15-312: Dynamic Dispatch I. Cervesato

15-312 Lecture on
Dynamic Dispatch

Object-oriented programming is a computing model by which a multitude of ob-
Jjects interact with each other. An object consists of fields containing data and methods
that permit manipulating the object’s fields and interacting with other objects. Com-
putation in an object-oriented system happens by invoking the methods of an object,
which in turn may invoke the methods of other objects, and so on. This organization,
by which an object contains its own internal state (its fields) and the functionalities rel-
evant to this state (its methods), is called encapsulation and is one of the characteristics
of object-oriented programming.

Objects that differ at most by the value of their fields (their state) but not by their
methods belong to the same class. In a sense, a class is the “mold” of an object: it
defines its methods and the type of its fields — a class is a hybrid of types (of the
fields) and values (of the methods). Each object belonging to a class is an instance of
this class: it gets the methods from the class and has its values associated to its fields.
Classes are another characteristic of object-oriented programming.

A third characteristic is inheritance. Inheritance is an approach to defining new
classes on the basis of existing classes. In the simplest case (single inheritance), the
new class (the subclass) differs from the existing class (the superclass) by extending
it with new fields and methods, or by redefining (overriding) some of its methods. A
consequence of inheritance is that an object can belong to multiple classes: the class
for which it was defined and also all of its superclasses. This object is viewed as an
instance of the superclass by ignoring the added fields and methods, and by reverting
overridden methods to those of the superclass.

In this handout, we will examine the class mechanism deprived of some orthogonal
aspects of the above characteristics. In particular, we will consider a setup consisting
of multiple classes, each with the same methods (but possibly very different fields). An
object can therefore be an instance of several classes, but each defines the exact same
methods. Notions that are not considered include the hierarchical aspect of inheritance
(which is dealt with through subtyping — see PFPL Ch. 23 and 26) and the self-
referential nature of objects (which is modeled by means of recursive types — see
PFPL Ch.16).

March 4, 2013 1

15-312: Dynamic Dispatch I. Cervesato

Classes and Methods

The best way to get going is to forget about objects and instead consider a setup where
we want to describe a high-level entity with some well-defined operations, but with
multiple low-level representations for these entities. The common operations will be
our methods. The multiple representations will be our classes (or more precisely the
field portion of our classes).

Borrowing from PFPL Ch. 22, we will use points on the plane as our on-going
example of a “high-level entity”. The operations of interest (our methods) will be
the distance of a point from the origin (Distance) and the quadrant where a point is
located (Quadrant) — of course we could define many more interesting operations but
this shall suffice for our purposes. The underlying representations (our classes) will
be the Cartesian and polar coordinate systems (again this will be enough): the fields
of the Cartesian class will be the = and y coordinates of the point, both of type real.
By contrast, the fields of the Polar class will be a real for the radial distance from the
origin and an angle for the angle relative to the positive half of z-axis (we assume
that an angle is a floating point number with values between 0 and 27, together with
appropriate operations).

In this setup, a user may choose to work with either Cartesian or polar coordinates,
and in each case be given access to the Distance and Quadrant methods. Our job is
therefore to provide an implementation of each method for each class: that’s a total of
four functions. It is natural to arrange these four functions in tabular form, where the
rows correspond to the possible representations (the classes) and the columns with the
various methods. We can then display it as follows:

Distance: Quadrant:

if t>0&y >0 thenl
L ——— | elseif £>0&y <0 thenll
Cartesian: (2,4} | V#* +9* | (iccif 2 <0& y< 0 then I
elseif £ <0&y >0 then IV
if 0<6<m/2 thenl
elseif 7/2<60 <7 thenll

Polar: - (r,0) r elseif <6 <3r/2 thenlll
else if 37/2 <60 < 27 then IV
where a quadrant is given by the enumeration type quad = {I, 11, l1l,IV}.

This table is called the dispatch matrix. In general, given a fixed set of classes
C = {c1,...,c,} and a fixed set of methods D = {ds,...,d;,}, the dispatch matrix
has the following form:

Methods: D = {dy,...,dmn}

Classes:

C:{Cla"'vcn}

March 4, 2013 2

15-312: Dynamic Dispatch I. Cervesato

One row for each class and one column for each method. At the intersection of row ¢
and column d, we have a function that implements method d for entities obeying the
representation defined by class ¢ — call its body e.

