Higher-order functions

Question 1: Define a function swapargs which takes a function foftype 'a * 'b -> 'cand
returns a new function of type 'b * 'a -> 'csuchthat f (x,y) = swapargs(f) (y,x) for
all x and y.

Question 2: Define the functions

1. curry : ('a * 'b -=> '¢) -> 'a -> 'b -> 'c
2. uncurry : ('a -> 'b -> '¢) -> 'a * 'b -> 'c
curry takes a function £: 'a * 'b -> 'c and gives back the curried functiong : 'a -> 'b

-> 'csuchthatg x y = f(x,y).uncurry does the reverse, i.e. takes a function like g and
returns a function like f.

Question 3: Define a function nfold which takes two arguments, f and a non-negative integer n,
and returns the n-fold composition of f.Namely, nfold (f,n) (x) = f£"(x).Note that £9 (x)
= X

Question 4: Define a function fixedpoint which takes two arguments, a function £ and an
element x, and returns the smallest positive integer n such that " (x) = x. Note that if the
function has no fixed point, then this operation won't terminate. (I don't recommend using nfold for
this, but you may.)



Question 5: Consider the function reduce: ('a * 'b -> 'b) -> 'b -> 'a list ->
'b defined as

fun reduce £ v [] = v
| reduce £ v (x::1) = f(x, reduce £ v 1);

Using reduce, define the functions

1. exists 'a list -> ('a -> bool) -> bool suchthat exists 1 p holdsif
and only if in the list 1 there is at least an element which satisfy the property p.

2. forall 'a list -> ('a -> bool) -> bool suchthat forall 1 p holdsif
and only if every element of the list 1 satisfies the property p.

The definitions should have the form

fun exists 1 p = reduce ...;
fun forall 1 p = reduce ...;



