}(m) = m \oplus RNG(k)$

> Chose new s each time

Stream C.

Block C.


DES

DES - Data Encryption Standard

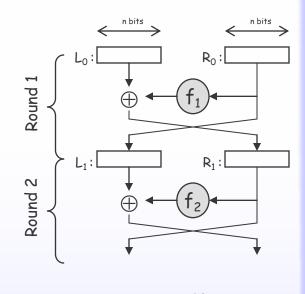
[NIST/IBM/NSA, released 1975]

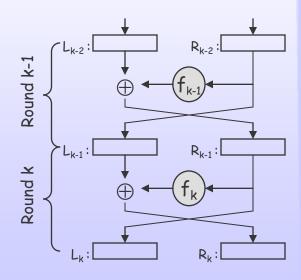
- Message blocks: 64 bits
- Keys: 56 bits

- Speed
 - > Software: 43,000 block/sec ~ 2.7 Mbit/sec
 - Measured on an old 80486 at 66MHz
 - OK for files and web pages
 - Too slow for sound and video
 - > Hardware: 16.8 million block/sec ~ 1 Gbit/sec
 - High speed Ethernet: 100 Mbit/sec
 - Modem: 56 Kbit/sec

Stream C.

Block C.




Feistel Networks

$$f_1, ..., f_k : \{0,1\}^n \rightarrow \{0,1\}^n$$

- Arbitrary functions
- Not necessarily invertible

$$\begin{cases} L_i = R_{i-1} \\ R_i = L_{i-1} \oplus f_i(R_{i-1}) \end{cases}$$

History
Shared-Key
Attacks
Block C.

Stream C.

Goals

DES

Inverting a Feistel Network

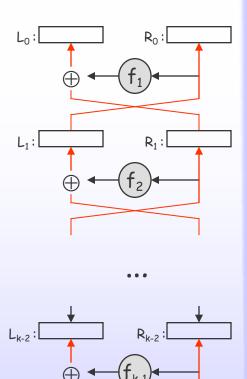
Theorem

For any $f_1, ..., f_k : \{0,1\}^n \to \{0,1\}^n$, a Feistel network computes a permutation $\pi: \{0,1\}^n \rightarrow \{0,1\}^n$

Inverse:
$$\begin{cases} L_{i-1} = R_i \oplus f_i(L_i) \\ R_{i-1} = L_i \end{cases}$$

Feistel networks convert

- > generic functions
- > into permutations

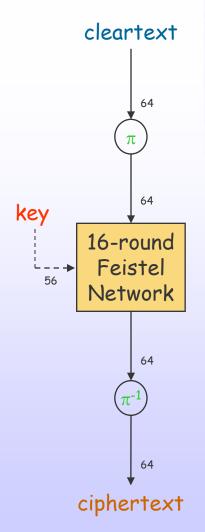

Shared-Key

Attacks

Block C.

Stream C.

DES



Inside DES

DES is a Feistel network with

- > 16 rounds
- > 64 bit cleartext blocks
- > 56 bits key
- \rightarrow f₁, ..., f₁₆ derived from key
- \triangleright Initial permutation π (public)
- Decryption
 - Apply f₁₆, ..., f₁ (in reverse order)
 - Same chip

History

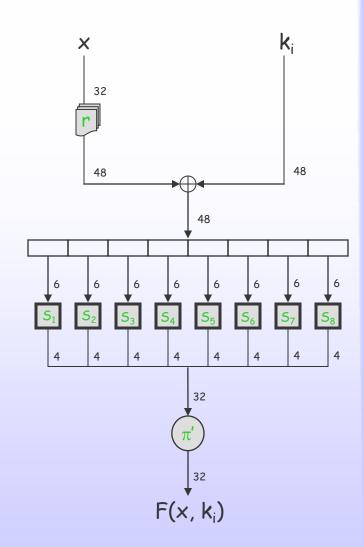
Shared-Key

Attacks

Block C.

Stream C.

DES



48 bits

The Functions fi

$$f_i(x) = F(x, k_i)$$

- k_i derived from k⁻
 - > Public key schedule
- F: $\{0,1\}^{32} \times \{0,1\}^{48} \rightarrow \{0,1\}^{32}$ is public 32 bits 48 bits
 - $\rightarrow \frac{1}{2}$ block x expanded to x'
 - Public replicator r 6 bits → 4 bits
 - > 5-boxes S_j are public
 - ... where the magic happens
 - Rationale was kept secret
 - \triangleright Final permutation π' is public
 - Shuffles input for next round

Secure C.

DES

Goals

History

Attacks

Block C.

Stream C.

Shared-Key

Attacks on DES

- Exhaustive search
 - Fiven plaintext m and ciphertext x, with high probability there is a single key k s.t.

$$x = DES(m,k)$$

- > Trying 106 keys/sec, it takes 2,000 years
- However ...
 - > 1993, \$10⁶ homemade supercomputer breaks DES in 7 hours (CPA)
- More sophisticated attacks
 - \rightarrow Use properties (e.g. DES(\overline{m} , \overline{k}) = DES(m,k))
 - > Linear / differential crypto-analysis

Goals
History
Shared-Key

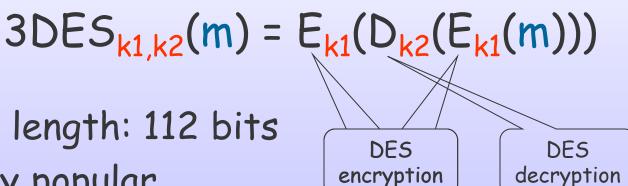
Attacks

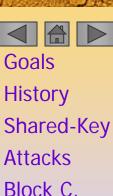
Block C.

