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Abstract

A social scene is a scene occupied by humans. In these scenes, humans frequently interact with
each other while sending visible social signals, such as facial expressions, body gestures, and
gaze movements. Such scenes are very common in our daily life and, increasingly, artificial
agents are entering these spaces. Classic scene understanding has focused on understanding the
structure of scenes, e.g., where a sofa is, how to navigate the room, or what an object is useful
for. For artificial agents to cohabit these scenes with humans as collaborating team members,
it is necessary that they understand social context, such as what people cognitively attend to,
what people want to accomplish, and whom people are interacting with. The classic definition of
scene understanding must be expanded to include interpreting what is socially salient in a scene.
In this thesis, we establish a computational basis towards understanding the relationship between
social motion and social saliency.

A first person camera is a wearable camera looking out at a scene from the perspective of
the wearer — the camera sees what the wearer sees. First person cameras are ideally placed to
image a social scene for two reasons. First, first person cameras naturally secure the best view
because humans intelligently move to look at what they are interested in from the best view point.
Second, the more socially salient an event is, the more first person views of the event are likely to
be available. We exploit these advantages of first person cameras, as socially immersed sensors,
to interpret visible social signals associated with social context.

3D reconstruction of motion: Reconstructing motion in 3D from an image sequence is an
ill-posed problem because there is one dimension lost while projecting a 3D point onto an image
plane. We apply a temporal constraint on a moving point to solve this problem by representing
the trajectory of the point using a linear combination of basis trajectories. This enables us to
produce a linear least squares system for the trajectory parameters. Our solution is robust against
missing data and measurement noise. For human motion, trajectories on adjacent joints are also
spatially constrained, i.e., the distance between adjacent joint trajectories remains constant across
time instances. We apply temporal and spatial constraints simultaneously on the adjacent joint
trajectories. This enables us to reconstruct an articulated trajectory in 3D from a single first
person camera. We also characterize the fundamental limitation of trajectory reconstruction via
geometric analysis.

3D reconstruction of social saliency: We reconstruct social saliency in 3D by estimating
where people look from first person cameras. A gaze concurrence is a 3D point where multiple
people’s gaze directions converge. It is a socially salient point because the attention of multiple
people is directly linked to that point. Although an individual’s gaze indicates what he or she
is subjectively interested in, a gaze concurrence encodes the consensus of multiple individuals;
the agreement of multiple subjective interpretations produces a representation of social saliency
that approaches objectivity. We model the gaze with a cone-shaped distribution emitted from
the center of eyes. This model captures the variation of eye-in-head motion. We calibrate the
gaze model with respect to the first person camera. The resulting gaze model produces a social
saliency field in 3D and we seek the modes of the field using a mode-seeking algorithm. The
number and 3D locations of the gaze concurrences in the social saliency field are automatically
estimated.

3D reconstruction of socially salient motion (proposed work): Through 3D reconstruc-
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tion of motion and socially saliency, we will show how the challenges regarding social scene
understanding can be resolved. As proposed work, we will study the relationship between social
motion and social saliency. Estimation of social motion in conjunction with gaze concurrences
will allow us to localize what is socially significant in the scene and predict how it will move. We
will reconstruct human motion in 3D and infer the motion that triggers group responses based on
social saliency.

Throughout this thesis, we aim to understand a social scene by 3D reconstruction from so-
cially immersed first person cameras. Our overarching goal is to develop algorithms that will
enable an artificial agent to organically collaborate with us in our social spaces without continual
prompting.
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Chapter 1

Introduction

(a) Wedding reception (b) Structural scene understanding (c) Social scene understanding

Figure 1.1: (a) In a social scene, such as a wedding reception, people interact with others via
visible social signals such as eye contact, gaze direction, and body motion. (b) Structural scene
understanding algorithms interpret the structural context that characterizes geometric relation-
ships in a scene, e.g., object recognition, structure from motion, and human affordance identi-
fication. (c) In a social scene occupied by many people, the definition of scene understanding
must be expanded to include social context such as human interaction, interest, and motion. In
this thesis, we aim to understand a social scene from first person cameras.

Suppose you are a waiter/waitress at a wedding reception, as shown in Figure[I.1(a)] How would
you interpret the scene? You see people socializing with others and participating in events such
as the wedding toast, dancing, and cake cutting. In the process of interpreting the scene, you
recognize where the main event happens and that you should not disturb what people want to
see; you should not disturb them when they dance; when people form groups to socialize, you
should avoid breaking into the group. You are trained to understand what people want to do via
their visible social signals, such as eye contact, gaze direction, or body motion. Based on this
understanding, you operate in accordance with social context, e.g., what people are cognitively
attending to, what they are trying to accomplish, and whom they are interacting with. Consider
how different your interpretation of the scene would be if you were the father of the bride, a
jilted lover, or the wedding photographer. Given these many interpretations of the same scene,
how should we represent social activity in a unified way so that artificial agents find it acces-
sible? Could we produce such a unified interpretation of the scene if we had access to all the
participants’ views?



We define a social scene as a scene occupied by many people and where human interactions
frequently take place, such as a wedding reception, a conference poster session, or a sporting
event. These social scenes are very common in our daily life and, increasingly, artificial agents
are entering these social spaces. Vacuum cleaning robots, for example, navigate rooms where
humans reside and surgical robots help surgeons assisted by a medical staff. As they become
integrated in our lives, we expect them to play a role no longer as tools that require prompting
but as team members that organically interact with humans and accomplish tasks, seamlessly
and safely. For artificial agents to be able to coexist with humans in a social scene, they need to
understand social context and their tasks and strategies must be designed to respect social context
based on this understanding.

Robotics and computer vision research has focused on understanding the structural context
that characterizes the geometric relationship of a scene such as SLAM (Simultaneous Localiza-
tion And Mapping) [102], object recognition [35], and image segmentation [10]. These enable
the artificial agents to understand where a building is, how to navigate a room, or what an object
is useful for, as shown in Figure As a result, structural context about a scene is relatively
well understood while the ability to understand social context (Figure is still limited. In
this thesis, we aim to understand/represent social context that arises in a social scene.

Social context in a scene is often time-variant and it emerges in the form of the motion of
the scene. Individual motions, such as facial expressions, gestures, and gaze movements are
primary social signals that spontaneously arise during social interaction. These motions reflect
the sender’s emotion, intention, and attention [120]. At the wedding reception, for instance, the
groom’s friend may raise his champagne glass to propose a toast to the bride and groom. This
motion conveys his intention about the wedding scene. The group’s motion is inextricably inter-
woven by all such individual motions. Each individual motion may affect the motion of others
and vice versa. For example, while you are talking to a group of people, you may instantly move
your gaze to the particular person who just joined the group. Your gaze movement may trigger the
gaze movements of the people who were paying attention to you, i.e., joint attention [75]]. They
may instantly focus on that person as well. Within this complex interaction between individuals,
the group motion follows where their agreement is reached, e.g., what people are commonly in-
terested in. The group motion reflects social agreement. Thus, individual and group motions are
highly correlated with social context and motion estimation is a key component in understanding
social context. We analyze individual and group motions evolving in a social scene from first
person cameras.

Our overarching goal is to develop representations of social scenes to answer the following
question: “what does it mean to understand a social scene?” As the first step to understand a
social scene, we present a computational foundation of motion estimation associated with the
social context from first person cameras (socially immersed cameras). This social understanding
will address classic artificial intelligence and robotic task questions: how to navigate a social
scene, how to anticipate group behavior, and how to communicate with people.
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(a) Close up view (b) Directionality (c) Depth dependent uncertainty

Figure 1.2: A camera inherently has two properties for measurement: directionality and depth
dependent uncertainty. Given objects in (a), if the camera orientation is off, (b) some objects
may become invisible. If the camera is placed far away from the objects, (c) the uncertainty of
measurement is high. The number of pixels corresponding to the objects is small.

1.1 Why First Person Cameras?

A camera, in particular a first person camera, is an ideal sensor for social imaging. It provides
rich information about a scene: it captures scene geometry, illumination, and texture, which no
other single sensor can produce. It has been widely used to understand scene structure via 3D re-
construction [[103], object recognition [35]], and human affordance identification [45]]. Consumer
trends keep pushing down the cost of the cameras while camera performance progressively im-
proves: small size, high resolution, low power consumption, and long duration of capture. Tech-
nical and economical improvements of the cameras have led to the wide proliferation of the
cameras to the extent that most people carry at least one camera (such as a cell-phone camera) at
all times.

Vision sensors have two properties: directionality and depth dependent uncertainty, as shown
in Figure [I.2] The field of view is determined by camera position and orientation. To observe
an object clearly, the camera must face the object. Uncertainty of the measurement from the
camera is proportional to the depth of the object, i.e., distance between the object and the camera
optical center. Objects near the camera appear larger and the number of pixels corresponding
to the object is high. Details on the object can be clearly observed and measurements can be
highly accurate. These two properties of vision sensors show that camera placement (position
and orientation) is extremely important in measuring the scene. If we want to measure a specific
object in the scene accurately, the camera must face the object and be placed as close as possible.

A social scene contains a few socially salient structures (what people are commonly inter-
ested in) that govern social context. In choosing the placement of cameras for social scene
understanding, we need to consider two properties of social scenes. Socially salient structures
are (1) sparsely distributed over the social scene, and (2) time-varying. Suppose people form
several cliques in a party. People may focus on a particular person in each clique because he
or she is famous or speaks loudly. While the space of the party may be large, most space is not
occupied by these socially salient people. These socially salient structures also change over time.
Some cliques are dissolved and some cliques are reformed in different places. These sparse and
dynamic properties of the social salient structures are often observed in many scenes.
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(a) Third person cameras (b) First person cameras

Figure 1.3: (a) Third person cameras sample a social scene from static points of view. This
camera placement often cannot properly observe socially salient structures. (b) First person
cameras sample the scene intelligently.

As one option for camera placement, third person cameras (outside cameras looking into a
scene such as surveillance cameras) capture specific parts of a scene constantly, as shown in
Figure The vantage point is usually stationary unless there is human intervention. This
does not reflect the properties of social scenes and vision sensors. To capture sparsely distributed
socially salient structures, the third person cameras must be placed densely to cover the social
space and to observe the structures as closely as possible. In many views from densely placed
cameras, the structures may be invisible or imaged very small, which are useless measurements.
More importantly, third person cameras are statically placed while scenes are usually dynamic.
This limits the operating space. As shown in Figure as it is usually impossible to predict
social motion, third person cameras “sample” the scene from random static points of views.

A first person camera is a wearable camera looking out a scene from the first person perspec-
tive. It captures what the wearer sees. In contrast to third person cameras, first person cameras
are ideally placed to image a social scene because their placement fully respects the properties
of social scenes and vision sensors. First person cameras can naturally secure the best view. Hu-
mans intelligently find sources of interest and actively move themselves to see it from the best
view point. This orients the camera attached to people directly to the source of social saliency.
First person cameras can also minimize depth dependent uncertainty. Recognizing what happens
in a clique is a hard task even for humans from outside of the cliques. First person cameras
can observe the scene from a person who is actually involved in the interaction. Since people
who interact with each other are likely located close by, the distance between the source of at-
tention and the camera is minimized. These enable the first person cameras to capture moving
and sparsely distributed socially salient structures with high accuracy and not suffer from limi-
tations of the operating space. As shown in Figure [I.3(b)} first person cameras sample the social
scene intelligently, focusing on socially salient structures that are sparsely distributed and possi-
bly moving from the best view. We leverage these advantages to estimate motion associated with
social context.



1.2 Challenges

Classic scene understanding finds structural relationships in a scene. Many computer vision algo-
rithms have addressed these tasks by applying geometric constraints on images. Unlike structural
scene understanding, social scene understanding involves time-varying structure and subjective
measurement. These two properties of social scenes make estimation of motion associated with
social context difficult.

Time-varying structure: For static structures, measurements are timeless; what we measure
now is consistent with what we measured in the past and what we will measure in the future.
However, for time-varying structure, measurements vary across the time. There is only one
opportunity to measure the structure at each time instant and there is no way to re-measure
it because the structure changes across the time. Understanding the motion of time-varying
structure is a challenging task because the structure must be fully captured by cameras at each
time instant at once.

Subjective measurement: Different people have different interpretations of the same so-
cial scene. The interpretation is biased by their generation, culture, preference, profession, and
background. Thus, what we measure from a person in the scene is subjective to the person. For
instance, when you socialize with people at a wedding reception, you may join a clique because
they may be your relatives or friends, they may share similar interests, or they may speak the
same language. Even in the same clique, what people cognitively attend to is different from
others. You may look at a person next to you because you think that he is interesting. A person
on the other side may look at you because they find you attractive. Since each measurement is
subjective, any result obtained from each measurement in isolation is subjective and cannot be
directly used for an objective understanding of the social scene.

1.3 Our Approach

This thesis presents a method to estimate motion associated with social context (socially salient
motion) from first person cameras. As addressed in Section |1.2} social scenes contain time-
varying structure and its measurements are subjective. In Part [I, we present a method to re-
construct time-varying structure in 3D from a series of 2D projections. We apply temporal and
spatial constraints on the structure to estimate its motion. In Part [[I, we study how to derive
an objective measurement from multiple subjective measurements. Even though a single social
measurement is subjective, an interpretation approaches objectivity if many subjective measure-
ments agree, statistically. We present an algorithm to reconstruct social saliency in 3D from
these subjective measurements. As proposed work, we will integrate these studies of motion and
social saliency to reconstruct socially salient motion in 3D in Part We will infer the causal
relationships between social motion and social saliency and identify the motion that drives group
behaviors. This reconstruction will provide the first step towards computationally understanding
a social scene.



1.3.1 Part[I: 3D Reconstruction of Motion

In Chapter (3| we present an algorithm to reconstruct a 3D trajectory of a moving point from its
correspondence in a collection of 2D perspective images, given the 3D spatial pose and time of
capture of the cameras that produced each image. Triangulation-based solutions do not apply,
as multiple views of the point may not exist at each instant in time. A geometric analysis of the
problem is presented and the problem is studied based on observability theory. For an observable
system, a criterion, called reconstructibility, is defined to characterize the cases when reconstruc-
tion is accurate. The trajectory parameters are solved using linear least squares, and the estimate
is refined by nonlinearly minimizing the reprojection error. A cross validation scheme is used to
automatically select the number of basis vectors trajectories. This method can cope with missing
data and uses a perspective camera model.

In Chapter { we present a method to reconstruct 3D trajectories specialized for human mo-
tion. An articulated trajectory is defined as a trajectory that remains at a fixed distance with
respect to a parent trajectory. Spatial and temporal constraints are simultaneously applied in the
form of a fixed 3D distance to the parent trajectory and smooth 3D motion. There exist two
solutions that satisfy each instantaneous 2D projection and articulation constraint (a ray inter-
sects a sphere at up to two locations) and we show that resolving this ambiguity by enforcing
smoothness is equivalent to solving a binary quadratic programming problem.

1.3.2 Part[II: 3D Reconstruction of Social Saliency

In Part [T, we explore how to derive objective measurements about social saliency through the
agreement of multiple subjective measurements. Although each social signal (head movement)
is subjective to each person, the statistical agreement from multiple signals can produce objective
measurements.

In Chapter [5| we present a method to estimate multiple gaze concurrences (socially salient
points) in 3D from first person cameras based on a space-centric representation. First person
cameras can capture what people look at and how they move. A gaze concurrence is a point in
3D where the gaze directions of multiple people intersect. It is a socially significant location
because the attention of a clique is directly linked to that point. A 3D gaze ray is reconstructed
by exploiting the fixed relationship between the primary gaze ray and the head-mounted cam-
era pose, which is estimated via structure from motion. The variation of the eye orientation is
modeled by a Gaussian distribution and the resulting gaze model produces a social saliency field
in 3D. The number and 3D locations of the gaze concurrences via mode-seeking in the social
saliency field are automatically estimated.

1.3.3 Part [II: 3D Reconstruction of Socially Salient Motion (Proposed
Work)

In Part we propose to reconstruct socially salient motion in 3D from first person cameras.
Socially salient motion is motion emerging from social interactions, which often triggers group
behavior. In Chapter [6] we propose a method to infer the relationship between social motion
and social saliency and identify the socially salient motion. We will utilize 3D reconstruction
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of motion in Part |I| and social saliency in Part [l to reveal these relationships. We will find
3D human motion from 3D reconstructed trajectories by exploiting an articulation constraint of
human body. Spatio-temporal representations of motion and saliency will be proposed and causal
relationship between these representations will be estimated. This relationship will enable us to
identify socially salient motion in 3D and predict how a group of people behave.






Chapter 2
Related Work

In this chapter, we review literature related to social scene understanding. A social scene involves
two challenges as discussed in Section time-varying structure and subjective measurement.
This thesis proposes novel representations of social scenes for resolving these two challenges.

In particular, 3D reconstruction of scene geometry, called structure from motion discussed in
Section [2.1] provides a computational basis to approach 3D reconstruction of motion associated
with social context. In Section we review a number of papers related to the first challenge;
what is the fundamental ambiguity regarding time-varying structure and how it can be recon-
structed in 3D. In Section we explore how previous work was tackled the second challenge
and how it is applied in a real world scenario.