Because each row implements the methods for the same class, every function on
this row takes as input the constituents of this class’s representation: two real for the
Cartesian class and one real and one angle for the Polar class. Dually, because every
column provides the same functionality based on the different underlying representa-
tions, the methods along this column will all return values of the same type: a real for
Distance and a quad for Quadrant. It is again convenient to organize the types of the
functions in our dispatch matrix in tabular form:

Distance: Quadrant:

Cartesian: real x real — | real x real — real real x real — quad

Polar: real x angle — | real x angle — real | real x angle — quad

real quad

This highlights the fact that all functions on the same row of the dispatch matrix have
the same input type and all functions on the same column have the same output type.
Abstractly, let 7¢ be the common representation type of class ¢ (a row in the dispatch
matrix) and pg be the return type of method d (a column in the matrix), then the cell
where this row and this column intersect has type 7¢ — p4 and the function in this cell
will have the form Az : 7°e where the body e has type pg assuming that the input x
has type 7¢. This is described schematically as follows for types and values:

TC—= o | T pa | x Tt Az TC. e
+ “Pd
Pd
Types Values

As our example shows, the type 7¢ associated with a class ¢ € C'is typically a product.
Its values are records of values for each of the fields of C.

The Dispatch Matrix

So far, we have viewed the dispatch matrix as a convenient way to visualize the func-
tions implementing the methods for each representation class, as well as their type.
Next, we will be interested in its own status in a programming language.

March 4, 2013 3

15-312: Dynamic Dispatch I. Cervesato

In a way, the dispatch matrix of our example is just four functions: it is therefore
convenient to view it as a tuple with four elements:

which naturally has the following product type:

(real x real — real)
x (real x real — quad)
x (real x angle — real)
x (real x angle — quad)

Observe that there is nothing tabular about this type: it is just the product of four
function types.

Abstractly, we can define a generic dispatch matrix as a tuple eg consisting of all
the implementations Az : 7¢. e for all classes ¢ € C' and methods d € D:

eg 2 Mz :7%€e5)aep)eec

The type 7§ of this dispatch matrix has therefore the form

H = H H(Tc—hOd)

ceCdeD

These expressions view the matrix as tuple of tuples (the columns). The tabular form
is back, although tenuously.
It is easy to show that

*

€S -d-c —* Ay:T el

Organizations

Our next goal will be to design an abstraction of the dispatch matrix that supports a
natural notion of object as well as two basic operations on them: creating an object and
invoking a method on it. The dispatch matrix as we presented it so far does not lend
itself to such an interpretation: it is just a tuple of functions.

Given a dispatch matrix e$ of type 75, we are therefore interested in defining the
following three entities:

e A type obj that captures our understanding of what an object is.

e An operation new|c](e) that, given the an expression e that evaluates to the fields
of class c, returns an object. Viewed as a function of e, this operation has type
new[c](-) : 7¢ — obj.

March 4, 2013 4

15-312: Dynamic Dispatch I. Cervesato

e An operation e < d that returns the result of invoking method d on the object e.
Viewed as function of e, this operation has type _ < d : obj — py.

Naturally, if the dispatch matrix contains the function Ay : 7¢. ¢ at the intersection of
row c and column d, we want (new[c|(e)) < d to behave exactly as [e/y]e5. We will
actually be able to achieve a stronger result, namely

(newlc](e)) = d —" eje

We will obtain two natural organizations along these lines by prioritizing either the
rows or the columns of the dispatch matrix. But first, a more general concept.

Type Isomorphisms

Intuitively, two types 71 and 7o are isomorphic, written 71 =2 7o, if, whenever a value
of one type is used, we could extract the exact same information by using an appro-
priate value of the other type instead. This implies in particular that there exist two
expressions!

® e10: 71 —> Ty, and
® €91 1Ty — T1
such that
e e91 (€12 v1) —* vy for every value vy : 71, and
e e15 (€91 V) —™ vy for every value vy : To.

These functions are called the witnesses of the type isomorphism. They are bijections
and each other’s inverse. The function e; is a transformation that permits using an
expression of type 7 wherever an expression of type 7 is expected, and dually for es; .
Moreover, given any value vy : 71, the value vy : 75 of the expression eq2 vy contains
the exact same information as vy, and it could be recovered by applying es; to it. The
function eo; has a similar property.

As an example, 7 X 7/ = 7/ x T are isomorphic for any types 7 and 7’.

Class-Based Organization

The class-based organization of the dispatch matrix exploits the observation that every
function on the same row takes the same input. This common input can then be factored
out by means of a type isomorphism, leaving a structure that is prominently organized

IThe general definition of type isomorphism is discussed in depth in Ch. 47 and 48 of PFPL.

March 4, 2013 5

15-312: Dynamic Dispatch I. Cervesato

along the rows of the dispatch matrix. This yields the following picture:

Methods: D = {dy,...,dmn}

Classes:
C= {cl,...,cn}

T —

Since each row corresponds to a class ¢ € C, the class-based organization asso-
ciates with each value e : 7¢ all the methods on that row. Because the user can invoke
any of these methods on e, it is natural to collect them into a tuple. The following type
isomorphism justifies this intuition.

I = T (1)

ceC deD ceC deD

Its witnesses are displayed in Figure 1.