Stream C.

DES

Avoiding Exhaustive Search–3DES


DES is not a group

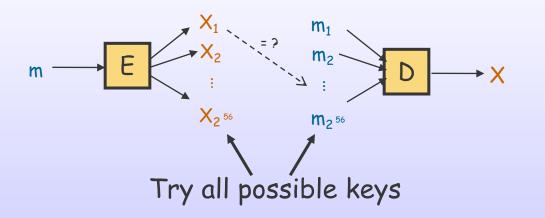

> Given k1, k2, with high probability there is no k3 s.t.

$$E_{k1}(E_{k2}(m)) = E_{k3}(m)$$
 for every m

$$3DES_{k1,k2}(m) = E_{k1}(D_{k2}(E_{k1}(m)))$$

- Key length: 112 bits
- Very popular

Secure C.


Stream C.

How about a 2DES?

$$2DES_{k1,k2}(m) = E_{k1}(E_{k2}(m))$$
 ??

Meet-in-the-middle attack!

For key length n, → × total work is "only" 2ⁿ + 2ⁿ = 2ⁿ⁺¹

- Effective key length is just 57 bits!
- Applies to any encryption algorithm

Goals
History
Shared-Key
Attacks

Block C.

Stream C.

DES

DESX

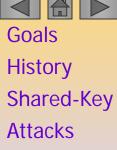
$$DESX_{k1,k2,k3}(m) = k1 \oplus E_{k2}(m \oplus k3)$$

- Key length: 56 + 2*64 = 184 bits
- However, effective key length is only about 100 bits

Goals
History
Shared-Key
Attacks

Block C.

Stream C.


DES

AES _ a Successor to DES

Advanced Encryption Standard

- 1996: NIST issues public call for proposal
 - > Secure for next 50-100 years
 - > Block cipher faster than 3DES
 - Variable key lengths (128, 192, 256, ... bits)
 - Open design
- 15 algorithms submitted
 - > Public (and private) crypto-analysis for 4 years
 - > 5 finalists

DES

Block C.

Secure C.

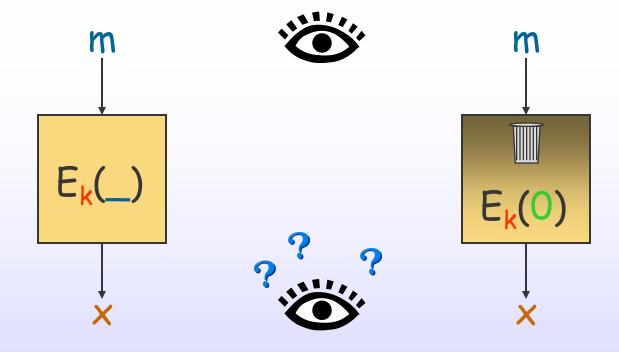
Stream C.

Oct. 2000: AES Contest Winner

Rijndael, by J. Daemen and V. Rijmen

- Fast (~18-20 cycles to encrypt a byte)
- Small (98 Kb)
- Well understood characteristics
 - ▶ Bit operations: ⊕, shift, ...
- Provides good safety (1.33 safety factor)

Goals
History
Shared-Key
Attacks
Block C.


DES

Secure C.

Stream C.

9

When is a Cipher Secure?

Goals History Shared-Key Attacks

Block C.

Stream C.

DES

Secure C.

Polynomial adversary cannot tell a real encryption box from a fake one

Formal Definition

Let

- ightharpoonup E: $\{0,1\}^n \times \{0,1\}^l \to \{0,1\}^n$
- $ightharpoonup A(x \leftrightarrow m) = 1$ iff $x = E_k(m)$
 - A algorithm polynomial in key length I
- $> x_m = E_k(m)$

E is a secure encryption scheme if

∀ polynomial p(_)

∃ L s.t. ∀ | > L

 $\forall k \in \{0,1\}^{l}$

$$Pr[A(x_m \leftrightarrow m) = 1] - Pr[A(x_0 \leftrightarrow m) = 1] < 1/p(I)$$

Goals History

Shared-Key

Attacks

Block C.

Stream C.

DES

Readings

Andrea Sgarro,
 Codici Segreti, 1989

"The comprehensive History of Secret Communication from Ancient Times to the Internet"

- David Kahn, The Code-Breakers, 1996
- A. Menezes, P. van Oorschot and S. Vanstone, The Handbook of Applied Cryptography, 1996

Goals
History
Shared-Key
Attacks

Stream C.

DES

Secure C.

Block C.

Exercises for Lecture 2

- Find a way to measure the redundancy in the ASCII rendering of English (or Italian) text
- Prove the invertibility of a Feistel network
- Why is 3DES immune from the meet-inthe-middle attack?
 - > Can you explain why 3DES uses only 2 keys?
 - What is the cost of breaking y iterated encryptions with different keys?
- Goals
 History
 Shared-Key
 Attacks
 Block C.

Stream C.

Secure C.

DES

Next ...

Public-Key Cryptography

Goals

History Shared-Key

Attacks

Block C.

Stream C.

DES