2.1 Structural Scene Understanding: Structure from Motion

For a pinhole camera, a 3D point is perspectively projected onto a camera plane, which forms a
2D point as shown in Figure|2.1(a)l The projection can be written as,

[3]-+[%]

where ) is a scalar, X € R3 is a 3D point, x € R? is the corresponding 2D point measured
in an image, and P € R3** is a camera projection matrix. The camera projection matrix can
be parameterized by P = KR [ I;-C } where I3 is a 3 by 3 identity matrix, R € SO(3) is
a camera rotation matrix, and C is a 3D camera position vector. R and C are called camera
extrinsic parameters. K is a matrix of camera intrinsic parameters written as,

fr 0 D
K=|0 f p |, 2.2)
0 0 1

where f, and f, are the focal lengths of the camera, and p, and p,, are the image origin location.
As shown in Equation (2.1]), a 2D image measurement is formed by bilinear relationship between
the 3D point and camera matrix. Also by projection, it loses 1 dimensional information, i.e.,
3D—2D, which appears in the form of the unknown scalar A. There are an infinite number of 3D
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Baseline

P

R? =3 R’ R?xR? = R?

(a) Single image (b) Static point (point in R?) (c) Moving point (trajectory in R?)

Figure 2.1: (a) Given x, estimating X from a single image is fundamentally ambiguous because
there are infinite number of solutions that satisfy the image measurement, x. Any 3D point on
the line between X and x can be a solution. (b) From two views, the 3D point can be triangulated
without ambiguity. (c) From a series of images (projections), a point trajectory, R? x - -- x R3,
in R? also imaged to a series of points R?. Trajectory reconstruction is impossible without any
constraint on the trajectory because any trajectory (dotted trajectories) passing through optical
rays can be a solution. This is analogous to the fact that a static point reconstruction from single
image is impossible without prior scene assumption.

points that satisfy the image measurement, x. Any 3D point on the line between x and X can be a
solution as shown in Figure Therefore, given a single 2D image measurement, estimating
the 3D point is impossible without prior assumptions about the scene. Structure from motion
is to estimate 3D points and relative camera poses by exploiting multiple 2D images as shown
in Figure [2.1(b) It enables us to reconstruct a 3D static scene and to understand the geometric
relationship of the scene.

When correspondences are provided across 2D images in static scenes, the method proposed
by Longuet-Higgins [66] estimated the relative camera poses and triangulates the point in 3D
using epipolar geometry. He introduced the essential matrix, E € R3*3, that constrains point
correspondences between the images such that,

[ x] 1]Eh?}:o, (2.3)

where x; and x5 are image measurements from image 1 and image 2, respectively, i.e., X; in
image 1 corresponds to x» in image 2. This constraint holds for only 3D static points. Interest-
ingly, the essential matrix encodes the 3D relative transform between two images and therefore,
3D camera pose can be extracted from the essential matrix. Once the camera pose is estimated,
the 3D points can be triangulated as shown in Figure 2.1(b)|

Tomasi and Kanade [109] addressed this problem in a different way. They decomposed
bilinearly fused 2D measurement into camera pose and 3D point using a matrix factorization
method based on orthographic projection. They concatenated all 2D measurements and factorize
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to motion matrix and shape matrix as follows:

X1 o Xyp R,
= o [Xy - Xp ], oor
Xp1 - XFP Rr
W = MS, 2.4)

where W € R*™7 is an image measurement matrix, M € R?¥*3 is a matrix composed of all
camera rotation matrices, and S € R3*” is a shape matrix that contains all 3D points. P and F
are the number of points and images, respectively. Only W is known. The rank of W is 3 and
this rank constraint allows W to be factorized by M and S using singular value decomposition.
After these two seminal papers, structure from motion has been systematically developed.
Triggs et al. [[114] presented a bundle adjustment algorithm that simultaneously optimizes cam-
era poses and 3D points, robustly and accurately. Also the SIFT feature descriptor proposed by
Lowe [68] enables us to fully automate image matching. These two groundbreaking improve-
ments in structure from motion allow us to apply large scale 3D reconstruction [2, [100, [103]].
Geometric analysis regarding structure from motion is well summarized in [33} 150} 69].

2.2 3D Reconstruction of Time-Varying Structure

While a static point can be estimated by triangulation [66] as shown in Figure in the case
where the point may move between the capture of both images the triangulation method becomes
inapplicable: the line segments mapped out by the baseline and the rays from each camera center
to the point no longer form a closed triangle (Figure 2.1(c)). This problem is equivalent to the
3D point reconstruction from a single image as shown in Figure Without prior assump-
tion, reconstruction is impossible; there are infinite number of solutions. To disambiguate the
solution, explicit constraints are necessary and 3D reconstruction of motion has been studied by
applying various constraints. Constraints for a moving or deformable object can be classified
by three domains: shape regularity, temporal regularity, and articulation regularity. Shape reg-
ularity approaches assume that nonrigid structure undergoes small regular deformations such as
facial expression. Temporal regularity approach assumes that a point moves along a mathemati-
cally describable trajectory. Articulation regularity is applicable to point motion on rigid bodies
articulated by connecting joints such as human body motion.

2.2.1 Shape Regularity

Computer vision, graphics and computer aided design research has facilitated shape regularity
to model/estimate a 3D structure [21} 27,159,160, 90, 108, (111, [113]]. Many shapes, such as face
and cloth, do not deform randomly in reality. They follow physics law of deformation; each
point on the surface of an object is connected with adjacent points and the shape changes while
minimizing deformation energy. We will study various types of shape constraints in this section.

The seminal work of Bregler et al. [21] introduced linear shape models as a representation
for nonrigid 3D structures, and demonstrated their applicability within the factorization-based
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reconstruction paradigm of Tomasi and Kanade [109]. From linear shape basis, various methods
to refine the factorization have been proposed. Torresani et al. [111}113] introduced a method of
trilinear optimization (camera motion, basis, coefficients) in an alternating fashion, Brand [19]]
integrated the optimization with a sophisticated initialization by enforcing the rank constraint
on motion and by allowing minimal deformation of the shape. Later on, Paladini et al. [83]
proposed a robust metric upgrade method which iterates solving unconstrained least squares for
the bilinear system (camera motion and shapes) and projecting the solution onto metric motion
manifold.

Extracting a linear shape basis from the measurement matrix suffers from instability of esti-
mation [4, 20, 130, [131]. To address such problems, subsequent work has proposed numerous
constraints and techniques to specify shape priors. Xiao et al. [130, |131]] added a shape basis
constraint which maximizes the basis independence for disambiguation under weak-perspective
projection leading to a closed-form solution. Brand [20] pointed out the fragility of the closed-
form solution in the presence of noise in the measurement matrix. Later on, Akhter et al. [4]]
discovered that the rank constraint and the orthonormality constraint on the camera motion ma-
trix are sufficient to reconstruct structure up to a rotation. Meanwhile, a number of papers con-
strained the shape basis based on priors. Torresani et al. [[112] introduced an algorithm to learn
shape assuming that a Gaussian distribution of learned shape can represent the deformation of the
structure. Torresani and Bregler [[110]] and Olsen and Bartoli [82] proposed a temporal smooth-
ness prior on the shape basis and camera parameters (spatio-temporal constraint). Del Bue et
al. [29] proposed a prior based on the rigidity of the majority of points, Del Bue [28] proposed
a pre-computed prior which produces reliable reconstruction where there is degeneracy of mo-
tion, and Bartoli et al. [15] introduced a way to build the shape basis in a coarse-to-fine manner
by iteratively decreasing reprojection error. Recently, Taylor et al. [[107] proposed locally rigid
structure from motion by allowing minimal deformation of triangles formed by three adjacent
points in 3D, and Fayad et al. [34] introduced piecewise reconstruction by dividing the surface
into overlapping patches. The strong assumption of known correspondences was relaxed using a
weak prior of structure modeled as a Gaussian mixture model [97] and by solving a mixed inte-
ger quadratic problem using the Branch and Bound method [98]]. A detailed survey by Salzmann
and Fua [96] summarizes subsequent work on nonrigid structure from motion.

2.2.2 Temporal Regularity

The principal work in ‘triangulating” moving points from a series of images is by Avidan and
Shashua [11]], who coined the term trajectory-triangulation. They demonstrated two cases where
a moving point can be reconstructed: (1) if the point moves along a line, or (2) if the point moves
along a conic section. This inspired a number of approaches of geometrically constrained trajec-
tory recovery. Han and Kanade [47] showed the factorization method of a moving object with
constant velocity by exploiting the fact that the rank of the measurement matrix is six. Shashua
and Wolf [99] and Wexler and Shashua [128] introduced homography tensors to represent a
point moving on the plane. As an integration of the algebraic curve representation, Wolf and
Shashua [[129] classified different manifestations of related problems, analyzing them as projec-
tions from PV to IP2. Kaminski and Teicher [58] extended these ideas to a general trajectory
represented by a family of hypersurfaces in the projective space IP°. Sidenbladh et al. [51]] ap-
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plied a constant velocity model to constrain a smooth motion and Torresani and Bregler [110]]
applied spatial and temporal constraints via a rank constraint.

Similar to the factorization based approach of the shape regularity discussed in Section [2.2.1}
Akhter et al. [3, 6] proposed analyzing each trajectory as a linear combination of basis trajec-
tories. They proposed the use of the Discrete Cosine Transform (DCT) as a basis, and applied
factorization techniques to estimate nonrigid structure. While shape based approaches have to
estimate camera motion, basis, and coefficients simultaneously, Akhter et al. [3, 6] reduce the
complexity of a trilinear problem into a bilinear problem using pre-defined trajectory basis which
can represent an arbitrary trajectory compactly. Reduction of the problem complexity allows
them to estimate the motion and coefficients more robustly.

2.2.3 Articulation Regularity

As humans are of particular interest, several papers consider priors based on the factorization
method: Costeira and Kanade [25] proposed a factorization method for multiple rigid bodies us-
ing 2D trajectories in an image stream. Yan and Pollefeys [[132] used the fact that the articulation
subspace is the intersection of all rigid body subspaces and discussed the physical meaning of
the articulation subspace. Using the articulation constraint, they devised an automatic algorithm
for building a kinematic constraint by clustering moving points [[133].

Human pose estimation from a single image by applying a spatial constraint (skeletal struc-
ture) was proposed by Taylor [[106] (parameterization of limb lengths by a scalar), by Barron and
Kakadiaris [[14]] (joint motion constraint from the anthropometric statistics), by Parameswaran
and Chellappa [[86] (camera pose estimation from head orientation and rigidity of torso), and by
Agarwal and Triggs [l1] (silhouette based regression).

Human motion estimation from an image sequence of a monocular camera has been studied
as an extension of human pose estimation. Two popular approaches have been explored: the data
driven approach and the physics based approach. Data driven approaches learn low dimensional
subspace or latent variables that control underlying human skeletal motion fully using motion
capture data or annotated video data. Sidenbladh er al. [S1] applied a Bayesian framework for
3D human pose tracking using a generative model of the human body and a prior distribution
defined by a temporal dynamics model. Howe et al. [53] showed Baysian learning, Choo and
Fleet [24] sampled high dimensional training space from hybrid Monte Carlo method, and Urta-
sun et al. [115]] used Principle Coordinate Analysis (PCA) for learning of specific motion (e.g.
walking and golfing). Like Taylor’s work [106]], Wei and Chai [125] introduced a geometric
solution of motion reconstruction using the bone symmetric constraint from biomechanical data.
Valmadre and Lucey [116] discussed the validity of Wei and Chai [125]’s work and extended
their algorithm using a structure from motion scheme. Recently, physics based approaches have
received attention. Brubaker et al. [22]] have shown reconstruction of a bipedal locomotion from
a dynamical model and Vondrak et al. [[122] have applied multibody dynamics simulation to infer
the most plausible human motion in 3D. Wei and Chai [126]] have built an interactive system that
integrates a dynamical model to capture motion from a video.
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2.2.4 Relation to Our Work

Most previous nonrigid structure from motion algorithms rely on factorizing the measurement
matrix. The primary limitation of these factorization-based methods is: (1) the assumption of an
orthographic camera, and (2) their inability to handle missing information. Several papers have
relaxed the constraint of orthography, such as Hartley and Vidal [49], Vidal and Abretske [119],
and Zhu et al. [135)]. The work by Torresani et al. [113] can handle missing data using the
rank constraint of the flow matrix. However, all these algorithms remain unstable and have been
demonstrated to work only for constrained deformation of objects like faces.

In Chapter [3) we present a method to reconstruct a moving point from a series of 2D pro-
jections. Unlike previously proposed methods we do not pursue a factorization based solution.
Instead we propose a linear solution to reconstruct a moving point inspired by the Direct Lin-
ear Transform algorithm [S0]. It is able to handle problems like missing data (due to occlusion
and matching failure) and estimation instability. An analysis is presented which geometrically
describes the reconstruction problem as fundamentally restricted by the relation between the
motion of the camera center, the motion of a scene point trajectory, and the trajectory basis.

In Chapter 4, we present a method to reconstruct human motion. Unlike previous methods
based on the articulation regularity, our approach relies purely on a geometric interpretation of
the articulation constraint by parameterizing a trajectory in a way that satisfies both spatial and
temporal constraints simultaneously. It can reconstruct activity independent motion which other
methods cannot.

2.3 3D Reconstruction of Social Saliency

Understanding how we socially interact with each other has been a long-standing focus of the
social sciences. With the growth of computing and computer science, a significant research
thrust has emerged in building computational models for understanding social interactions and
their related dynamics, driven by efforts in psychology and sociology. Nevertheless, measur-
ing social interaction is not a trivial task because it involves many subjective measurements. In
this thesis, we claim that when many subjective measurements agree, the accordant measure-
ment approaches objectivity. This implies that many measurements are required to understand
social interaction from either multiple time instances (long term measurements) or multiple per-
spectives (crowd measurements). For example, by measuring how frequently you interact with
a group, the measure of the bond strength in social networks can be objectively determined.
By measuring how many people look at a person, instantaneous popularity can be objectively
determined.

2.3.1 Long Term Measurement

Even if an instantaneous measurement is subjective, the time accumulated measurement can
approach the objective measurement. Theories of social networks has been grounded on this
measurement. They build a graphical model of social structure statistically from time accumu-
lated social interaction. Pool and Kochen [93]] proposed the small world conjecture that people
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in the world are connected by six degrees of separation and Milgram [73]] conducted experiments
to verify this conjecture and examined the average path length for social networks of people in
the United States. Based on the small world assumption, Watts and Strogatz [124] proposed
a method to construct a social graph, mathematically, which preserves local and global prop-
erties. Newman et al. [80] adopted a random graph to model social networks and presented a
method to solve for the model exactly given the degree distribution. Eubank et al. [31] introduce
a method to infer social dynamics from spatio-temporal information of individuals interactions
and Lauw et al. [62] also propose an algorithm to reconstruct a large-scale social network by
mining spatio-temporal events. Recently, Gilbert and Karahalios [41] studied and predicted the
strength of connections (tie-strength) over a social network. As noted, most of this work has
expanded to much larger scales with the growth of social networking.

2.3.2 Crowd Measurement

When multiple subjective measurements agree, the accordant measurement also approaches ob-
jectivity. In a social scene, humans transmit and respond to many different social signals when
they interact with others. Social signals such as facial expression, gesture, and gaze movement
are measurable signals from vision inputs but the signals are highly subjective. Each person can
transmit different signals given the same scene depending on gender, culture, preference, intelli-
gent, role, and background. However, when many people are commonly interested in something,
each subjective measurement collectively forms objective group measurement, e.g., most people
pay attention to the bride when she marches in a wedding.

Among social signals, gaze direction is one of the most effective visual signals because it
usually indicates what the individual is interested in. In this context, gaze direction estimation
has been widely studied in robotics, human-computer interaction, and computer vision [[12, 30,
40, 144, 152} 165, [76), 178, 181}, 194, 95, 1105, [123]]. Gaze direction can be precisely estimated by the
eye orientation. Wang and Sung [123] presented a system that estimates the direction of the
iris circle from a single image using the geometry of the iris. Guestrin and Eizenman [44] and
Hennessey and Lawrence [52] utilized corneal reflections and the vergence of the eye to infer
the eye geometry and its motion, respectively. A head-mounted eye tracker is often used to
determine the eye orientation [65,105]. Although all these methods can estimate highly accurate
gaze direction, either they can be used only in a laboratory setting or the device occludes the
viewer’s field of view.

While the eyes are the primary source of gaze direction, Emery [30] notes that the head
orientation is a strong indication of the direction of attention. For head orientation estimation,
there are two approaches: outside-in and inside-out [[127]. An outside-in system takes as input a
third-person view image from a particular vantage point and estimates face orientation based on
a face model. Murphy-Chutorian and Trivedi [78]] have summarized this approach. Geometric
modeling of the face has been used to orient the head by Gee and Cipolla [40] and Ballard
and Stockman [[12]]. Rae and Ritter [94]] estimated the head orientation via neural networks and
Robertson and Reid [95] presented a method to estimate face orientation by learning 2D face
features from different views in a low resolution video. With these approaches a large number
of cameras would need to be placed to cover a space large enough to contain all people. Also,
the size of faces in these videos is often small, leading to biased head pose estimation depending
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on the distance from the camera. Instead of the outside-in approach, an inside-out approach
estimates head orientation directly from a head-mounted camera looking out at the environment.
Munn and Pelz [76] and Takemura et al. [[105]] estimated the head-mounted camera motion in 3D
by feature tracking and visual SLAM, respectively. Pirri et al. [91] presented a gaze calibration
procedure based on the eye geometry using 4 head-mounted cameras. Our method leverages this
approach which does not suffer from space limitations and biased estimation.

