
Higher-order functions

Question 1: Define a function swapargs which takes a function f of type 'a * 'b -> 'c and
returns a new function of type 'b * 'a -> 'c such that f(x,y) = swapargs(f)(y,x) for
all x and y.

Question 2: Define the functions

 1. curry : ('a * 'b -> 'c) -> 'a -> 'b -> 'c

 2. uncurry : ('a -> 'b -> 'c) -> 'a * 'b -> 'c

curry takes a function f: 'a * 'b -> 'c and gives back the curried function g : 'a -> 'b
-> 'c such that g x y = f(x,y). uncurry does the reverse, i.e. takes a function like g and
returns a function like f.

Question 3: Define a function nfold which takes two arguments, f and a non-negative integer n,
and returns the n-fold composition of f. Namely, nfold(f,n)(x) = fn(x). Note that f0(x)
= x

Question 4: Define a function fixedpoint which takes two arguments, a function f and an
element x, and returns the smallest positive integer n such that fn(x) = x. Note that if the
function has no fixed point, then this operation won't terminate. (I don't recommend using nfold for
this, but you may.)

Question 5: Consider the function reduce: ('a * 'b -> 'b) -> 'b -> 'a list ->
'b defined as

 fun reduce f v [] = v
 | reduce f v (x::l) = f(x, reduce f v l);

Using reduce, define the functions

1. exists 'a list -> ('a -> bool) -> bool such that exists l p holds if
and only if in the list l there is at least an element which satisfy the property p.

2. forall 'a list -> ('a -> bool) -> bool such that forall l p holds if
and only if every element of the list l satisfies the property p.

The definitions should have the form

 fun exists l p = reduce ...;
 fun forall l p = reduce ...;

