
15–212: Principles of Programming

Some Notes on Evaluation

Michael Erdmann∗

Spring 2006

These notes provide a brief introduction to evaluation the way it is used for proving properties
of ML programs. We assume that the reader is already familiar with ML.

When proving the correctness of a concrete program (when compared to the correctness of
an abstract algorithm), it is paramount to refer to an underlying definition of the programming
language. For our purposes, it is most convenient if this definition is operational, that is, we describe
how expressions evaluate.

For simplicity we deal only with pure ML programs, that is, the only effects we allow are
non-termination and exceptions, which are modelled by allowing an expression not to have a value.

As the language is organized around its types, so will the definition of the operational semantics.
This definition is not complete or fully formalized—for such a definition the interested and intrepid
reader is referred to the Definition of Standard ML (Revised).

1 Notation

It will be critical for an understanding of the definitions and proof that we distinguish between a
mathematical entity (such as an integer or a real number) and its representation as an object in
ML. Again, for the sake of simplicity, our formal proofs will ignore limits of the machines realizing
ML. For example, we assume that there are ML representation of all integers and real numbers.
Given a mathematical object o, we write o for the representation of o in ML. We use a typewriter
font for expressions in ML and italics for mathematical expressions.

We write e for arbitrary expressions in ML and v for values, which are a special kind of expres-
sion. We write

e ↪→ v expression e evaluates to value v

e
1=⇒ e′ expression e reduces to e′ in 1 step

e
k=⇒ e′ expression e reduces to e′ in k steps

e =⇒ e′ expression e reduces to e′ in 0 or more steps

Our notion of step in the operational semantics is defined abstractly and will not coincide with
the actual operations performed in an implementation of ML. Since we will be mainly concerned
with proving correctness, but not complexity of implementation, the number of steps is largely
irrelevant and we will write e =⇒ e′ for reduction.

Evaluation and reduction are related in the sense that if e ↪→ v then e
1=⇒ e1

1=⇒ · · · 1=⇒ v and
vice versa.

Note that values evaluate to themselves “in 0 steps”. In particular, for a value v there is no
expression e such that v

1=⇒ e.
∗Modified from a draft by Frank Pfenning, 1997.

1



2 Integers

Types. int.
Values. For every integer n there is an ML object n.
Operations. e1 + e2, e1 - e2, e1 * e2, e1 div e2, e1 mod e2, and others which we omit here.
Typing Rules. e1 + e2 : int if e1 : int and e2 : int and similarly for the other operations.
Evaluation. Evaluation of arithmetic expressions proceeds from left to right, until we have ob-
tained values (which are always representation of integers). More formally:

e1 + e2
1=⇒ e′1 + e2 if e1

1=⇒ e′1
n1 + e2

1=⇒ n1 + e′2 if e2
1=⇒ e′2

n1 + n2
1=⇒ n1 + n2

We ignore any limitations imposed by particular implementations, such as restrictions on the
number of bits in the representation of integers. Note that some expressions have no values. For
example, there is no value v such that 3 div 0 =⇒ v.

3 Real Numbers

Analogous to integers. Of course, in the implementation these are represented as floating point
values with limited precision. As a result it is almost never appropriate to compare values of type
real for equality (which can be done with the function Real.==).

4 Booleans

Types. bool.
Values. true and false.
Operations. if e1 then e2 else e3.
Typing Rules.

if e1 then e2 else e3 : t
if e1 : bool
and e2 : t
and e3 : t

Note that this rule applies for any type t and forces both branches of the conditional to have the
same type.
Evaluation. First we evaluate the condition and then one of the branches of the conditional,
depending on its value.

if e1 then e2 else e3
1=⇒ if e′1 then e2 else e3 if e1

1=⇒ e′1
if true then e2 else e3

1=⇒ e2

if false then e2 else e3
1=⇒ e3

2



5 Products

We only show the situation for pairs; arbitrary tuples are analogous.
Types. t1 * t2 for any type t1 and t2.
Values. (v1, v2) for values v1 and v2.
Operations. One can define projections, but in practice one mostly uses pattern matching (see
below).
Typing Rules.

(e1, e2) : t1 * t2
if e1 : t1
and e2 : t2.

Evaluation. Tuples are evaluated from left to right.

(e1, e2)
1=⇒ (e′1, e2) if e1

1=⇒ e′1
(v1, e2)

1=⇒ (v1, e′2) if e2
1=⇒ e′2

6 Functions

We start with simple functions and later extend this to clausal function definitions.
Types. t1 -> t2 for any type t1 and t2.
Values. (fn (x:t1) => e2) for any type t1 and expression e2.
Operations. The only operation is application e1 e2, written as juxtaposition.
Typing Rules.

(fn (x:t1) => e2) : t1 -> t2
if e2 : t2 assuming x : t1.

e2 e1 : t2
if e2 : t1 -> t2
and e1 : t1.

Evaluation. Applications are evaluated by first evaluating the function, then the argument, and
then substituting the actual parameter (= argument) for the formal parameter (= variable) in the
body of the function.

e1 e2
1=⇒ e′1 e2 if e1

1=⇒ e′1
v1 e2

1=⇒ v1 e′2 if e2
1=⇒ e′2

(fn (x:t1) => e2) v1
1=⇒ [v1/x]e2

where [v1/x]e2 is the notation for substituting v1 for occurrences of the parameter x in e2. This
substitution must respect the rules of scope for variables.

In presentation of proofs, identifiers bound to functions (and sometimes other values) are not
expanded into their corresponding value, in order to shorten the presentation. In other words,
we do not consider looking up the value of an identifier in the environment as an explicit step in
evaluation.

3



7 Patterns

Patterns p, which can be used in clausal function definitions, are either variables, constants, or
tuples of patterns. Patterns must be linear, that is, each variable may occur at most once. With
datatype declarations, we will later see one other case, namely a value constructor applied to an
argument.

The general form of a function definition is then

(fn p1 => e1

| p2 => e2

. . .
| pn => en)

Such a function will have type t -> s if every pattern pi has type t and every expression ei has
type s. When we check if pattern pi has type t, we have to assign appropriate types to the variables
in pi. We may assume the types of these variables when checking ei. For example:

(fn (x,y) => (x+1) * (y-1)) : (int * int) -> int

since (x+1) * (y-1) : int assuming x : int and y : int. These assumptions arise, since the
pattern (x,y) must have type int * int. [Why is that? Because x+1 and y-1, and thus x and y,
must each have the same type as 1, namely int.]

To evaluate an application we proceed as before: we first evaluate the function then the argu-
ment part. The resulting expression

(fn p1 => e1

| p2 => e2

. . .
| pn => en) v

is evaluated by matching the value v against each pattern in turn, starting with p1. If the value
matches a pattern pi, it will provide a substitution for the variables in the pattern. These substitu-
tions are applied to ei and the resulting expression is evaluated. For example, given the definition

fun fact’ (0, k) = k
| fact’ (n, k) = fact’ (n-1, n*k)

we have
fact’ (3,1) =⇒ fact’ (3-1, 3*1)

since

1. matching the value (3,1) against the pattern (0,k) fails,

2. matching the value (3,1) against the pattern (n,k) succeeds with the substitution of 3 for
n and 1 for k,

3. substituting 3 for n and 1 for k in fact’ (n-1, n*k) yields fact’ (3-1, 3*1).

4