Gaze in a group setting has been used to identify social interaction or to measure social
behavior. Stiefelhagen [104] and Smith et al. [101] estimated the point of interest in a meeting
scene and a crowd scene, respectively. Bazzani et al. [16] introduced the 3D representation
of the visual field of view, which enabled them to locate the convergence of views. Cristani
et al. [26] adopted the F-formation concept that enumerates all possible spatial and orientation
configurations of people to define the region of interest. Fathi et al. [32] showed how social
interactions are detected and recognized from first person cameras.

2.3.3 Relation to Our Work

While long term measurement requires that the measurement must be consistent across time, a
social salient structure in a social scene is often time-varying. Instead, in a social scene, many
people are simultaneously involved and thus, measurements from multiple perspectives (crowd
measurements) are a viable approach. Therefore, in Chapter[5] we apply crowd measurement to
achieve objectivity. 3D gaze concurrences where multiple gaze directions converge are locations
where multiple people are commonly interested in, i.e., subjectivity approaches objectivity. We
use head orientation to estimate a gaze direction and find intersections of the gaze directions from
many people. This enables us to estimate the socially salient region where people are interested
in and its motion in 3D.
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Part I

3D Reconstruction of Motion
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Chapter 3

3D Reconstruction of a Moving Point from
First Person Cameras

3.1 Introduction

In a social scene, a socially salient structure undergoes significant deformation across time, such
as facial expressions and body motions. This time-varying property of socially salient structures
makes social scene understanding difficult. In this chapter, we resolve this difficulty via 3D
reconstruction of the time-varying structure from first person cameras. We represent each point
motion on the time-varying structure as a trajectory and present an algorithm to reconstruct the
3D trajectory of a moving point from a collection of 2D perspective projections by applying a
temporal constraint.

Without making prior assumptions about scene structure, it is impossible to reconstruct a 3D
scene from a single image. Binocular stereoscopy is a solution used by both biological and arti-
ficial systems to localize the position of a point in 3D via correspondences in two views. Classic
triangulation used in stereo reconstruction is geometrically well-posed as shown in Figure
The rays connecting each image location to its corresponding camera center intersect at the true
3D location of the point — this process is called triangulation as the two rays map out a triangle
with the baseline that connects the two camera centers. The triangulation constraint does not ap-
ply when the point moves between image captures, as shown in Figure[3.1(b)} This case abounds
as most artificial vision systems are monocular and most real scenes contain moving elements.

The 3D reconstruction of a trajectory is directly analogous to monocular image reconstruc-
tion: it is impossible to reconstruct a moving point without making some assumptions about the
way it moves. In this chapter, we represent the 3D trajectory of a moving point as a compact
linear combination of a trajectory basis and demonstrate that, under this model, we can recover
the 3D motion of the point from a series of perspective projections. By posing the problem in
this way we generalize the problem of triangulation, which is a mapping from R? x R? — R? to
3D trajectory reconstruction, as a mapping R? x - -- x R?> — R?X, where 3K is the number of
trajectory basis vectors required to represent the 3D point trajectoryﬂ The resulting optimization
can be solved using linear least squares providing stable and accurate estimates in the presence

IRelated observations have been made in [49] [99].
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Baseline

R*xR? == R°

(a) Static point (point in R?) (b) Moving point (trajectory in R?) (c) Moving point (point in R3¥)

Figure 3.1: (a) A point in R is mapped to IR?. From two views, the 3D point can be triangulated.
(b) From a series of images (projections), a point trajectory, R* x - - - x R3, in R also imaged to
a series of points R?. Trajectory reconstruction is impossible without any constraint on the tra-
jectory because any trajectory (dotted trajectories) passing through optical rays can be a solution.
This is analogous to the fact that a static point reconstruction from single image is impossible
without prior scene assumption. (¢) The compact linear trajectory basis representation allows us
to transform a point trajectory in R? to a point in R3X.

of missing data.

The stability of classic triangulation is known to depend on the baseline between camera
centers [S0]. We characterize the instability encountered when interference occurs between the
trajectory of the point and the trajectory mapped out by successive camera centers. We demon-
strate that 3D trajectory reconstruction is fundamentally limited by the relationship between the
trajectory of the point, the trajectory of successive camera centers, and the trajectory basis. We
characterize the cases when trajectory reconstruction is possible by using observability theory.
For an observable system, a measure called reconstructibility is defined, which describes the ac-
curacy of reconstruction for a particular trajectory basis, given a 3D point trajectory and a 3D
camera center trajectory.

Since different points may undergo different degrees of motion, we present a cross validation
scheme to independently select the number of basis vectors for each trajectory. The reconstruc-
tion algorithm and the cross validation scheme are combined in a practical algorithm for the
reconstruction of multiple 3D trajectories from a collection of non-coincidental images.

3.2 Method

3.2.1 Linear Reconstruction of a 3D Point Trajectory

For a static point in 3D projective space, correspondences across a pair of images enable us
to triangulate as shown in Figure Classic triangulation solves for a 3D point from an
overconstrained system because there are three unknowns (3D coordinate of the point) while the
number of equations is 2F', where F'is the number of images (projections). As was the case with
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static point projection, if 2F' > 3K where 3K is the number of 3D trajectory parameters, solving
for a 3D trajectory becomes an overconstrained problem as shown in Figure Using this
observation, we develop a linear solution for reconstructing a point trajectory given the relative
poses of the cameras and the time instances the images were captured.

h

For a given i*® camera projection matrix, P; € R**4, leta pointin 3D, X; = [ X, Y, Z } ,

be imaged as x; = [ z; ¥ ]T. The index 7 used represents the i*" time sample. This projection
is defined up to scale,

X; Xz X Xz o
e[St o
where -]« is the skew symmetric representation of the cross product [50]. This can be rewritten
as an inhomogeneous equation,

X X
|: 1 :| PZ,13X’L - - |: 1 :| P’i,4 Y
X X

where P; 1.5 and P, 4 are the matrices made of the first three columns and the last column of P;,
respectively, or simply as Q,;X; = q;, where,

Qi = ([ )il :| Pi,l:S) y di = — <|: );Z :| Pi,4> ’
X 1:2 X 1:2

and (-),., is the matrix made of two rows from (-). By taking into account all time instances, a
closed form for the 3D point trajectory, X, can be formulated as,
Q X1 q:
' =] ¢ o QX =q, (3.2)
Qr XF qr

where F is the number of time samples in the trajectory. Since Equation (3.2)) is an undercon-
strained system (i.e., Q € R?3%), there are an infinite number of solutions for a given set of
measurements (2D projections). There are many ways to constrain the solution space in which X
lies. One way is approximating the point trajectory using a linear combination of any trajectory
basis that can describe it as,

T

XZ[XI X}] %@161+...+@3K53K=®ﬁ, (33)
where ©; € R3"" is a trajectory basis vector, ® = [ ©1 ... Ogzx | € R¥*3K is the trajec-
tory basis matrix, 3 = [ b1 ... PBsk }T € R3X are the parameters or coefficients of a point

trajectory, and K is the number of bases per coordinate.

If the trajectory basis are known a priori 3], as is the case with the DCT basis, this linear
map between the point trajectory and basis enables us to formulate a linear solution. By plugging
Equation (3.3) into Equation (3.2), we can derive an overconstrained system by choosing K such
that 2F > 3K,

QOB = q (3.4)
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Equation (3.4) is a linear least squares system for reconstructing a point trajectory, 3, which
provides an efficient, numerically stable, and globally optimal solution. 3 is the coefficient of
the trajectory based on measurements and known camera poses embedded in QQ and q and known
trajectory basis, ©.

If there are missing data by self-occlusion or measurement noise, corresponding rows of Q
and q may be dropped in Equation . As long as resulting Q® matrix satisfies the least
squares criterion, i.e., 2F' > 3K where F' is the remaining number of measurements, the estima-
tion of 3 is robust. This allows us to handle the problem of missing data.

3.2.2 Selection of The Number of Basis Vectors

Our approach uses a truncated DCT basis which requires the selection of the number of basis
vectors, K. In [87], the number of basis vectors was manually tuned and all trajectories were
reconstructed with the same number of basis. The number of basis vectors controls the com-
plexity of the trajectory motion: for example, in the dance scene shown in Figure [3.9] if a point
motion is complex (like the motion of a hand), it requires higher K; if a point motion is simpler
(like a point on the torso) it requires lower K. If the number of basis vectors is too high, the
algorithm overfits the trajectory in presence of measurement noise, and conversely, if it is too
low, the reconstructed trajectory cannot describe the original point motion. In this section we
present an approach to automatically select K; for the ' trajectory rather than manually setting
a global value of K.

To select the number of basis vectors automatically and individually, we use an N-fold cross
validation scheme to check the consistenc of the reconstructed trajectory. The 2D trajectory
is divided into N sets such that each set contains F'//N samples which are uniformly distributed
in time across the 2D trajectory. When the j*™ set is considered, the reprojection error, e;, is
evaluated from a 3D trajectory reconstructed from the rest of the NV — 1 sets for a given K;. This
is iterated until all V sets are tested. When K is too high, the trajectory overfits to measurement
noise, which results in high reprojection error. When K is too low, the reprojection error is also
high because of limited expressiveness of the basis. We choose the number of basis vectors for
the ' trajectory, which minimizes reprojection error, i.e.,

N
K = argmin Zej(K,-), K;,=1,2,---,|2F/3], (3.5)

K D
where |- | is the floor operator (the largest integer not greater than -). Figure illustrates an
example of reprojection error as the number of basis vectors increases. When K; = 12, the most
consistent trajectory through all image measurements (minimum reprojection error) is achieved.

3.2.3 Trajectory Refinement

Trajectory reconstruction from Equation (3.4) minimizes the algebraic error [50]. However, the
solution, 3, is not necessarily the maximum likelihood solution under Gaussian measurement

2Since we do not have labeled training trajectories in real scene, we look for the value of K; which is the most
consistent through all measurements.

22



noise. We refine the linearly reconstructed trajectory by minimizing the reprojection error, i.e.,

F 2 2
. Plx P2x ()3
mﬁln ;:1 (P?X — xl) + (P?X — yl> , where X = [ 1 ] , 3.6)

t; is the time instance when P; is taken, ©(t;) is the trajectory basis evaluated at ¢;, and P is the
7™ row of the matrix P.

3.3 Geometric Analysis of 3D Trajectory Reconstruction

Empirically, the point trajectory reconstruction approaches the ground truth point trajectory when
the camera motion is fast or random. Conversely, if the camera moves slowly or smoothly, the
solution tends to deviate from the ground truth. In this section, we analyze stability of trajectory
reconstruction from Equation (3.4) by considering the geometric relation between the trajectory
basis, and point and camera trajectories. We link trajectory basis representation to linear dy-
namical models and categorize a solution as either observable or unobservable. Also within
an observable system, we define a measure of reconstruction accuracy, reconstructibility, which
enables us to precisely characterize when accurate reconstruction of a 3D trajectory is possible.

3.3.1 Geometry of Trajectory Basis, Point, and Camera Trajectories

Let X and X be a ground truth trajectory and an estimated point trajectory respectively. The
camera matrix can, without loss of generality, be normalized by intrinsic and rotation matrices,
K and R, respectively, (as all camera matrices are known), i.e., RiTKi_lPi = [ I3 ‘ —-C; }
where P; = K;R; [ I ‘ —-C; ], C,; is the camera center, and I3 is a 3 x 3 identity matrix. This
follows from the fact that triangulation and 3D trajectory reconstruction are both geometrically
unaffected by the rotation of the camera about its center. All P; subsequently used in this analysis
are normalized camera matrices, i.e., P, = [ 15 ‘ -C; } Then, a measurement is a projection
of X, onto the image plane from Equation (3.1I). Since Equation is defined up to scale, the
measurement, X;, can be replacecﬂ as follows,

)] 7]

Plugging in P; = [ 13 ‘ -G, ] results in, (X; — C;],, ()A(Z — CZ-> = 0, or equivalently,

A~

X

To satisfy Equation || }/iz has to lie in the space spanned by X; and C;, or }22 =y X;+a.C,;.
It can be easily verified that a; = 1 — a; by substituting in Equation (3.8)). Thus, the solution of

Equation (3.8) is,

3We assume that there is no measurement noise.
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1=AX+(1-A)C

R3F
col(®")
X : Point trajectory col(-) : Column space
C : Camera trajectory @ : Trajectory basis
B : Coefficients ®*: Null space of trajectory basis
[§ : Estimated coefficient

Figure 3.2: Geometric illustration of the least squares solution of Equation (3.4). The estimated
trajectory ©73 is placed on the intersection between [ containing the camera trajectory space and
the point trajectory, and the p space spanned by the column space of the trajectory basis matrix,
col(®).

where a; is an arbitrary scalar. Geometrically, Equation (3.9) is a constraint for the perspective
camera model that enforces the solution to lie on the ray joining the camera center and the point
in 3D. By generalizing the i*" point to a point trajectory, Equation (3.9) becomes,

X = AX + (I- A)C, (3.10)

where A = D ®AI From Equation (3.3)), Equation can be rewritten as @[Ai ~ AX +
(I — A)C where 3 is the estimated parameter.

Figure [3.2] illustrates the geometry of the solution of Equation (3.4). Let the subspace, p,
be the space spanned by the column space of the trajectory basis matrix, col(®). The solution
@B, has to simultaneously lie on the hyperplane [, which contains the camera trajectory and the
point trajectory, and must lie in col(®). Thus, © is the intersection of the hyperplane [ and the
subspace p. In the figure, note that the line and the plane are a conceptual 3D vector space repre-

sentation for the 3F'-dimensional space. The camera center trajectory, C = [ c! ... CL ]T,
and the point trajectory, X, are projected onto col(®) as © 3 and © By, respectively. From this
point of view, we want ® 3 to be as close as possible to © 3.

3.3.2 Relationship Between Trajectory Reconstruction and Linear Dynam-
ical Systems

If the dynamics governing a 3D point motion is linear, the trajectory of the point can be modeled
by a linear dynamical system. In this section, we briefly review the theory of linear dynamical
systems and link it to trajectory reconstruction, with the goal of extending observability theory
in linear dynamical systems to the trajectory basis representation.

4® is the Kronecker product and D is a diagonal matrix which consists of {ay,--- ,ar}.
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If a 3D point moves according to a discrete linear dynamical model under the first order
Markov assumption,

X = CXi (3.12)

where X; € R? and x; € R? are the state which is a 3D point and the measurement at i** time
instant, respectively, and A € R?**3 and C; € R**? are a linear dynamical model matrix and
affine camera matrixE], respectively, if there is no control input. We begin with an affine camera
model and will generalize to a perspective camera model. By stacking all measurement, it results
in following linear system:

Ci I;
X1 CA Gy A
=] GAY | X, = - A X (3.13)
Xp : Cr :
CpAF-1 AF-1
By inverting [ (G AT ... (CpATHT }T, the initial state, X;, can be estimated given

measurements when it is invertible.
When the systems follow the K'th order Markov assumption, Equation (3.11)) can be written
as follows:

Xit1 O3x3 I3 X
: B : Xit1
XivK-1 I3 :
Xitk A Ay .. Ag XivK-1

= AX(@3(-1)+1):3(i+K-1)
= A X(3i-2)11)3(i+K-2)
= A’ Xk, (3.14)

where X;.; is a truncated vector from ith element to ;" element of X. Then,
Xtk = [ O3x3x-1) I3 } A’ X3 = TA" X5 (3.15)

From this relation, Equation (3.13)) can be written as,

I
X1 C1 :Z?X X1
. = . : == FAXlng, (316)
XF Cr IAF_K Xk

3Since there is camera motion, the measurement mapping, C;, changes over time but as long as C; is known, the
linear dynamical systems still holds.
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where X.55 and A can be considered as a trajectory parameter and the trajectory basis, respec-
tively, because

X =AX3k. (3.17)

For a perspective camera model, we can replace x; and C; with q; and Q; in Equation (3.2)). Then,
Equation (3.16)) is equivalent to Equation (3.4). This equivalent relationship between trajectory
reconstruction from Equation (3.4) and linear dynamical systems implies that a point motion
modeled by any linear dynamical system can be represented by the trajectory basis. It should
be noted that the inverse is not necessarily true: trajectory basis representation cannot always be
realized as linear dynamical systems.

3.3.3 Observability and Reconstructibility

In the theory of linear dynamical systems, a system is observable if and only if there exists a

finite time such that the initial state can be determined from the observation history (measure-

ment) given the control input [57]. Mathematically, I' A in Equation (3.16) is the observability

matrix of the linear dynamical system under the K'th order Markov assumption. For trajectory

reconstruction from Equation (3.4) which can be represented by linear dynamical system, the

corresponding observability matrix is Q®. We generalize the observability concept to 3D tra-

jectory reconstruction using general trajectory basis. We overload the terminology, “observable

system”, to describe the degeneracy of a solution of Equation (3.4)).

Definition 1. A system is observable if rank(Q®) = 3K (i.e., full column rank).
Unobservable system: When the system is unobservable, there is a space of solutions where

trajectory estimation is ambiguous. We characterize such an unobservable system by the follow-

ing theorem.

Theorem 1. Equation (3.4) is unobservable if

i) for given X, C, and ©, X, C € col(©).

ii) for given X and C, X = cC + 1 ® d where c is a nonzero scalar, 1 is a F' dimensional vector

whose entries are all ones, and d € R? is an arbitrary vector.