Given a dispatch matrix expression e%, we denote with e the corresponding dis-
patch matrix organized by classes. It is the value obtained by applying the left witness

¢“~[% in Figure 1 to €$:

c-[C]

(Am : Tg. Az 7 {((m-c-d) 2%aep)eec) €5

= (A7 (€5 e d) 2%aep)eec
= (27 (A2 7% eg)aen)eec) - ¢ - d) 2°)aep)cec

=* (AT (A T €5) 2% den) e
—

(A€ : 7€ (ef)aeD)cec
2 [
D
where the third line stems from our earlier definition of €$) as ((Ax : 7°. €5)aep)ecc-
In the class-based organization, an object of class c is taken to be simply the collec-
tion of all the behaviors induced by the methods on the corresponding row. Therefore,

we can define
obj & J]pa

deD
Then, given an expression e : 7¢ that computes to the fields of class ¢ (and therefore
that can be supplied to every method on that row), the object creation operation is
defined as
new[c|(e) = (e -c) e°

Here, e - ¢ picks the row of e corresponding to class ¢, which is a function that

expects an argument of type 7¢. Since e is such an argument, applying this function

March 4, 2013 6

15-312: Dynamic Dispatch I. Cervesato

ceC deD
A
ec~> A eﬂc .
dm 7€,
()\J}:D 7€ am/' 7’.
((m-c-d) x%aep (Ay e ((m”-) y°) - d)aep
> cC >ceC

e | R (Hm)

ceC deD
——
obj

Figure 1: Transformation into the Class-Based Organization

to it yields a result for each method in D. This result is an expression, say e/, of type
obj.

Then, to invoke a method d on such an object, it suffices to select its d-th compo-
nent. Therefore, the invocation of d on object e is defined by simply projecting €
along d:

dde=d & .4

The definitions of both new|[c](_) and _ < d can be read off the right witness e/<1=C

in Figure 1 after replacing the variable m’ with e5:

e@<:d

—_——
(7 (€D ¢) y°) d)aep)ece
————

new(c](y°)
where €/ is the result of evaluating new|[c](e€) for whatever expression €€ is supplied
as y°.
Method-Based Organization
The method-based organization takes a stance that is dual to that of the class-based

organization. It exploits that fact that the functions along the columns of the dispatch
matrix have the same type and leverages another type isomorphism to factor out this

March 4, 2013 7

15-312: Dynamic Dispatch I. Cervesato

common output type, which leads to a structure that is prominently organized along the
columns of the dispatch matrix. The pictorial interpretation now takes the following

form:
Methods: D = {dy,...,dn}

Classes:
C = {01,...,Cn}

1 1
Pdy e Pdy,

Given that each column in the dispatch matrix corresponds to a method d € D,
invoking d on some entity amounts to selecting the right function along this column on
the basis of the representation that was chosen for this entity — its class. Therefore,
we shall apply one of several possible functions, depending on the class. Such a choice
calls for a sum labeled with the classes in C. The following type isomorphism fully
develops this intuition:

M = IS o

ceCdeD deD \ceC
The witnesses of this type isomorphism are displayed in Figure 2.
Given a dispatch matrix €%, we denote with e%] the corresponding dispatch matrix

organized by methods. It is the value of applying the left e, 75 witness in Figure 2 to
c

el
eD_)@
(Am:75. (Axp - Z ¢ case xp{c- x5 = (m-c-d) 25})aecp) €5
ceC
— (Aep Yot case zp{c-a§ = (eF - ¢+ d) 25})aep
C
€D

(Azp : Y co T case zp{c x5 = ((((Ax: T ef)aep)ccc) - ¢ - d) G})aeD
= (Aep:) . coTC casexpic-xf = (A\v:7%€e5) 3})aeD
= (\rp) coTC case xp{c- x§ = ef})aep

In the method-based organization, an object for method d is a choice of all the
possible representations that d can be invoked on. This is the sum of the representation
types corresponding to all the classes:

obj = ZTC

ceC

Given an expression e : 7¢ that computes to the fields of class ¢, we create such an
object by simply injecting it into the appropriate component of the above sum type:

newlcl(e) = c-e

March 4, 2013 8

15-312: Dynamic Dispatch I. Cervesato

ceC deD
N

€p-[D] — N
Am TS, - =

(M : Teco A’ Ty

case rp < ()\yc s TC. (m' . d) (C . yc)>c€C
{e-xg=(m-c-d)zg})deD
)deD
Y

% e T1(S) m
deD

ceC
——
obj

Figure 2: Transformation into the Method-Based Organization

Invoking a method d on such an object e is achieved by simply selecting the d-th

column of e%], ie., e%] - d, and calling it on this object:

med = (e%]-d)e@

Note again that the definitions of new[c](_) and _ < d can be read off the right
witness in Figure 2 after replacing the variable m’ with e%]:

e@ﬁd
((Ay 7% (m' - d) (¢~ y%))eec)aen
——
new|c] (y°)

where e is the result of evaluating new|c](e®) for the expression e supplied as y°.

March 4, 2013 9

