Computer Science 15-212, Spring 2009 Recitation 6

Straight recursion versus Tail recursion

Type $reverse: 'a \ list \rightarrow 'a \ list$

Description returns the reverse of a list given as argument.

Example $reverse([1,2,3,4,5]) \implies [5,4,3,2,1]$

Straight Recursion

$$Definition \begin{cases} reverse(nil) &= nil \\ reverse(n :: l) &= reverse(l)@[e] \end{cases}$$

Tail Recursion

Definition
$$reverse'(l) = rvrs(l, nil)$$
 and
$$\begin{cases} rvrs(nil, acc) &= acc \\ rvrs(e :: l, acc) &= rvrs(l, e :: acc) \end{cases}$$

Proving program equivalence using structural induction

First attempt

Property: $\forall l :' a \ list \ reverse(l) = rvrs(l, nil)$

By structural induction on l,

Base Case: l = nil

by definition of reverse reverse(nil) = nilby definition of rvrs rvrs(nil, nil) = niland so reverse(nil) = rvrs(nil, nil)

Induction Step: l = e :: l'

We want to prove that: if reverse(e :: l') = rvrs(e :: l', nil)

Induction Hypothesis: reverse(l') = rvrs(l', nil)

by definition of reverse reverse(e :: l') = reverse(l')@[e] by IH = rvrs(l', nil)@[e]

At this point we are stuck, we cannot go further. So, let us try to work on the right-hand side.

by definition of rvrs rvrs(e :: l', nil) = rvrs(l', e :: nil)

At this point, we are stuck again! We cannot apply induction hypothesis because the second argument of rvrs is not nil but some other list that may be arbitrary. This proof attempt has failed.

Second attempt

We see that we would need a weaker property to be able to apply the IH in case the second argument of rvrs is any kind of list acc. In this case, the property becomes:

```
Property: \forall l :' a \ list \ reverse(l)@acc = rvrs(l, acc)
By structural induction on l,
Base Case: l = nil
                   by definition of reverse reverse(nil)@acc = nil@acc
                   by definition of reverse reverse(nil)@acc = acc
                   by definition of rvrs
                                            rvrs(nil, acc)
                                                                = acc
                   and so
                                            reverse(nil)@acc = rvrs(nil, acc)
Induction Step: l = e :: l'
We want to prove that: if reverse(e :: l')@acc = rvrs(e :: l', acc)
Induction Hypothesis: reverse(l')@acc = rvrs(l', acc)
              by definition of reverse reverse(e :: l')@acc = (reverse(l')@[e])@acc
              by associativity of @
                                                             = reverse(l')@([e]@acc)
                                                             = reverse(l')@(e :: acc)
              by definition of @
              by IH
                                                             = rvrs(l', e :: acc)
              by definition of rvrs
                                                             = rvrs(e :: l', acc)
              QED
```

Notice that here we would need to prove the associativity lemma for @, i.e. (l1@l2)@l3 = l1@(l2@l3). I leave it to you an exercice.