Proof. NI X, C € col(®), X = ©Fx and C = OF. Then,

[ [@1(8x — Be)l. ®,
null(Q®) = null . :

[®r(Bx — Bc)l, P

[@1(Bx — Be)l. @

= nqull

= Bx — B¢ (3.18)

®r(Bx — Bo)l, Br

where ® = [ & .- &[ }T. Since there exists a null space of QO, rank(Q®) < 3K.
ii) Let us consider two cases where ¢ # 1 and ¢ = 1.
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Figure 3.3: (a) Trajectory reconstruction is ambiguous when C,X € col(®) because there
exists null(Q®), which is an unobservable system. Reconstructed trajectories that satisfy
Equation are illustrated. (b) Reconstructed trajectories that satisfy Equation (3.4) when
C,X € col(®) and X = ¢cC + 1 ® d are shown.

When ¢ # 1, by plugging X = ¢C + 1 ® d into the Equation (3.8), it becomes,

(c—1C;i+d],X; = [cC;+d], C;
= [d], C,. (3.19)
From Equation , X; = aC;+ (1—a)d/(1—c) where « is a scalar. When C € col(®), it is
the case where the first condition ¢) holds, where the system is unobservable. When C ¢ col(©),
a = 0 because any component of C that cannot be expressed by the trajectory basis results in the
residual error of Equation (3.3). Only 1 ® d/(1 — ¢) nullifies the residual error of Equation
but it is still a trivial solution (i.e., a reconstructed trajectory, X=1®d /(1 — ¢), is simply a
stationary point even though the point undergoes motion.).

When ¢ = 1, d/(1 — ¢) term in X; = aC; + (1 — a)d/(1 — ¢) goes to infinity. It is
the case where the camera moves exactly the same way the point moves with some offset and
rank(Q®) = 2K because from Equation and X =C+1®d,

[ [d], @,
rank(Q®) = rank :
I [d],, P
[0 —dsb,  dyf, dsfy 0 —dyib,
= rank : : : + rank : : : = 2K,
0 —dsfr dyfp dsfr 0 —di0F

whered = [ dy do ds }T and ®; = blkdiag{6;,6;,0;} where the trajectory basis for each
coordinate (7, y, and z) is the same. Since the rank of the system is 2/, the system is unobserv-
able. 0
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Figure 3.4: (a) When X = ¢C + 1 ® d where ¢ # 1, the solution of the system is always
1®d/(1 — c), which is trivial. (b) When X = C + 1 ® d, the system is unobservable because
rank(QO) = 2K.

Figure[3.3]and[3.4]illustrate solutions of unobservable systems. For Theorem|[I]7, Figure[3.3(a)|
shows an ambiguous solution of Equation when X, C € col(®). All reconstructed trajec-
tories are a trajectory lying on one dimensional subspace Bx — Bc. When X = cC+1®d (i.e.,
Theorem [1]i7), the system is also unobservable. When ¢ # 1, the solution is «C; + (1 — a) /(1 —
c)d. « can be nonzero only when C € col(®). Figure shows the space of solutions by
varying «. When C ¢ col(®), o = 0 and the solution is always 1 ® d/(1 — ¢) (i.e., stationary
point) which is a trivial solution as shown in Figure Figure [3.4(b)| shows trajectory re-
construction when ¢ = 1, which results in rank(Q®) = 2K. Any trajectory in /K dimensional
subspace (i.e., null(Q®)) is a solution lying on a surface made by the point trajectory and the
camera trajectory, which is shown by gray dotted lines.

Observable system: Theorem [I] considers an unobservable system or a system resulting in
a trivial solution due to the relation between the point trajectory, the camera trajectory, and the
trajectory basis. For an observable system, Equation (3.4) can be solved without ambiguity in
a least squares sense and there exists a unique solution, 3. AHowever, the observable system
does not guarantee the accuracy of the solution: How much 3 deviates from 3x. We observe
accuracy of trajectory reconstruction depends on relationship between the camera trajectory, the
point trajectory, and the trajectory basis. Given this observation, we characterize the case when
reconstruction is accurate in the rest of this section.

Solving the least squares system, X = © 3, minimizes the residual error,

argmmH@,@ AX —(I—A CH (3.20)
B,A

Let us decompose the point trajectory and the camera trajectory into the column space of ® and
that of the null space, © as follows, X = ©3x + O+ 3%, C = O8; + 0135, where 3+ is
the coefficient for the null space. Let us also define a measure of reconstructibility, n, of the 3D
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point trajectory reconstruction,

184
®) = ————° (3.21)
1O = elay|

Reconstructibility enables us to define the accuracy of the trajectory reconstruction because as 7
approaches infinity, 3 approaches Bx. This can be proven as follows: from the triangle inequal-
ity, the objective function of Equation 1' is bounded by (when H Ok B)L(H — 0),

|©8 - A8Bx — (1- A)©8; — AO*Bx — (1 - A) O 44| (322)
< |eB-aepx - 1-A)08.|| + |40 By + |1 - A) 08|
OB — ABBx — (I—A)Op
< |le'sy | . 2 I EYRRMEV SO

e8|l
or when H@LBéH — 00,

|eB - aepy - 1- a)08.|

@J_J_
= 1o B

+A+T=Aln ). G24

As n approaches infinity, || A|| /n in Equation becomes zero or ||[I — A || in Equation (3.24)
becomes infinity. In order to minimize either Equation (3.23) or Equation (3.24), A = I because
it leaves the last term zero and 3 = B because it cancels the first term. This leads the minimum
of Equation or Equation to be zero, which bounds the minimum of Equation (3.22).
Thus, as 7 approaches infinity, 3 approaches Bx.

Figure shows how reconstructibility is related to the accuracy of the 3D reconstruc-
tion error. In each reconstruction, the residual error (null components) of the point trajectory,
ex = HG)Lﬁ)l( , and the camera trajectory, ec = HG)L,Bé , are measured. Increasing ec for a
given point trajectory enhances the accuracy of the 3D reconstruction, while increasing ex lowers
accuracy. Even though we cannot directly measure the reconstructibility (we never know the true
point trajectory in a real example), it is useful to demonstrate the direct relation with 3D recon-
struction accuracy. Figure[3.5(b)|illustrates that the reconstructibility is inversely proportional to
the 3D reconstruction error.

Reconstructibility provides key insights into the fundamental relationship between the cam-
era trajectory, the point trajectory, and the trajectory basis for trajectory reconstruction in 3D and
it explains why a certain type of the camera motion produces high 3D reconstruction error. It is
analogous to the baseline which connects two camera centers in classic triangulation as shown
Figure Stability or uncertainty of point reconstruction is dependent on the baseline be-
tween camera centers. If the baseline is wide, the uncertainty of the 3D reconstructed point is
small and the stability of that is high. If the baseline is narrow, reconstructing the point is highly
unstable (i.e., high uncertainty along the rays of projections) in the presence of Gaussian noise.
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Figure 3.5: (a) As the null component of the camera trajectory, ec, decreases, the closed form
solution of Equation deviates from the real solution. (b) Reconstructibility, 7, provides the
degree of interference between the camera trajectory and the point trajectory. Reconstructibility
is inversely proportional to 3D reconstruction error. (c) Using the cross validation scheme, the
number of basis vectors is selected automatically such that it minimizes the reprojection error.
Selected number of basis produces the most consistent trajectory in the presence of measurement
noise. (K = 12)

Thus, the baseline provides a key insight of the stability of the reconstruction. Reconstructibil-
ity is the corresponding concept of the baseline for nonrigid structure from motion in trajectory
space.

In practice, the infinite reconstructibility criterion is difficult to satisfy because the actual X
is unknown. To enhance reconstructibility we can maximize ec with constant ex. Thus, the
best camera trajectory for a given trajectory basis matrix is the one that lives in the null space,
col(@%). This explains our observation about slow and fast camera motion described at the
beginning of this section. When the camera motion is slow, the camera trajectory is likely to
be represented well by the DCT basis, which results in low reconstructibility and vice versa.
However, for a given camera trajectory, there is no deterministic way to define a trajectory basis
matrix because it is coupled with both the camera trajectory and the point trajectory. If one
simply finds an orthogonal space to the camera trajectory, in general, it is likely to nullify space
that also spans the point trajectory space. Geometrically, simply changing the surface of p in
Figure [3.2| may result in a greater deviation between ®3x and ©.

3.4 Results

In this section, we evaluate 3D trajectory reconstruction quantitatively on motion capture data
and qualitatively on real data. In all cases, the trajectory bases are the first K; discrete cosine
transform (DCT) basis in order of increasing frequency where K; is determined by (3.5). The
DCT basis has been shown that it provides the optimal performance to encode a signal under
the first order Markov process [46] and demonstrated to accurately and compactly model point
trajectories [3, 6]. If a 3D trajectory is continuous and smooth, the DCT basis can represent it
accurately with relatively few low frequency components. We make the realistic assumption that

30



(a) Trajectory reconstruction at zero reconstructibility
%'0
so I : @ %

(b) Trajectory reconstruction with low reconstructibility

A S S S R

(c) Trajectory reconstruction with high reconstructibility

>

Figure 3.6: Qualitative comparison of trajectory reconstruction from various reconstructibility.
Black: ground truth, red: reconstructed trajectory. (a) Zero reconstructibility, = 0. Camera
trajectory is stationary and reconstructed trajectory is exactly the same as the camera trajectory.
(b) Low reconstructibility, n = 0.32 results in mis-estimation of trajectories at the beginning
and the end of the sequence. (c) All trajectories are reconstructed accurately under high recon-
structibility, n = 5.31.

each point trajectory is continuous and smooth and use the DCT basis as the trajectory basis, ©.
Also for numerical stability of the system, we normalize 2D measurements of the each trajectory
such that the mean of 2D measurements is 0 and the average distance from the origin is v/2
before solving Equation [48,50]. The results, data, and the code of real data are available
on the webpage, http://www.andrew.cmu.edu/user/hyunsoop/eccv2010/eccv_project_page.html.

3.4.1 Quantitative Evaluation

To quantitatively evaluate our method we generate synthetic 2D images from 3D motion cap-
ture data and test it in three perspectives: reconstructibility, handling missing data and low
frame rate, and accuracy. For reconstructibility, we compare reconstruction by increasing the
null component, ec, of the camera trajectory. For robustness, we test with missing data and
lower frame rates. Finally, for accuracy, we compare our algorithm with state-of-the-art algo-
rithms [3, 185, [113]] while varying the perspectivity of projection. The results show our method
outperforms others, particularly under perspective projection.

Reconstructibility: Earlier, we defined the reconstructibility of a 3D trajectory as the trade
off between the ability of the chosen trajectory basis to accurately reconstruct the point trajec-
tory vs. its ability to reconstruct the camera trajectory. To evaluate this effect empirically we
generate camera trajectories by varying ec and measure the error in point trajectory reconstruc-
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tion. Each trajectory is normalized to have zero mean and unit variance so that errors can be
compared across different sequences. Figure 3.6 shows examples (walking sequences) of tra-
jectory reconstructions under various reconstructibility. When reconstructibility is zero shown
in Figure reconstructed trajectories are exactly the same as the camera motions because
the camera trajectory is the intersection of the hyperplane, [, and the basis space, col(®), in
Figure When reconstructibility is low, 7 = 0.32, shown in Figure the reconstruction
deviates from the ground truth because there is interference from the camera trajectory. High
estimation error can be observed at the beginning and the end of the sequence. If the recon-
structibility is high, n = 5.51, reconstruction is very close to the ground truth.

Handling missing data and low frame rate: In this experiment, we test for the effects of
missing data and low frame rate with high reconstructibility with missing 2D point samples.
Missing samples occur in practice due to occlusion, self-occlusion, or measurement failure. Fig-
ure shows the reconstruction error of a trajectory as the amount of occlusion varies (0%,
20%, 40%, and 60% of the sequence) for different numbers of the DCT basis, K. A walking
motion capture sequence was used and each experiment was repeated 10 times with random oc-
clusion. As long as the visibility of a point in a sequence is sufficient to overconstrain the linear
system of equations, the closed form solution is robust to moderate occlusion. Figure
shows that our algorithm can handle relatively high number of missing data (40%) with K = 19.
In general, as K increases, the 3D reconstruction error decreases because the high frequency
components of a point trajectory can be described by the basis. However, when there is oc-
clusion, reconstruction instability occurs by the trajectory overfitting. Figure evaluates
the robustness to the frequency of input samples, i.e., varying the effective frame rate of the in-
put sequence. Visibility of moving points is important to avoid poor conditioning of the closed
form solution, and intuitively more frequent visibility results in better reconstruction. The results
confirm this observation. As was observed in the occlusion experiment, the higher the number
of basis vectors, the less the reconstruction error but reconstruction instability can be observed
when frame rate is low (1 fps).

Accuracy: We compare the accuracy of reconstructed trajectories against methods that use
shape basis reconstruction proposed by Torresani et al. [113] and Paladini et al. [85] and the
method that uses trajectory basis reconstruction proposed by Akhter et al. [3l]. To validate that
our closed form solution is independent of the camera projection model, we parameterize camera
projection as the distance between the image plane and the camera center and evaluate across a
range that moves progressively from projective at one end to orthographic at the other. Note that
we are given all camera poses for the closed form trajectory solution, while the previous methods
reconstruct both camera poses and point trajectories simultaneously. Figure [3.8] compares the
normalized reconstruction accuracy for the walking scene under a random camera trajectory.
The methods that assume orthographic camera projections are unable to accurately reconstruct
trajectories in the perspective case.

3.4.2 Experiments with Real Data

The theory of reconstructibility states that it is possible to reconstruct 3D point trajectories using
the DCT basis if a camera trajectory is random (non-smooth). An interesting real world exam-
ple of this case occurs when many independent photographers take asynchronous images of the
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Figure 3.7: (a) While a high number of basis results in low 3D reconstruction error in general,
reconstruction instability is observed when there is occlusion. Reconstruction instability results
from overfitting of trajectories. Nevertheless, our algorithm can handle 40% missing data with 19
basis vectors, which results in relatively low 3D reconstruction error. (b) As frame rate increases,
visibility of motion also increases, which results in low 3D reconstruction error.

Table 3.1: Parameters of real data sequences.

F'(sec) | #of photos | # of photographers

Rock climbing 39 107 5

Handshake 10 32 3
Speech 24 67 4
Greeting 24 66 4
Dance 16 49 4

same event from different locations. A collection of asynchronous photos can be interpreted as
the random motion of a camera center. Using multiple photographers, we collected data in sev-
eral ‘media event’ scenarios: a person rock climbing, a photo-op hand shake, a public speech,
greeting, and dance. The static scene reconstruction is based on the structure from motion algo-
rithm described in [103]]. Keypoints are extracted by SIFT [68] and all possible pairs of images
are considered to find matches using the fundamental matrix. To estimate camera poses, we
apply structure from motion with incremental bundle adjustment to the image collection. From
the first image pair, relative camera pose is estimated from the essential matrix, and then static
points are triangulated. To estimate an additional camera pose we compare the keypoints regis-
tered in 3D space with new keypoints observed by the target camera. If there are unregistered
keypoints which are also visible from any of the registered cameras their 3D locations are esti-
mated through triangulation. This procedure is repeated until no image remains. Camera poses
and static structures are also refined by sparse bundle adjustment [67] at each time a new camera
is registered. We also extracted time and the focal length of each photo from its EXIF tag. Cor-
respondences of moving points across images were obtained manually. Trajectory estimation is
done linearly as described in Section The number of basis vectors is chosen using the cross
validation method individually and each linearly estimated trajectory is refined by the nonlinear
optimization as described in Section and in Section [3.2.3] respectively.
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Figure 3.8: (a) Quantitative comparisons of reconstruction accuracy with previous methods re-
garding projection types, and qualitative comparisons of reconstruction errors using the DCT ba-
sis (blue) and the methods by Torresani et al. (dark green), Paladini et al. (light green)

and Akhter et al. [3] (orange). (b-e): Qualitative comparison between the ground truth (black)
and reconstructed trajectories (red) for each method.

Figure 3.9: Reprojections of trajectories from manually selected K and automatically selected
K; are shown for the dance scene. Red cross: measurement, cyan circle: manually selected K,
and green triangle: automatically and individually selected K;. Trajectory from K; has smaller
reprojection error. (Average reprojections for K and /; are 11.55 and 6.47, respectively.

To validate the proposed method of selecting the number of basis vectors described in Sec-
tion [3.2.2] we tested on static points of real scenes where we know K; = 1. As a result, static
points of most scenes are classified as K; = 1 (> 96%) except for the speech scene (> 70%).
For the speech scene, since the baselines between photographers are very small uncertainty of
the depth of points is relatively high. This causes some static points in the speech scene to be
classified as moving points in depth direction.

Figure [3.9] shows results of automatic selection of the number of basis vectors for the dance
scene. It is compared with manually and globally set K’ = 14. Automatic selection produces
smaller reprojection error and it describes point motions better than manual selection.

