
Computer Science 15-212, Spring 2009

Recitation 6

Straight recursion versus Tail recursion

Type reverse : ′a list → ′a list

Description returns the reverse of a list given as argument.

Example reverse ([1, 2, 3, 4, 5]) =⇒ [5, 4, 3, 2, 1]

Straight Recursion

Definition

{
reverse(nil) = nil

reverse(n :: l) = reverse(l)@[e]

Tail Recursion

Definition reverse′(l) = rvrs(l, nil) and

{
rvrs(nil, acc) = acc

rvrs(e :: l, acc) = rvrs(l, e :: acc)

Proving program equivalence using structural induction

First attempt

Property: ∀ l :′ a list reverse(l) = rvrs(l, nil)

By structural induction on l,

Base Case: l = nil

by definition of reverse reverse(nil) = nil
by definition of rvrs rvrs(nil, nil) = nil
and so reverse(nil) = rvrs(nil, nil)

Induction Step: l = e :: l′

We want to prove that: if reverse(e :: l′) = rvrs(e :: l′, nil)

Induction Hypothesis: reverse(l′) = rvrs(l′, nil)

by definition of reverse reverse(e :: l′) = reverse(l′)@[e]
by IH = rvrs(l′, nil)@[e]

At this point we are stuck, we cannot go further. So, let us try to work on the right-hand side.

by definition of rvrs rvrs(e :: l′, nil) = rvrs(l′, e :: nil)

At this point, we are stuck again! We cannot apply induction hypothesis because the second argument
of rvrs is not nil but some other list that may be arbitrary. This proof attempt has failed.

1



Second attempt

We see that we would need a weaker property to be able to apply the IH in case the second argument of
rvrs is any kind of list acc. In this case, the property becomes:

Property: ∀ l :′ a list reverse(l)@acc = rvrs(l, acc)

By structural induction on l,

Base Case: l = nil

by definition of reverse reverse(nil)@acc = nil@acc
by definition of reverse reverse(nil)@acc = acc
by definition of rvrs rvrs(nil, acc) = acc
and so reverse(nil)@acc = rvrs(nil, acc)

Induction Step: l = e :: l′

We want to prove that: if reverse(e :: l′)@acc = rvrs(e :: l′, acc)

Induction Hypothesis: reverse(l′)@acc = rvrs(l′, acc)

by definition of reverse reverse(e :: l′)@acc = (reverse(l′)@[e])@acc
by associativity of @ = reverse(l′)@([e]@acc)
by definition of @ = reverse(l′)@(e :: acc)
by IH = rvrs(l′, e :: acc)
by definition of rvrs = rvrs(e :: l′, acc)
QED

Notice that here we would need to prove the associativity lemma for @, i.e. (l1@l2)@l3 = l1@(l2@l3).
I leave it to you an exercice.

2