The parameters for each scenario are summarized in Table[3.1] We were able to use the DCT
basis for all scenes. The required number of basis implies the complexity of the trajectory. A
long sequence such as the rock climbing scene requires generally higher number of basis than
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Figure 3.10: The distribution of the number of basis vectors. Scenes which are long or contain
complex trajectories such as the rock climbing scene or the speech scene (complex hand motions)
require high number of basis while short or simple motion scenes such as the hand shake scene or
the greeting scene require low number of basis. In the greeting scene, there are several trajectories
that exhibit a relatively high number of basis (14 ~ 15), which correspond to the hand motion
(there is hand waving motion.).

a short sequence such as hand shake scene as shown in Figure Figures [3.11] 3.12} [3.13]
and show some of input images and reconstructed point trajectories (the number of
basis vectors is color-coded into a trajectory). The reconstructed point trajectories look similar
to postures of the person.

3.5 Discussion

We present an algorithm to robustly estimate the general motion of a 3D point from monocular
perspective projections. The algorithm is stable in the presence of missing data and measurement
noise. We rigorously analyze the cases when 3D reconstruction is possible and how accurate it
can be, relating it to the concept of observability in linear dynamical systems. The algorithm
presented by Park er al. [87] is extended to automatically select the number of trajectory basis
vectors using a cross validation scheme. In addition, we refine the trajectories initialized by the
least squares system by minimizing image reprojection error directly. Our algorithm takes as
input the camera pose at each time instant, and a predefined trajectory basis. These requirements
are met in practice when we reconstruct a dynamic scene from collections of images captured by
a number of photographers. We estimate the relative camera pose by applying robust structure
from motion to the static points in the scene. The Discrete Cosine Transform (DCT) is used as a
pre-defined basis. Because the effective camera trajectory is quite discontinuous, we are able to
obtain accurate 3D reconstructions of the dynamic scenes.

Since all points are reconstructed independently, when there is mis-matched correspondence
or high depth ambiguity is observed because of small baseline, for instance, the speech scene in
Figure the trajectory can be reconstructed inaccurately. This can be resolved by applying
spatial constraints on structure at a given time instant if prior information about 3D structure is
available such as a human skeleton model. Future work can explore how spatial constraints may
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Figure 3.11: Results of the rock climbing scene. Top row: sampled image input, second row: five
snap shots of 3D reconstruction of motion of the rock climber, and bottom row: reconstructed
trajectories in different views. The number of basis vectors is color-coded.

correct trajectories effectively so that the system can reduce the ambiguity of motion.

Our algorithm assumes that the correspondences of moving points are given. We manually
specified point correspondences across images for our experiments. From a practical stand point,
this is undesirable. However, as camera optics and sensors improve, and more sophisticated point
correspondence methods are developed, the ability to automatically achieve correspondences will
likely become achievable. Future directions of this work include making the correspondence
process entirely automatic, and applying the method to reconstruct longer sequences where the
frequency of photographs, and therefore quality of reconstruction, varies within sequence. We
are also interested in applying stronger priors to recognizable objects like people and faces to
construct denser representations.
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Figure 3.12: Results of the handshake scene. Top row: sampled image input, second and third
row: five snap shots of 3D reconstruction in different views, and bottom row: reconstructed
trajectories. The number of basis vectors is color-coded.

Figure 3.13: Results of the speech scene. Top row: sampled image input, and bottom row:
reconstructed trajectories in different views. The number of basis vectors is color-coded.
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Figure 3.14: Results of the greeting scene. Top row: sampled image input and bottom row:
reconstructed trajectories in different views. The number of basis vectors is color-coded.

Figure 3.15: Results of the dance scene. Top row: sampled image input, and bottom row: recon-
structed trajectories in different views. The number of basis vectors is color-coded.
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Chapter 4

3D Reconstruction of Human Motion from
a Single First Person Camera

4.1 Introduction

In Section [3] we studied 3D reconstruction of a time-varying structure from first person cameras
by applying a temporal constraint. In that reconstruction, there was no spatial regularity between
trajectories, i.e., each trajectory is reconstructed independently. In a social scene, many socially
salient structures are associated with humans, i.e., people are interested in human motion, such
as gestures. Human body is an articulated structure and the distance between two adjacent joint
is fixed, e.g., distance between the elbow and shoulder joints remains constant across time in-
stances. In this chapter, we present an algorithm for 3D reconstruction of human motion by
applying temporal and spatial constraints simultaneously.

Reconstructing a moving point in three dimensions from a sequence of two dimensional pro-
jections is an ill-posed problem; any point on the line of projection connecting the camera’s
optical center and an image measurement can be a solution. Yet, humans can effortlessly per-
ceive depth if the 2D points correspond to articulations of a known skeleton [56]. We study the
conjecture that if 3D points move smoothly with a known articulation structure, then it is possi-
ble to reconstruct their 3D locations from their 2D projections — without any activity-specific
prior. The reconstruction of an articulated trajectory has a fundamental ambiguity because there
are two intersecting points that satisfy an articulation constraint and an image measurement at
each time instant [63]: for a 2D trajectory of F' frames, there are 2! 3D trajectories that re-
main at fixed distance to a parent trajector The reconstruction of a smooth trajectory without
spatial constraints is also known to be fundamentally ambiguous when the camera trajectory is
smooth [84,87]. We present an algorithm to reconstruct a smooth articulated trajectory in 3D by
simultaneously applying articulation and smoothness constraints. The algorithm takes as input
2D projections of the trajectory, its parent trajectory in 3D, and the camera pose at each time in-
stant. We present a measure of reconstructibility of an articulated trajectory which characterizes
the stability of estimation under articulation and smoothness constraints.

'The parent trajectory in a skeleton hierarchy is the proximal trajectory to the root trajectory and the child
trajectory is the distal trajectory.
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Figure 4.1: (a) An articulated trajectory is defined as a trajectory X, which preserves distance
from its parent trajectory X; across all time instances. (b) The articulated trajectory is trans-
formed to the relative trajectory, X, — Xj, by collapsing X; to the origin. (c) The articulated
trajectory lies on a sphere of radius r. There are two intersecting points at each time instant be-
tween the sphere and the ray connecting the camera’s optical center and an image measurement,
which allow 2% possible 3D trajectories.

Each trajectory is parameterized by coefficients of a trajectory basis in the spherical coordi-
nate system to enforce smoothness and articulation constraints. We show that if a trajectory is
embedded in the trajectory basis and articulation constraints are applied, the reconstruction prob-
lem is equivalent to a binary quadratic program which is known to be NP-hard [39]. A number
of algorithms exist that produce an approximate solution [72, |83} 92] and we use a branch-and-
bound method to produce an initialization. We refine the articulated trajectories by minimizing
reprojection error. The results are smooth, length preserved 3D trajectories. We have applied
our algorithm to recursively reconstruct the 3D motion of a human given the 3D motion of its
root. Two general approaches have been explored in prior literature to reconstruct human ar-
ticulated body motion. Data-driven approaches use repositories of exemplars to overcome the
ambiguity [24, 53| [115} 116} [125] and physics-based approaches use dynamical models of the
human body to fit to the image stream [22, 122, [126]]. Unlike these approaches, our approach
reconstructs human motion from purely geometric constraints. Thus, the target motion is not
confined to predefined activities or view points.

4.2 Geometry of an Articulated Trajectory

A point trajectory in 3D without any constraint can be represented by a series of points:

T Y1 21
N : 4.1)
TF Yr ZF
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where (x;,y;, z;) is the Cartesian coordinate of a point at i*" time instant and F is the number
of frames. If a trajectory is smooth, it is known that the trajectory can be expressed by a linear
combination of a compact trajectory basis [J], i.e.,

X = (®a,,®a,, Oa,) 4.2)

where © is a F'x K matrix composed of a collection of linear trajectory basis, a is the coefficients
or the parameters of a trajectory, and K is the number of basis.

If two trajectories, X; and X5, are articulated, the distance between trajectories remains
constant across all time instances as shown in Figure i.e.,

Axf—l—Ayf—i—Azf:rz, 1=1,---,F, 4.3)

where AX = X, — X is the relative trajectory.

When a perspective camera captures these two trajectories, points on the trajectories at the
time instant are projected onto the camera plane. The camera representation in this chapter is a
3 x 4 projection matrix, P; = KR; [ I3 | —C; | where I3, K, R;, and C; are a 3 x 3 identity
matrix, the upper triangular intrinsic matrix, the camera rotation matrix, and the camera’s optical
center vector at the 7" time instant, respectively.

If we transform one of the trajectories, X, to the origin, O, the other trajectory, Xy, maps
to the relative trajectory, AX, and a camera, P;, maps to the relative camera pose, P; with
respect to X as shown in Figure[d.1(b)] The transformed relative trajectory lies on a sphere with
radius r. There are two points intersecting the sphere and the ray connecting the camera’s optical
center and an image measurement at each time instant as shown in Figure[d.1(c)] All intersecting
points are candidate 3D points which the relative trajectory passes and thus, there are 2! possible
relative trajectories.

The representation of a relative trajectory between the articulated trajectories from Equa-
tion (4.2) (Cartesian coordinate representation) has to meet the additional quadratic equality
constraints of Equation (4.3). Instead of the Cartesian coordinate representation, we introduce
the spherical coordinate representation for a relative trajectory to control the distance between
trajectories, explicitly, i.e.,

AX = (®ay, Oay, ), (4.4)

where 6 is inclination from the z axis, ¢ is azimuth from the z axis in the xy plane, and r is the
radius . This representation enables us to describe an articulated trajectory precisely because it
satisfies the temporal constraint and the length constraint simultaneously regardless of param-
eters by setting the radius constant explicitly. It also enforces that all imputed points between
frames satisfy the articulation constraint while the Cartesian representation does not. For a topo-
logical point of view, the reconstruction from the spherical coordinate system is the mapping of
P2 — §2K x R! while the reconstruction from the Cartesian coordinate system is the mapping
of P2F" — P3K as shown in Figure

4.3 Method

In this section, we present an algorithm for recovering a trajectory which satisfies spatial and tem-
poral constraints using the spherical coordinate representation of a relative trajectory presented
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in the previous section.

4.3.1 Objective Function of 3D Reconstruction

From the spherical coordinate representation, we reconstruct smooth articulated trajectories which
minimize the reprojection errors:

F,P

argmin Z d (x5, %), 4.5)
Axlv"' 7AXP ’L]
where AX; is the j* articulated (or relative) trajectory parameterized by (@ay ;, Oay ;,1;),
d(-,-) is the L, distance between two arguments, P is the number of articulated points, and x;;
and X;; are a 2D image measurement and a reprojection of the j* point trajectory at the i*" time
instant, respectively.

If articulated trajectories are sequentially linked, the trajectories are

Xj = f(XR; AXh T 7AXJ>1); (4.6)

where f(-) is the forward kinematic function that takes the root trajectory, X g, and all parent
relative trajectories, AXy, - -+, AX;_1, and outputs the j*" trajectory, X, in the Cartesian coor-
dinate system. The reprojection, X;; is

PIX;(i) P?X;(i)
2

— , , 4.7
P}X; (1) PX;(i)

Xz’j =

where P! is the I row of the camera projection matrix at the i time instant and X (i) is the
homogeneous representation of the i*" point in the ;™ trajectory, X;(i).

4.3.2 Initialization of Equation

The objective function of Equation is highly nonlinear and direct optimization falls into a
local minimum. Therefore, a good initialization of trajectory parameters is necessary. When the
parent joint position and the length between trajectories are known, there are two intersecting
points between a sphere whose origin is the parent joint position, X, and a line connecting an
image measurement and camera optical center, C, at each time instant as shown in Figure
A point lying on the line is C' 4 sv where s is an unknown scalar and v is the direction of the

projection, i.e.,v =RTK™' [ x"1 ]T. Then, the intersecting points are
'X =C+s1v, X =C + syv, (4.8)

where

—VTAC £ 4/(VTAC) — v (JAC]? — 12)

2T V[P

4.9)
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and AC' = C' — X,,. For each time instant, we have two candidate 3D points through which the
reconstructed trajectory must pass. Across all time instances, there are 2 possible trajectories
which satisfy the image measurements. Among those trajectories, we look for the trajectory best
described by the trajectory basis.

Let x be the relative direction vector with respect to the parent point as shown in Figure
For each time instant, y; takes either 'y, or %y, i.e.,

Xi = "xabi +2xG(1 = by),

= ('x, — Xi)bi + *x;, where b; € {0,1}. (4.10)
Then, all possible trajectories can be represented as:
X1 Axi X
: = .. b + :
XF Z&Xﬁ? 2><F
or x = Eb+F, (4.11)

where b is a binary variable vector, 'y; and ?y; are two relative direction vectors, and Ay; =
Yx; — 2x;. Finding the best trajectory is equivalent to finding the binary vector, b, which mini-
mizes the following cost,

2
)

b* = argmin || (@O —I) (Eb + F)| (4.12)
b

subject to b € {0, 1}

Note that @®T — T is the projection operation onto the null space of the trajectory basis, ©.
Equation (4.12) is a quadratic problem over binary variables.

A binary quadratic programming problem is NP-hard in general. The structure of our prob-
lem does not fall into one of the solvable cases; our quadratic matrix has positive off-diagonal
elements [89], is a non-singular matrix [/, 36], and cannot be represented by a tri-/five-diagonal
matrix [43]. Also, the underlying graph structure is not series parallel [13]. Thus, in theory, this is
an intractable problem. However, a number of approaches have been proposed to approximate a
solution of the problem efficiently using spectral or semidefinite relaxation. A branch-and-bound
routin with binary relaxation is one technique for global optimization. Since our quadratic ma-
trix is positive definite, the objective function behaves convexly in a branched rectangle, which
enables us to define a tight lower bound of the rectangle in polynomial time.

Once b* is recovered, we project x = Eb*+F onto the trajectory basis space of the spherical
coordinate system to produce low dimensional parameters, i.e., AX = (@ay, Oa,,r). This
yields an accurate initialization which can be refined by nonlinear optimization of Equation (4.5]).

When the relative trajectory, AX, passes a singular point in the spherical coordinate system
in the process of projecting x onto the spherical coordinate system, a discontinuity of angular
trajectory occurs. For example, when ¢ passes from € > 0 to 27 — ¢, this results in a discontinuity
of the angular trajectory because ¢ is defined in the interval [0, 27). To deal with discontinuous
trajectories, we find the best angular representation among all spherical representations of
which preserves local continuity by allowing the domains of # and ¢ to be (—o0, 00).

2http://www.dii.unisi.it/*hybrid/tools/miqp/
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(a) Intersection (b) Relative trajectory (c) Reconstructibility

Figure 4.2: (a) There are two solutions, !X and 2X which satisfy the articulation constraint
and an image measurement. (b) Articulated trajectory and the camera pose are transformed
with respect to the parent trajectory. (c) The accuracy of the reconstruction is high when 7, is
greater than 1 where the trajectory basis spans the ground truth trajectory better than the impostor
trajectory.

4.4 Geometric Analysis of 3D Articulated Trajectory Recon-
struction

We now explore the reconstruction ambiguity of an articulated trajectory and analyze configura-
tions in which the reconstruction is accurate. Let X, be a known parent trajectory and X, be an
articulated child trajectory which are observed at two time instances as shown in Figure {.2(b)|
The ground truth relative trajectory between X; and X, moves from A to B. A and B are im-
postor points that satisfy the image measurements as well as the articulation constraint. In this
section, we show that the relationship between the true trajectory and the impostor trajectory
inherently determines the reconstruction accuracy.

We define a measure of reconstructibility of an articulated trajectory, 1,, as a criterion to
characterize reconstruction accuracy where

H@¢a¢

(4.13)
R

vx = @a,, +Oray ,vo = Oa,  + O a;_, and O is the null space of the trajectory basis.

If the reconstructlblhty of an articulated trajectory goes to infinity, there exists a unique solution
and it corresponds to the ground truth trajectory. This can be proven by the following. For each
time instant, there are two intersecting points and an estimation should be one of them:

Y=1=b)yx +bye, b=1or 0 (4.14)
where ¥ is an estimated angle. For an estimated angular trajectory,
¥ =I-B)vx +B~c, (4.15)
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Figure 4.3: (a) Performance of our algorithm against error in the root trajectory, (b) the initial-
ization error of the radius, (c) amount of missing data are illustrated.

where B is a diagonal matrix whose entries takes either 1 or 0. The best trajectory represented
by the trajectory basis minimizes following:

argmin | @a — 4| (4.16)
aB

= argmin[|©a — (I - B)vx — By’ (4.17)

a,

— argmin H@é —(I-B)©a, —BOa,_ — (I-B)©‘at

e~
aB X c

BO'al H2 L(4.18)
Reconstructibility of an articulated trajectory goes to infinity when ||©-+a;_|| — oo or | |©@ta; || —
0. For either case, B has to approach 0 to eliminate the residual of the null components in Equa-
tion , which leads to a — a,, .

From the method of Park et al. [87], if the camera motion is slow or stationary, there is no
way to reconstruct an accurate trajectory using the trajectory basis because it spans the camera
trajectory well. The reconstructibility of an articulation states that if the parent trajectory is
independent of the camera trajectory, the trajectory reconstruction is still possible because mixed
motion between the camera and the parent motions induces o motion where « is the trajectory
of viewing angles from a camera, «, as shown in Figure Even when camera and parent
motions are stationary, the reconstruction is possible if vx € © because each « is a nonlinear
function of vx, i.e., a = tan™! (sinyx /(I + cosyx)) where [ is the distance between the parent
trajectory and camera trajectory, and thus o ¢ © and v ¢ © unless [ = 0 or Il = oo (i.e.,
orthographic projection) as shown in Figure

Figure shows the distribution of 3D reconstruction error with respect to reconstructibil-
ity of an articulated trajectory, 7,, from the CMU motion capture dataﬂ A trajectory initialized
by binary quadratic programming is the best fitted trajectory by the trajectory basis. When 7,
is high > 1), 3D reconstruction error of an articulated trajectory is low because the ground
truth trajectory is well described by the trajectory basis and the ground truth trajectory and the
impostor trajectory are well separable. In contrast, when 7, is low (< 1), our solution converges
to the impostor trajectory because the trajectory basis spans the impostor trajectory better.

3http://mocap.cs.cmu.edu/
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4.5 Results

To validate our method, we tested it with the HumanEva-II dataset, synthesized trajectories, and
the CMU motion capture data quantitatively and with real human motion examples taken by
video cameras qualitatively. We use the first K Discrete Cosine Transform (DCT) basiﬂin order
of increasing frequency and the number of basis is chosen manually to span the trajectory well.

4.5.1 Quantitative Evaluation

We compare our method with the state-of-art human pose estimation [8} [17, 54, |88]] using the
HumanEva-II dataselﬂ Subject S2 with camera C1 is used to reconstruct the articulated trajecto-
ries. Our method results in 128.8mm of 3D mean error with 17.75mm standard deviation. This
error is comparable to the error of the state-of-art pose estimation algorithms (82mm~211.4mm).
It should be noted that while all methods rely on activity specific training data to reconstruct mo-
tions, our approach uses only activity independent geometric constraints.

We generate synthetic 2D perspective projections from synthetic data and the CMU motion
capture data and evaluate for three aspects: error in the root trajectory, error in radius of an
articulated trajectory, and missing data. For evaluation of errors in the root trajectory and radius,
we set the camera stationary and vary error of the root trajectory and radius error while the root
position is moving. For the evaluation of missing data, we artificially remove 2D projections
randomly.

We measure 3D reconstruction error of an articulated trajectory by varying the ratio between
the average distance error of the root trajectory, r., and the radius of the articulated trajectory, r,,
as shown in Figure[d.3(a)] The error in the parent trajectory is a lower bound on the reconstruction
error of the articulated trajectory. While the variance of the distribution for small root trajectory
error (< 0.2) is low, i.e., the reconstruction can be done reliably, the reconstruction from high
root trajectory error (> 0.3) causes high error in the child trajectory as well.

For the evaluation of the error in radius, we measure 3D reconstruction error for erroneous
radii multiplied by scaleﬂ Figure illustrates robustness to erroneous initialization. Even
though the initial scale is small (i.e., 1072 ~ 10°), the 3D reconstruction can be done reliably
because before solving the binary quadratic programming, we adjust the radius of the sphere to
intersect with the line of projection at one point at least. When the initial scale is high (> 10%),
however, the reconstruction becomes unreliable because the ray intersects with the sphere at all
time instances and the optimization falls into a local minimum around a mis-estimated trajectory.

We also test with the CMU motion capture data for the evaluation of missing data caused
by occlusion or measurement failure. When there are missing data, our spatial and temporal
constraints enable us to impute missing points. For this experiment, we artificially introduce
length errors, image measurement noise, and root trajectory error while the camera is stationary.
Our algorithm produces an average errmﬂ of 13% for 5% missing data as shown in Figure

“Hamidi and Pearl [46] have shown that the DCT provides the optimal performance to encode the signal under
the first order Markov processes. Ahkter et al. [5] have empirically justified its optimality on motion capture data.

5http://vision.cs.brown.edu/humaneva/

®Initial radius scale error 1 means the ground truth.

Terror = || X — X||/||X||, where X is the ground truth trajectory and X is the estimated trajectory.
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4.5.2 Experiments with Real Data

We apply our algorithm to reconstruct human body motion in 3D from 2D perspective projec-
tions. Reconstruction from a stationary camera and a moving camera are tested and the statistical
anthropometric length ratio of the human body is used for the initialization of length ratio with
some modifications for accurate skeleton estimation purpose. The scale of the skeleton is roughly
initialized and we manually label image measurements for articulated points.

Figure and Figure show the reconstruction of the juggling motion and the motion
in front of a webcam, respectively, in 3D from a stationary video camera. We project the 2D root
trajectory to the unit depth plane and use it as the 3D root trajectory because the depth of the root
trajectory is underdetermined from a stationary camera. For both experiments, we use the torso
as the root. From the root trajectory, all articulated trajectories are reconstructed recursively.

We also apply our method to data captured from a moving camera to recover the playing
card motion and the yoga motion as shown in Figure and Figure respectively. Both
camera trajectories are smooth and well spanned by the trajectory basis. For the reconstruction
of the root trajectory, we choose a relatively rigid part of human body through a sequence and
reconstruct them using the structure from motion algorithm. Once relative camera poses are
estimated from the rigid part of the human body, we estimate the similarity transform between
the relative camera poses and the original camera poses estimated by 3D static structure. Head
and torso are used as the root for playing card motion and yoga motion, respectively.

4.6 Discussion

In this chapter, we study an articulated trajectory which remains at a constant distance with re-
spect to the parent trajectory. The relative trajectory is a trajectory on a sphere and there are
2F trajectories that meet the spatial constraint and image measurements. Among those trajecto-
ries, we look for the best trajectory spanned by the trajectory basis and we identify that this is
equivalent to solving a binary quadratic programming problem. The relative trajectory obtained
by the binary quadratic program is parameterized by a compact trajectory basis in the spherical
coordinate system, which satisfies spatial and temporal constraints, simultaneously. We optimize
the trajectory by minimizing reprojection error. Reconstruction of the articulated trajectory is
fundamentally limited by the motion induced by the camera and the parent trajectory and we
propose a measure of reconstructibility of an articulated trajectory, which characterizes the re-
construction accuracy. Our results show that we are able to reconstruct highly articulated human
motions from a stationary camera and a moving camera.
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(d) Yoga motion from a moving camera

Figure 4.4: (a) Juggling motion, (b) motion in front of the webcam from a stationary camera,
(c) playing card motion, and (d) yoga motion from a moving camera. Image measurements are
superimposed on images in the top row and 3D reconstruction of the motion corresponding to the
images are shown from different views in the second and the third rows. The right-most figures
summarize motion by showing whole trajectori§.



Part 11

3D Reconstruction of Social Saliency
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Chapter 5

3D Reconstruction of Social Saliency from
First Person Cameras

5.1 Introduction

Scene understanding approaches have largely focused on understanding the physical structure
of a scene: “what is where?” [71]]. In a scene occupied by people, this definition of under-
standing has to be expanded to include interpreting what is socially salient in that scene, such
as whom people interact with, where they look, and what they cognitively attend to. Where
classic structural scene understanding is an objective interpretation of the scene (e.g., 3D recon-
struction [103]], object recognition [35], or human affordance identification [43]]), social scene
understanding is subjective as it depends on the particular group of people and their particular
relationships. For example, when we walk into a room, we quickly look at different people and
the groups they have formed and choose which group we wish to join. Consider instead, an ar-
tificial agent such as a social robot that enters the same room: how should it interpret the social
dynamics of the environment? The subjectivity of social environments makes the identification
of quantifiable and measurable representations of social scenes difficult.

Humans transmit visible social signals about what they find important and these signals are
powerful cues for social scene understanding [120]. For instance, humans spontaneously orient
their gaze to the target of their attention. When multiple people simultaneously pay attention to
the same point in three dimensional space, e.g., an object or a person, their gaze raysﬂ converge
to a point that we refer to as a gaze concurrence. Gaze concurrences are a first approximation of
social saliency in a scene. It is an effective approximation because although an individual’s gaze
indicates what he or she is subjectively interested in, a gaze concurrence encodes the consensus
of multiple individuals. Thus, social understanding tends towards objectivity when it is derived
from the consensus of multiple interpretations. In this chapter, we present a method to identify
and reconstruct gaze concurrences in 3D from videos taken by head-mounted cameras on multi-
ple people (Figure[5.1(a)). Our method automatically finds multiple gaze concurrences that may
occur as people form cliques in a social environment.

'A gaze ray is a three dimensional ray emitted from the center of eyes and oriented to the point of regard as
shown in Figure
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Figure 5.1: (a) In this chapter, we present a method to reconstruct 3D gaze concurrences from
videos taken by head-mounted cameras. (b) A head-mounted camera provides head orientation
information.

Head-mounted cameras are poised to enter our social spaces [18]]. For certain specialized
tasks, such as search and rescue [77], surgery [70], and empathetic interaction [[79], humans
would benefit from collaboration with artificial agents. To operate in these tasks, as a genuine
team member, without prompting, it is necessary for the artificial agents to be able to interpret
the social signals of other team members. During collaboration, the regions of social activity
continually shift, split, and merge in 3D. Video data from third-person viewpoints would be
biased by the camera placement and the operating space would be spatially limited. On the other
hand, our method relies on head-mounted cameras, as shown in Figure @L and therefore, it
is not subject to the same limitations [100]. Furthermore, 3D pose estimation of head-mounted
cameras accurately provides the primary gaze rayﬂ i.e., where people are looking.

Our method takes, as input, a collection of videos captured by the head-mounted cameras and
outputs the 3D gaze concurrences in a common coordinate frame with the 3D static structure,
as shown in Figure The head-mounted camera uses the static structure in the scene to
recover the camera pose in 3D at each time instant using structure from motion. We learn the
gaze parameters and the variance of the eye orientation with respect to the camera as part of the
gaze ray calibration procedure. The reconstructed camera poses in conjunction with the gaze ray
calibration enables us to build a 3D social saliency field as shown in Figure The number
and 3D locations of multiple gaze concurrences are automatically estimated via mode-seeking in
the social saliency field.

The core contribution is an algorithm to estimate the 3D social saliency field of a scene and
its modes from head-mounted cameras. We present a method to calibrate the primary gaze ray
with respect to the head-mounted camera in 3D, and to detect multiple gaze concurrences from
the gaze ray estimates via mode-seeking. To handle the variation of the eye-in-head motion,
we use a cone-shaped 3D distribution. We evaluate our algorithm using motion capture data
quantitatively, and apply it to real world scenes where social interactions frequently occur, such
as meetings, parties, and attending theatrical performances.

Eye-in-head motion contributes to the local fast gaze shift (saccade) but once the motion of the point of regard
is stabilized, the eye orientation does not vary significantly from the primary gaze ray [} [61}, [74].
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Figure 5.2: (a) The primary gaze ray is a fixed 3D ray with respect to the head coordinate system
and the gaze ray can be described by an angle with respect to the primary gaze ray. (b) The
variation of the eye orientation is parameterized by a Gaussian distribution of the points on the
plane, II, which is normal to the primary gaze ray, | at unit distance from p. (c) The gaze ray
model results in a cone-shaped distribution of the point of regard.

5.2 Method

In this section, we introduce an algorithm to reconstruct the gaze concurrences in 3D using head-
mounted cameras. The videos from the head-mounted cameras are collected and reconstructed
in 3D via structure from motion. Each person wears a camera on the head and performs a
predefined motion for gaze ray calibration based on our gaze ray model (Section [5.2.1). After
the calibration (Section [5.2.2)), they may move freely and interact with other people. From the
reconstructed camera poses in conjunction with the gaze ray model, we estimate multiple gaze
concurrences in 3D via mode-seeking (Section[5.2.3).

Our camera pose registration in 3D is based on structure from motion described in [50, 100,
103]]. We first scan the area of interest (for example, the room or the auditorium) with a camera
to reconstruct the reference structure. The 3D poses of the head-mounted cameras are recovered
relative to the reference structure using a RANSAC [37] embedded Perspective-n-Point algo-
rithm [64]. When some camera poses cannot be reconstructed because of lack of features or
motion blur, we interpolate the missing camera poses based on the epipolar constraint between
consecutive frames.

5.2.1 Gaze Ray Model

We represent the direction of the viewer’s gaze as a 3D ray that is emitted from the center of the
eyes and is directed towards the point of regard, as shown in Figure The center of the
eyes is fixed with respect to the head position and therefore, the orientation of the gaze ray in the
world coordinate system is a composite of the head orientation and the eye orientation (eye-in-
head motion). A head-mounted camera does not contain sufficient information to estimate the
gaze ray because it can capture only the head position and orientation but not the eye orientation.
However, when the motion of the point of regard is stabilized, i.e., when the point of regard is
stationary or slowly moving with respect to the head pose, the eye orientation varies by a small
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Figure 5.3: (a) We parameterize our cone, C', with an apex, p, and ratio, &, of the radius, R, to
the height, /7. (b) An apex can lie on the orange colored half line, i.e., behind py. Otherwise
some of the points are invisible. (c) An apex can be parameterized as p = py — v where a > 0.
Equation (5.2) allows us to locate the apex accurately.

degree [9, 61, [74] from the primary gaze rayﬂ We represent the variation of the gaze ray with
respect to the primary gaze ray by a Gaussian distribution on a plane normal to the primary gaze
ray. The point of regard (and consequently, the gaze ray) is more likely to be near the primary
gaze ray.

Let us define the primary gaze ray, 1, by the center of the eyes, p € R3, and the unit direction
vector, v € R? in the world coordinate system, W, as shown in Figure Any point on the
primary gaze ray can be written as p + av where a > 0.

Let II be a plane normal to the primary gaze ray, 1, at unit distance from p, as shown in
Figure The point, d, in IT can be written as d = d;vi + dyvy where vi and vy are
two orthogonal vectors to v and d; and d are scalars drawn from a Gaussian distribution, i.e.,
dy, dy ~ N(0,h?). This point, d, corresponds to the ray, lg, in 3D. Thus, the distribution of
the points on the plane maps to the distribution of the gaze ray by parameterizing the 3D ray as
la(p,va) = p + avq where vq = v + d and o > 0. The resulting distribution of 3D points
of regard is a cone-shaped distribution whose central axis is the primary gaze ray, i.e., a point
distribution on any normal plane to the primary gaze ray is a scaled Gaussian centered at the
intersection between 1 and the plane as shown in Figure

5.2.2 Gaze Ray Calibration

When a person wears a head-mounted camera (Figure [5.1(b)), it may not be aligned with the
direction of the primary gaze ray. In general, its center may not coincide with the center of the
eyes, either, as shown in Figure The orientation and position offsets between the head-
mounted camera and the primary gaze ray must be calibrated to estimate where the person is
looking.

The relative transform between the primary gaze ray and the camera pose is constant across
time because the camera is, for the most part, stationary with respect to the head, C, as shown

3The primary gaze ray is a fixed eye orientation with respect to the head. It has been shown that the orientation
is a unique pose, independent of gravity, head posture, horizon, and the fusion reflex [55].
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in Figure Once the relative transform and camera pose have been estimated, the primary
gaze ray can be recovered. We learn the primary gaze ray parameters, p and v, with respect to
the camera pose and the standard deviation, h, of eye-in-head motion.

We ask people to form pairs and instruct each pair to look at each other’s camera. While
doing so, they are asked to move back and forth and side to side. Suppose two people A and B
form a pair. If the cameras from A and B are temporally synchronized and reconstructed in 3D
simultaneously, the camera center of B is the point of regard of A. Let y" (the camera center of
B) be the point of regard of A and R and C be the camera orientation and the camera center of
A, respectively. y"V is represented in the world coordinate system, V. We can transform y"” to
A’s camera centered coordinate system, C, by y = Ry”Y — RC. From {yi}iz1.. » Where n is
the number of the points of regard, we can infer the primary gaze ray parameters with respect to
the camera pose. If there is no eye-in-head motion, all {y;};—; ... , will form a line which is the
primary gaze ray. Due to the eye-in-head motion, {y;}—1.... , will be contained in a cone whose
central axis is the direction of the primary gaze ray, v, and whose apex is the center of eyes, p.

We first estimate the primary gaze line and then, find the center of the eye on the line to
completely describe the primary gaze ray. To estimate the primary gaze line robustly, we embed
line estimation by two points in the RANSAC framework [37]]. This enables us to obtain a 3D
line, 1(p,, v) where p, is the projection of the camera center onto the line and v is the direction
vector of the line. The projections of {y;};—1 .. , onto the line will be distributed on a half line
with respect to p,. This enables us to determine the sign of v. Given this line, we find a 3D cone,
C(p, &), that encapsulates all {y, },—.. , Where p is the apex and ¢ is the ratio of the radius, R,
to height, H, as shown in Figure

The apex can lie on a half line, which originates from the closest point, py, to the center of
the eyes and orients to —v direction, otherwise some y are invisible. In Figure [5.3(b)| the apex
must lie on the orange half line. py can be obtained as follows:

Po=Po+min{v' (y1 —=Pa), -+, V' (¥n — Pa)}V. (5.1)

Then, the apex can be written as p = po — av where a > 0, as shown in Figure

There are an infinite number of cones which contain all points, e.g., any apex behind all
points and £ = oo can be a solution. Among these solutions, we want to find the tightest cone,
where the minimum of ¢ is achieved. This also leads a degenerate solution where £ = 0 and
a = oo. We add a regularization term to avoid the &« = oo solution. The minimization can be
written as,

minimize £ 4+ A\«
(6%

subject to bi‘i’a<§, Vi=1,---,n

oL 5.2)

where a; = ||(I— vv")(y; — po)|| and b; = v (y; — po) (Figure[5.3(c)), which are all known
once v and pg are known. a;/(b;+«) < £ is the constraint that the cone encapsulates all points of
regard {y; }i—1,... , and a > 0 is the condition that the apex must be behind py. A is a parameter
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—Primary gaze direction ° g/lentﬂ of eyes

o Center of eyes — Mean trajectories -y
* Mean convergences \.A

(a) Geometry (b) Gaze model (c) Social saliency field and mean trajectories

Figure 5.4: (a) X; is the projection of x onto the primary gaze ray, l;, and d is a perspective
distance vector defined in Equation (5.5). (b) Our gaze ray representation results in the cone-
shaped distribution in 3D. (c¢) Two gaze concurrences are formed by seven gaze rays. High
density is observed around the intersections of rays. Note that the maximum intensity projection
is used to visualize the 3D density field. Our mean-shift algorithm allows any random points to
converge to the highest density point accurately.

that controls how far the apex is from py. Equation (5.2) is a convex optimization problelrﬂ
Once the cone C(p, £) is estimated from {y; };—1 ... », h is the standard deviation of the distance,
Ild(1,y,)||, and will be used in Equation (5.4) as the bandwidth for the kernel density function.

5.2.3 Gaze Concurrence Estimation via Mode-seeking

3D gaze concurrences are formed at the intersections of multiple gaze rays not at the intersection
of multiple primary gazes (see Figure [5.2(a)). If we knew the 3D gaze rays, and which of rays
share a gaze concurrence, the point of intersection could be directly estimated via least squares
estimation, for example. In our setup, neither one of these are known, nor do we know the number
of gaze concurrences. With a head-mounted camera, only the primary gaze ray is computable; the
eye-in-head motion is an unknown quantity. This precludes estimating the 3D gaze concurrence
by finding a point of intersection, directly. In this section, we present a method to estimate the
number and the 3D locations of gaze concurrences given primary gaze rays.

Our observations from head-mounted cameras are primary gaze rays. The gaze ray model
discussed in Section [5.2.1] produces the distribution of points of regard for each primary gaze
ray. The superposition of Gaussian distributed gaze rays yields a 3D social saliency field. We
seek modes in this saliency field via a mean-shift algorithm. The modes correspond to the gaze
concurrences. The mean-shift algorithm [38]] finds the modes by evaluating the weights between
the current mean and observed points. We derive the closed form of the mean-shift vector directly
from the observed primary gaze rays. While the observations are rays, the estimated modes are

4The problem can be rewritten as

minimize max ! BRI n + A, subject to a > 0. 5.3)
o b1 + « b, + «

Equation (3.3) is a convex optimization problem because the first term of the objective function is the sum of a
pointwise maximum of convex functions, a;/(b; + «), which is convex in a.
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points in 3D.

For any point in 3D, x € R?, a density function (social saliency field), f, is generated by our
gaze ray model. f is the average of the Gaussian kernel density functions, K, which evaluate the
distance vector between the point, x, and the primary gaze rays, 1;, as follows:

ﬂm—-%ﬁy(“zﬂ)_%fjfcm%?W)

=1

N
1 1 L[d(, x)[?
_ - 5.4
N.Zhﬂ/% exp( 2 B ! >4)

where h; is a bandwidth set to be the standard deviation of eye-in-head motion obtained from
the gaze ray calibration (Section for the ith gaze ray. k is the profile of the kernel density
function, i.e., K(-) = ck(|| - ||*)/h and c is a scaling constant. d € R? is a perspective distance
vector defined as

x—X; for v (x —p;) >0

d(L(pi, vi),x) = { vi (pi) (5.5)

o0 otherwise,

where X; = p; + v; (x — p;) vi, which is the projection of x onto the primary gaze ray as
shown in Figure P; is the center of eyes and v; is the direction vector for the ith primary
gaze ray. Note that when v] (x — p;) < 0, the point is behind the eyes, and therefore is not
visible. This distance vector directly captures the distance between 1 and l4 in the gaze ray
model (Section and therefore, this kernel density function yields a cone-shaped density
field (Figure and Figure [5.4(b)). Figure shows a social saliency field (density field)
generated by seven gaze rays. The regions of the density are the gaze concurrences. Note that
the maximum intensity projection of the density field is used to illustrate a 3D density field.

The updated mean is the location where the maximum density increase can be achieved from
the current mean. Thus, it moves along the gradient direction of the density function evaluated
at the current mean. The gradient of the density function, f(x), is

2o 1,
Vif(x) = WZﬁk

N N o~ T
el

i=1 i=1 Wi
where
2
d(livx)
9<Hhi ) N
i = y X =X T o Vi,
B (vl (x = py)° vi (x—p)
and g(z) = —K'(z). X; is the location that the gradient at x points to with respect to 1;, as shown

in Figure Note that the gradient direction at x is perpendicular to the ray connecting x
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and p;. The last term of Equation (5.6) is the difference between the current mean estimate and
the weighted mean. The new mean location, x/*!, can be achieved by adding the difference to
the current mean estimate, x”:

Nz
> wixX
- % (5.7)
D1 W
Figure shows how our mean-shift vector moves random initial points according to the
gradient information. The mean-shift algorithm always converges as shown in the following
theorem.

Theorem 2. The sequence {f(x’)};—12... provided by Equation converges to the local
maximum of the density field.

Proof. f(x) is a bounded function because it is the sum of finite bounded kernel density func-
tions. To prove the theorem, it is sufficient to show that the sequence { f(x7)};—1 ... is strictly
monotonic increasing, i.e., f(x7) < f(x*T1), if x/ #£ xI T

From Equation (5.4),

The profile, k(x), of the Gaussian kernel density function is convex and therefore, it satisfies the
following convexity condition:

k(xo) — k(z1) > K(x1)(z2 — 1) = g(1) (11 — 19). (5.9

Note that g(z) = —k(x). The perspective distance vector function, d(1;, x), is convex in x by
Lemmam and therefore, it also satisfies the convexity condition:

Hd(li’xj)HQ B Hd(li’xjﬂ)w > 2d(L,x7)" (d(lz‘,xj) - d(li,XjJrl))
> 2d(1i7xj)T ((de(li,xj)) (Xj+1 . Xj)) ‘

(5.10)
Then, Equation can be rewritten as,
N 2
: A c 1 d(l;, x7) 112 TP
o0 st > 3 o (|25 [l )]
(5.11)
2 < 1 d(l~xj)2 T . . -
= N;h_?g ( h )d(lz""” (Vxd(l;, 7)) (x = %)
(5.12)
2c N
= N;wi (Xj —SEZ-)T (xj —Xj“) (5.13)
2c N
= ¥ ng (7)1 + X% — %% — (x7) Tt (5.14)

1

-
I
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Inequality (5.11) and (5.12)) is derived by Inequality and (5.10), respectively. Equation (5.13))

can be derived by Equation (6). o
Equation (5.7) yeilds 31, w/x/*1 = S°N w/%J and if we substitute it in Equation (5.14),

N
FO) = 6eT) 2 Tl =Y (5.15)
i=1

Since the profile, k(z), is monotonically decreasing, &'(z) < 0 and thus, g(x) > 0. This leads
the weight w? to be strictly positive. As a result, the right hand side of Inequality Il is strictly
positive if x/ # x/*1. Thus, f(x/*1) — f(x7) > 0. O O

Lemma 1. d(1, x) is convex in x.

Proof. d(1,x) is convex in x because for 6 € [0, 1],
(I-vv)(0xi + (1 - 0)x: — p)

vTi(0x; + (1 —0)xy — p)
— (L) + (1 — d(l,x,)

d(L,6x; + (1 - 0)x,) =

where
_ v’ (x1 — p)
"= OvT(x; —p)+ (1 —-0)vT(x2 — p)’
w is still in [0, 1]. Thus, d(1, x) is convex in x. O O
3.3 Result

We evaluate our algorithm quantitatively using a motion capture system to provide ground truth
and apply it to real world examples where social interactions frequently occur. We use GoPro
HD Hero2 cameras (www.gopro.com) and use the head mounting unit provided by GoPro. We
synchronize the cameras using audio signals, e.g., a clap. In the calibration step, we let a pair of
people move back and forth and side to side at least three times to allow the gaze ray model to be
accurately estimated. For the initial points of the mean-shift algorithm, we sample several points
on the primary gaze rays. This sampling results in convergences of the mean-shift because the
local maxima form around the rays. If the weights of the estimated mode are dominated by only
one gaze, we reject the mode, i.e., more than one gaze rays must contribute to estimate a gaze
concurrence.

5.3.1 Quantitative Evaluation

We compare the 3D gaze concurrences estimated by our result with ground truth obtained from a
motion capture system (capture volume: 8.3mx 17.7mx4.3m). We attached several markers on a
camera and reconstructed the camera motion using structure from motion and the motion capture
system simultaneously. From the reconstructed camera trajectory, we recovered the similarity
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(a) Quantitative result (b) Social saliency field in 3D

Figure 5.5: (a) We compare our result with motion capture data (ground truth). The solid lines
(orange and red) are the trajectories of the gaze concurrences and the dotted lines (green and blue)
are the ground truth marker positions. Mean error is 10.1cm with 5.73cm standard deviation.
The colored bands are one standard deviation wide and are centered at the trajectory means. (b)
There are two gaze concurrences with six people. Orange and red points are estimated gaze
concurrences and green and blue points are ground truth position. The confidence region (pink
region) where a high density is achieved always contains the ground truth.

transform (scale, orientation, and translation) between two reconstructions. We placed two static
markers and asked six people to move freely while looking at the markers. Therefore, the 3D
gaze concurrences estimated by our algorithm should coincide with the 3D position of the static
markers.

Figure shows the trajectories of the gaze concurrences (solid lines) overlaid by the
static marker positions (dotted lines). The mean error is 10.1cm with 5.73cm standard deviation.
Figure [5.5(b)| shows the gaze concurrences (orange and red points) with the ground truth posi-
tions (green and blue points) and the confidence regions (pink region) where a high value of the
saliency field is achieved (region which has higher than 80% of the local maximum value). The
ground truth locations are always inside these regions.

5.3.2 Experiments with Real Data

We apply our method to reconstruct 3D gaze concurrences in three real world scenes: a meeting,
a musical, and a party. Figures[5.6] and [5.8] show the reconstructed gaze concurrences and
the projections of 3D gaze concurrences onto the head-mounted camera plane (top row). 3D ren-
derings of the gaze concurrences (red dots) with the associated confidence region (salient region)
are drawn in the middle row and the cone-shaped gaze ray models are also shown. The trajecto-
ries of the gaze concurrences are shown in the bottom row. The transparency of the trajectories
encodes the timing.

Meeting scene: There were 11 people forming two groups: 6 for one group and 5 for the other
group as shown in Figure[5.6] The people in each group started to discuss among themselves at
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Figure 5.6: We reconstruct the gaze concurrences for the meeting scene. 11 head-mounted cam-
eras were used to capture the scene. Top row: images with the reprojection of the gaze concur-
rences, middle row: rendering of the 3D gaze concurrences with cone-shaped gaze ray models,
bottom row: the trajectories of the gaze concurrences.

the beginning (2 gaze concurrences). After a few minutes, all the people faced the presenter in
the middle (50th frame: 1 gaze concurrence), and then they went back to their group to discuss
again (445th frame: 2 gaze concurrences) as shown in Figure 5.6

Musical scene: 7 audience members wore head-mounted cameras and watched the song, “Sum-
mer Nights” from the musical Grease. There were two groups of actors, “the pink ladies
(women’s group)” and “the T-birds (men’s group)” and they sang the song alternatingly as shown
in Figure[5.7] In the figure, we show the reconstruction of two frames when the pink ladies sang
(41st frame) and when the T-birds sang (390th frame).

Party scene: there were 11 people forming 4 groups: 3 sat on couches, 3 talked to each other at
the table, 3 played table tennis, and 2 played pool (178th frame: 4 gaze concurrences) as shown
in Figure 5.8] Then, all moved to watch the table tennis game (710th frame: one gaze concur-
rence). Our method correctly evaluates the gaze concurrences at the location where people look.
All results are best seen in the videos of the supplementary material.

5.4 Discussion

We present an algorithm that estimates 3D gaze concurrences from head-mounted cameras. The
3D gaze concurrences are locations where groups of people cognitively attend. We reconstruct
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Figure 5.7: We reconstruct the gaze concurrences from musical audiences. 7 head-mounted
cameras were used to capture the scene. Top row: images with the reprojection of the gaze
concurrences, bottom row: rendering of the 3D gaze concurrences with cone-shaped gaze ray
models.

the head-mounted camera poses in 3D using structure from motion and estimate the relationship
between the camera pose and the gaze ray. The variation of the eye-in-head motion is modeled by
a Gaussian distribution and it results in a 3D social saliency field. Our mode-seeking algorithm
finds the gaze concurrences which are the local maxima in the social saliency field. We show
that our algorithm can accurately estimate the gaze concurrences in 3D.

When people’s gaze rays are almost parallel, as in the musical scene (Figure [5.7), the esti-
mated gaze concurrences become poorly conditioned. The confidence region is stretched along
the direction of the primary gaze rays. This is the case where the point of regard is very far
away while people look at the point from almost the same vantage point. For such a scene, more
head-mounted cameras from different points of views can help to localize the gaze concurrences
more precisely.
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Figure 5.8: We reconstruct the gaze concurrences for the party scene. 11 head-mounted cameras
were used to capture the scene. Top row: images with the reprojection of the gaze concurrences,
middle row: rendering of the 3D gaze concurrences with cone-shaped gaze models, bottom row:
the trajectories of the gaze concurrences.
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3D Reconstruction of Socially Salient
Motion

65






Chapter 6

3D Reconstruction of Socially Salient
Motion from First Person Cameras

6.1 Introduction

A social scene typically includes many human interactions. Human interactions arise in the form
of motion such as body gesture. Among motion associated with human interactions, socially
salient motion strongly drives the holistic motion of the group of people. Imagine a lecturer in
a class pointing at an equation on a blackboard with her hand. The pointing gesture triggers
students’ attention to move towards the equation on the board. The lecturer is a socially salient
structure in the class because many students pay attention to her and her gesture is socially salient
motion that directs the students’ group behavior. Thus, socially salient motion is closely linked
to how a group of people socially behave and it is a key component to understand a social scene.

Videos taken by first person cameras include information about a scene (exo-motion) and the
wearer (ego-motion). As the wearers observe a scene, first person cameras capture how other
people move in the scene, i.e., exo-motion. In Part[[, we have shown how to estimate exo-motion
from first person cameras; we reconstructed trajectories in 3D. Ego-motion information (how the
camera, and in effect the wearer, moves in 3D) is included in first person videos [100]. The 3D
relative transforms with respect to the background static structure tells us the ego-motion of the
camera. 3D reconstruction of social saliency in Part[[Tutilizes the ego-motion information of first
person cameras to localize gaze concurrences. Integrating the exo- and ego-motion information
of first person cameras can generate significant synergy to understand a social scene. As proposed
work, we will integrate to reconstruct social motion and saliency in 3D and infer the relationship
between them to identify socially salient motion.

Reconstructing socially salient motion in 3D includes two scientific challenges. First, human
or point motion must be reconstructed in 3D from unstructured video data. Unlike trajectory
reconstruction in Part[] first person video data does not explicitly provide point correspondences
that are required to be established before reconstruction. What first person cameras see are differ-
ent because what people are interested in is subjective to each person. Although we have shown
that gaze concurrences can determine where people look in Part [[I} it is not necessary that gaze
concurrences belong to physically meaningful structures, such as human body, where we can find

67



correspondences. Even if people look at the same structure, people are often widely distributed
in the social space. This introduces the correspondence problem of wide baseline images, which
has not been solved in computer vision. Unlike classic point correspondence, we will tackle
the trajectory correspondence problem by exploiting motion information of a moving point. 3D
reconstruction of motion must be annotated in terms of physically meaningful structures, e.g.,
hand gesture and head motion. This annotation of motion will allow us to build a set of motion
candidates for socially salient motion. Second, the relationship between social motion and so-
cial saliency must be inferred from 3D motion reconstruction and gaze concurrences. Motion
and saliency are spatio-temporal quantities that are correlated. Social saliency is usually driven
by some social motion. In order to infer their relationship, they must be interpreted in compu-
tationally representable forms in the spatio-temporal domain. Based on these representations,
a measure of the relationship should be defined so that we can identify motion that influences
social behaviors.

Reconstructing 3D socially salient motion is critical to understanding a social scene. A key
benefit of this understanding will be to allow artificial agents to play a important role as team
members without prompting in a social scene. Artificial agents will be able to process visible so-
cial signals in human interactions and recognize the signals that drives other people’s behaviors.
They will identify where socially salient motion occurs, focus on the motion, and anticipate how
people around the socially salient structures behave or respond to them. This will enable them to
organically interact with people and perform their tasks in accordance with social group behav-
ior. By doing so, they will also learn to respond empathetically and observe social protocol in
a scene. Understanding the relationship will enable investigations into social behaviors, such as
group dynamics, hierarchies, or interactions: how particular motion influences group behaviors,
how the rank of the society reflects social saliency, or how information propagates through social
interactions. Also it will facilitate empirical study on behavioral disorder, such as autism and
allow objective analysis of animal social behavior without introducing anthropomorphic bias.

6.2 Approach

Our algorithm will take, as input, a collection of videos captured by first person cameras and out-
put prediction of 3D motion that drives social saliency. We will recognize which motion triggers
group behavior via social saliency (gaze concurrences). We address challenges in reconstructing
3D socially salient motion and propose methods to resolve them.

6.2.1 3D Motion Reconstruction

In fluid dynamics and deformable solid mechanics, there are two reference frames to describe
motion: the Lagrangian and Eulerian reference frames. In the Lagrangian reference frame, an
observer measures flow properties by following a particle of the fluid, i.e., the reference frame
is attached to the particle. For instance, the trajectory of the particle is measured by tracking
the position of the reference frame across the time instances. In the Eulerian reference frame,
an observer stays at a fixed position in the flow and measures flow properties. For example,
the pressure change of the flow can be measured by placing many stationary barometers in the
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(a) Lagrangian approach (b) Eulerian approach

Figure 6.1: (a) Classical motion reconstruction approaches from videos use the Lagrangian ap-
proach where they track 2D points that corresponds to each image and triangulate the 2D points
to reconstruct the 3D point. (b) We will investigate a Eulerian approach that estimates the motion
at a certain 3D point by measuring displacement of the projected 2D points.

flow. Methods to reconstruct 3D motion from videos can be also viewed in the Lagrangian and
Eulerian frames. We study these approaches and their challenges.

Lagrangian Approach

Classical 3D motion reconstructions from multiple videos have utilized the Lagrangian ap-
proach [66, 87, 103, [109, [114]]. They track a point of interest (a particle in the Lagrangian
frame) in each videos and then, triangulate the point in 3D as shown in Figure This
approach requires point correspondences between videos in advance. Finding point correspon-
dences between two wide baseline images is a difficult task because local image information
taken from different points of view look different. State-of-the-art matching algorithms cannot
produce reliable matching results without making strong assumption about 3D points. Specif-
ically for deformable objects, finding point correspondences is more difficult because motion
introduces self-occlusion, local shape deformation, and illumination change.

Instead of finding point correspondences directly, we will find trajectory correspondences
by utilizing point motion information encoded in a 2D trajectory. A 2D trajectory in a video is
a projection of a 3D point trajectory. The corresponding 2D points from videos must undergo
particular motion. For example, two corresponding points from different videos must satisfy an
epipolar constraint as follows:

x; () TF(t)x5(t) = 0, (6.1)

where x(¢); and x(¢), are the corresponding points at time ¢ from video 1 and 2, respectively,
and F(¢) is a fundamental matrix at time ¢. This constrains that two trajectories in 2D are pro-
jected from one 3D trajectory. As discussed in Part [, we can also apply a temporal constraint
on a 3D trajectory by assuming the 3D point travels along a smooth trajectory. In conjunction
with these constraints, motion of a local spatial descriptor, such as SIFT [68], can be a descrip-
tor of a trajectory. As a tracked point in 2D moves, the local image descriptor changes. The
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(a) Scene flow from a moving camera (b) Ambiguity

Figure 6.2: (a) A 3D point, X is projected onto the camera plane at time instant 1 and 2, which
forms 2D projections x; and Xs, respectively. The projected displacement, Axy; = S(x;) — Xa,
is the measured displacement of X at ¢ = 2 where S(x;) is optical displacement of x;. (b) For
a single camera, 3D displacement (scene flow), AX, is ambiguous given Ax,. To resolve the
ambiguity, more than two cameras are required.

change of the descriptor forms a descriptor trajectory and this can be a discriminative classifier
to detect the corresponding trajectories from other videos. The descriptor trajectory and the mo-
tion constraints will provide criteria to robustly find trajectory correspondences in the trajectory
domain.

Eulerian Approach

In contrast to the Lagrangian approach, the Eulerian approach such as 3D scene flow [[117,[118]]
does not require point correspondences between images. It estimates motion at a certain 3D point
by measuring flow of the projected point onto each camera plane as shown in Figure Let
x; and x, € R? be projected 2D points of a 3D point, X € R3, onto a camera plane at time
instant 1 and 2, respectively as shown in Figure[6.2(a)l The projected displacement, Ax,, can be
written as

AXQ = S(Xl) — X9, (62)

where S(x;) € R? is the optical flow displacement of the 2D point, x;. The projected displace-
ment, Ax,, accounts for how much X is displaced during time instant 1 and 2 in image space
and thus, it is the projection of actual displacement of AX. As shown in Figure there
are an infinite number of possible AX given Axy, i.e., any point on the line that connects S(x; )
and the camera center can be AX. This implies that the 3D scene flow cannot be determined by
a single camera because of motion ambiguity. If there are more than two cameras, the motion
ambiguity can be resolved. This approach enables us to estimate a motion vector (velocity) at a
given point in 3D without a point correspondence as shown in Figure |6.3
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(a) Input (b) Tracking (¢) Scene flow

Figure 6.3: We reconstruct motion in 3D using the Eulerian approach, i.e., 3D scene flow. We
track motion using the Kanade-Lucas-Tomasi algorithm and triangulate the optical flow in 3D.

(b) Limb position estimation

Figure 6.4: (a) 2D unstructured trajectories are clustered into three sets of trajectories. (b) Based
on the clustered trajectories, we apply a rigidity constraint to estimate limb positions.

6.2.2 3D Human Motion Reconstruction

With a few exceptions, socially salient structures are associated with humans. People are inter-
ested in other people and pay attention to their motion during social interactions. The human
body can be modeled by a tree structure where each limb is articulated by the parent joint and its
motion is induced by the motion of the corresponding joint. We will investigate two methods to
estimate human motion from videos using an articulation constraint of the human body: (1) We
will detect human body or motion in videos via 2D trajectories or a part-based model [134] and
then, reconstruct 3D human body pose that is consistent through all videos; (2) we will find 3D
reconstructed trajectories obtained from Section [6.2.1] which satisfy the articulation constraint.
We will study these two methods.
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Human Motion Estimation from 2D trajectories
2D trajectories on the same rigid body satisfy the following epipolar constraint between frames,

where F;; € R**? is a fundamental matrix and x; and x; are a point in the ith image and
the corresponding point in the jth image, respectively. We use the affine camera model and thus,
four points are required to define F';;. We estimate the fundamental matrices between consecutive
frames from 2D trajectories and the array of the fundamental matrices, 7 = {F, - - | Fr_y F
defines the motion of each limb. We can cluster trajectories based on the array of the fundamental
matrices. Figure shows trajectory clustering and Figure shows corresponding limb
positions in 2D.

We will estimate a trajectory of joint locations from two arrays of the fundamental matrices of
the adjacent limbs. Since a joint location is an unique point that two rigidity constraints from two
limbs are satisfied simultaneously, the following epipolar constraints must hold between images:

x;F}.x; =0, and x;F?x; =0, (6.4)

J J

where F}j € F; and Ffj € JF, are fundamental matrices for two different limbs and x; and x;
are the corresponding joint locations in sth and jth images, respectively. Since we use the affine
camera model, the fundamental matrix has a special form as,

0 0 a
F=]0 0 b ]. (6.5)
c d 1

By combining Equation (6.4) and Equation (6.5]), we can formulate a linear system of equations
for a 2D trajectory of joint locations,

- [ :Cl ]
Ab n
A%Q T2 1

: Yo | =AX =—| : (6.6)

A%FA)F TF
Yr

where A = [ a b c d } Equation is an underconstrained system because A €
RAF-1x2F Ty solve the system, we enforce that the 2D trajectory of joint locations lies on
a smooth subspace spanned by the DCT trajectory basis, ©, i.e., X = @3 where 3 € R is the
parameters of the joint trajectory and /X' < F. Then, Equation (6.6) becomes,

AOB = —1. 6.7)

The trajectory parameters, 3, can be solved linearly from Equation (6.7) and the resulting tra-
jectory of the joint locations, X, is a smooth trajectory. Figure[6.5]shows the joint location (i.e.,
elbow position) estimation from two limbs.

72



Figure 6.5: Joint location estimation from two clustered trajectories. Blue and red points are
from different rigid bodies and triangles are joint locations obtained by Equation (6.7)
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Figure 6.6: A conceptual graph of social motion and social saliency. If the motion is socially
salient motion, the trajectory of social saliency will follow the motion.

Human Motion Estimation from 3D trajectories

We can also reconstruct human motion from 3D unstructured trajectories that are reconstructed
in Section Some 3D trajectories reconstructed by 2D trajectory correspondences belong
to human body trajectories and thus, these trajectories can be represented by human motion. We
will find 3D trajectories that satisfy the articulation constraint and reconstruct the corresponding
human motion in 3D.

3D points that move together likely belong to the same human body. Thus, trajectories be-
long to the same person have similar patterns. We will cluster 3D trajectories that exhibit similar
patterns via a spectral clustering method. This method does not require the number of cluster,
explicitly. This will enable us to isolate trajectories for one person. From these clustered tra-
jectories, we will identify the extremities from trajectories and fit a human model composed of
the articulated tree structure. We will study how 3D trajectories are constrained and develop an
algorithm to robustly fit 3D human body model onto the unlabeled 3D trajectories.

6.2.3 Inference of Relationship Between Motion and Saliency

Social saliency is driven by social motion, such as visible social signals. From reconstructed
human motion in conjunction with gaze concurrences, we will present a method to infer the rela-
tionship between social motion and social saliency and identify socially salient motion. Inferring
the relationship requires computational representations of social motion and social saliency. We
will propose spatio-temporal representations and find the correlation between them.

Let X be a time series of a 3D point on human body and S be a time series of a gaze
concurrence, i.e., X = {X;}iz1..rand S = {S;}i=1.. r where X; € R? and S; € R? are
a point on human body and a gaze concurrence at ith time instant, respectively and F' is the
number of frames. For a socially salient structure, there is X for each limb, e.g., Xpeqq. Since
social saliency follows socially salient motion, we expect that S will be highly correlated with X
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with some time lag as shown in Figure [6.6] The peaks of S will be observed after the peaks of A
are observed. We will use cross-correlation as a measure of the relationship. Cross-correlation is
widely used to define a correlation between time-lag signals in econometrics [23}, 142, [121]. Our
X and § will be time-lag correlated signals if X is socially salient motion. Our cross-correlation
p will be defined as,

E[(X: — px) (Sir — ps)]

p(r) = (6.8)
where X; and S; are a random variable for the time series X and S, respectively and 1y and gy
are the means of X; and S;, respectively. oy and og are the standard deviations. By evaluating
the maximum of p(7), we will be able to find the causal relationship between social motion and
social saliency.

6.3 Evaluation

In this chapter, we propose a method to recognize socially salient motion by inferring the rela-
tionship between social motion and social saliency. The main focus of evaluations is how well
our inference of social saliency predicts real motion of people’s attention. Our inference model
must be able to learn the causal relationship from a social scene dataset, prioritize/reason about
contributions of social motion, and anticipate group behaviors. We will measure accuracy and
robustness of social saliency prediction via quantitative and qualitative evaluations. The baseline
of our evaluations will be a linear predictor where social saliency is fired whenever there is mo-
tion of a socially salient person. By comparing with the baseline predictor, we will show that all
motion from the socially salient person is not always socially salient motion. As a quantitative
evaluation, we will design an experiment where a lecturer performs a pre-defined motion and
audiences respond to the motion. We will measure how frequently the pre-defined lecturer’s mo-
tion drives motion of gaze concurrences, classify types of socially salient motion and study how
magnitude, speed, or abnormality of motion affects the responses. We will also evaluate error
between our prediction of social saliency and ground truth data obtained by gaze estimation and
compare our prediction with the baseline prediction (the linear predictor). These quantitative
evaluations will allow us to understand how effectively social motion links to socially saliency
and which factor of social motion is important. As a qualitative evaluation, we will apply our
algorithm to real social scenes where socially salient motion governs group behavior. We are
planning to collect data from a lecture, a sporting event, a party, and a theatrical event. Based
on 3D motion reconstruction, we will identify motion that drives social saliency and interpret
physical meaning of the relationship. Also, we will predict motion of social saliency and see
how it deviates from reality.
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Chapter 7

Discussion

Humans are social animals and, as vision is our primary perceptual sensations, we interact with
others using visible social signals. Social scene understanding is the ability to interpret a scene
in terms of this social context. While social scene understanding is key to enabling an artificial
agent to collaborate with humans, robotics and computer vision research has largely focused on
structural scene understanding. In contrast to structural scene understanding, social scene un-
derstanding has two fundamental challenges. First, social scenes usually contain time-varying
structures, such as humans. This implies that there is only one opportunity to measure the scene
at each time instant. Second, interpreting the social scene may be subjective as it depends on the
particular group of people and their particular relationships. These challenges make the prob-
lem of social scene understanding difficult to represent and underdetermined in terms of classic
(structural) scene understanding. In this thesis, we establish a computational basis for these
challenges towards understanding the relationship between social motion and social saliency.

In the first part of our work, we present a method to reconstruct motion in 3D from first
person cameras. 3D reconstruction of a moving point from a series of 2D projections is an ill-
posed problem. Since the point moves between image captures, triangulation methods become
inapplicable. We compactly represent a trajectory with a linear combination of basis trajectories.
Linear trajectory representation in conjunction with image projection constraints results in a least
squares system for the trajectory parameters. We also study 3D reconstruction of an articulated
trajectory. The human body is an articulated structure and trajectories of adjacent joints are spa-
tially constrained, i.e., the distance between two adjacent joints remains constant across time
instances. We apply spatial and temporal constraints simultaneously. We show that this prob-
lem is a binary quadratic programming problem and solve it using a branch-and-bound method.
From 3D reconstruction of motion in 3D, we resolve the challenge involved with time-varying
structure.

In the second part of this work, we present an algorithm to reconstruct social saliency from
first person cameras. A gaze concurrence is a 3D point where gaze directions from multiple
people converge. That point is socially salient because many people cognitively attend to it. We
model gaze as a cone-shaped distribution emitted from the center of eyes. The cone-shaped gaze
model captures the variation of eye-in-head motion with respect to the primary gaze ray. The
gaze model is calibrated by exploiting the fixed relationship between the first person camera and
the gaze model. By super-imposing all gaze models in 3D, a social saliency field is constructed.
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Gaze concurrences are the modes of the social saliency field and we localize the modes using a
provably convergent mean-shift algorithm. The number and 3D locations of gaze concurrences
are automatically estimated. By using the concurrences of the gaze of multiple subjects, we show
how subjective interpretations approach objectivity through consensus.

In the last part, we propose a method to reconstruct socially salient motion in 3D by inferring
the relationship between social motion and social saliency. 3D reconstruction of motion from
unstructured first person cameras includes the correspondence problem of wide baseline images.
We address two approaches to resolve the problem: the Lagrangian and Eulerian approaches. For
the Lagrangian approach, we will exploit the motion information of a 3D point to find trajectory
correspondences. We will study an epipolar constraint for corresponding trajectories and develop
a descriptor that is consistent for all 2D projected trajectories. For the Eulerian approach, we will
apply 3D scene flow that does not require point correspondences. This approach will enable us to
find locations where motion takes place. To apply physical constraints on motion, we will show
how to estimate a joint trajectory of human body in 2D and how to cluster 3D trajectories to fit
into human articulated body motion. From 3D reconstruction of motion in conjunction with gaze
concurrences, we will present an algorithm to infer the relationship between social motion and
social saliency. We will represent motion and saliency in a spatio-temporal domain. Inspired by
the fact that social saliency is driven by social motion, we will find correlation between time-lag
signals via a measure of cross-correlation. This will allow us to computationally understand their
relationship and identify socially salient motion.

Motion that is very unpredictable or complex is often socially salient. People likely focus
on what they have not seen. For example, an obnoxious person at a restaurant draws significant
attention from guests at the restaurant. First person cameras would capture this socially salient
motion. From a 3D reconstruction point of view, unpredictable or complex motion is hard to
estimate because motion priors learned from a database or corpus are not applicable. However,
from a sampling point of view, that motion will be well sampled by many different views. This
is a key benefit of first person cameras for social scene understanding. Human intelligence is
naturally encoded in the sampling procedure, which enables us to secure many views and recon-
struct the scene accurately and robustly. Thus, the more unpredictable and complex a motion
is, the more attention the activity would draw, and therefore it would enable accurate and robust
reconstruction from first person views.

An interesting question of social scene imaging is “given socially salient motion, which first
person video can represent the scene best?”. There are multiple first person cameras that look
at the same salient structure but some may be not taken from a good view point. How can we
evaluate the videos? A good video must clearly capture the socially salient motion while it fulfill
aesthetic requirements. This evaluation will be important because people often want to organize
huge video data acquired by first person cameras. Building a real-time system is another future
direction of social scene understanding. An artificial agent needs real-time social information
to respond to it. Many parts in our thesis are processed in a batch or are computationally very
expensive. Thus, acceleration of computation by either software or hardware is highly relevant
research direction. Beyond vision sensors, an audio sensor that is often embedded in a video
camera is a promising sensor that will provide critical information about a scene through voice,
tone, and speech content. Integrating vision and audio will generate significant synergy for social
scene understanding.
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Throughout this thesis, we assess that 3D reconstruction of socially salient motion can pro-
vide computational representations of social scene understanding. This thesis is a first step to-
wards answering our original question, “what does it mean to understand a social scene?”. We
think that there are a number of directions to go forward to answering the question via visual
perception, action recognition, social networks, and social psychology. We pursue embedding
these research in scene understanding to create social intelligence for a machine.

The proposed schedule is as follows:

2012 2013

Jul | Aug | Sep | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun

Journal for ECCV 10 paper

Journal for NIPS 12 paper

Socially salient motion study

Journal preparation

Job search

Thesis writing

Potential targeting conferences CVPR ICCV

Table 7.1: Proposed schedule
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