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Abstract

Large scale 3D image localization requires computa-
tionally expensive matching between 2D feature points in
the query image and a 3D point cloud. In this paper, we
present a method to accelerate the matching process and to
reduce the memory footprint by analyzing the view-statistics
of points in a training corpus. Given a training image set
that is representative of common views of a scene, our ap-
proach identifies a compact subset of the 3D point cloud
for efficient localization, while achieving comparable local-
ization performance to using the full 3D point cloud. We
demonstrate that the problem can be precisely formulated
as a mixed-integer quadratic program and present a point-
wise descriptor calibration process to improve matching.
We show that our algorithm outperforms the state-of-the-
art greedy algorithm on standard datasets, on measures of
both point-cloud compression and localization accuracy.

1. Introduction

Advances in structure from motion techniques have
made it possible to construct 3D point cloud models at
‘city-scale’ with millions of feature points in a matter of
hours [1]. To localize a query image we need to find corre-
spondences between the 2D local features in the image and
points in the 3D point cloud model. This correspondence
search is equivalent to a nearest neighbor search when a
descriptor (such as SIFT [20]) is associated with each 3D
point. Although effective for laboratory datasets, the mem-
ory footprint and computational requirements of matching
becomes prohibitive as larger and larger descriptor sets are
considered.

Large-scale 3D point clouds offer significant opportu-
nities for reduction. First, physical constraints, such as

∗indicates equal contribiutions

roads/walkways and the average height of typical photog-
raphers, produce considerable structure in the positions and
orientations that are likely to occur in a space. These corre-
lations are captured in the 3D point cloud and can be used to
identify ‘low-value’ points that are unlikely to be used for
future localization. Second, the spatial distribution of 3D
point clouds reflects the texture statistics of the environment
as well as the view statistics of the photographers. Since we
are interested only in ensuring that future cameras can be
accurately and efficiently localized, the point cloud can be
culled to better reflect view statistics independently. Finally,
during 3D reconstruction, certain points may simply not be
accurately reconstructed and are therefore unlikely to help
for future localizations. In this paper, we present a method
to reduce the 3D point cloud explicitly based on the view
statistics of a training corpus. It determines a compact sub-
set of the full 3D point database that delivers comparable
camera registration performance as using the full set. Given
an image that is representative of view-sampling patterns in
a given scene, our algorithm seeks a compact subset of the
points such that at least b points in the subset are visible
from a query image—a constraint inherited directly from
typical perspective-n-point algorithms.

This problem is related to the maximum coverage prob-
lem, or the K-cover problem. The objective of the maxi-
mum coverage problem is to find K 3D points that max-
imize the sum of the number of 2D-3D correspondences
for all training images; whereas for our problem, the cost
of the subset, e.g., the number of 3D points in the sub-
set, is minimized while keeping the number of correspon-
dences in each image larger than a threshold (the required
minimal number of correspondences to localize the image
accurately). Karp [14] noted that the maximum coverage
problem is NP-complete, so is our problem. Li et al. [18]
and Irschara et al. [11] presented greedy techniques that ap-
proximately solve the problem. However, these greedy ap-
proaches are sub-optimal and it is difficult to characterize
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or analyze their precise behavior. Thus, even small design
modifications of the objective function are difficult to in-
corporate into the algorithm, and may necessitate the de-
sign of an entirely new greedy procedure. Our approach
formulates this problem as a mixed-integer linear/quadratic
programming problem. This allows us to obtain an optimal
3D point subset (using branch-and-bound) to deliver better
data compression rate and camera registration performance
than greedy approaches. This also allows flexibility to users
to design and modify the objective function based on the
application.

Contributions. We present an algorithm for 3D
point cloud reduction that outperforms state-of-the-art ap-
proaches on standard datasets. We formulate the problem as
a mixed-integer program that is closely integrated with cam-
era pose estimation algorithms (e.g., the number-of-inliers
parameter in a RANSAC pose estimator). This formula-
tion allows explicit characterization of occurrence and co-
occurence constraints, facilitating future algorithm devel-
opment. We also introduce a generative measure to find a
correct match based on Mahalanobis distance, which allows
us to obviate the need for finding the second nearest neigh-
bor. This measure provides much tighter threshold directly
learned from a database and results in higher success rate
for RANSAC based matching.

2. Related Work
Image localization is one of the core problems in com-

puter vision and robotics. There is a significant body of
literature related to matching a set of images against a large
non-coincidental image repository for localization. We dis-
cuss existing localization methods in this section.

Image localization techniques often incorporate other
sensory data that show a strong correlation with images.
Cozman and Krotkov [5] introduced localization of an im-
age taken from unknown territory using temporal changes
in sun altitudes. Jacobs et al. [12] incorporate weather data
reported by satellite imagery to localize widely distributed
cameras. They find matches between weather conditions
on images over an year and the expected weather changes
indicated by satellite imagery. As GPS becomes a viable
solution for localization in many applications, GPS-tagged
images can help to localize images that do not have the
tags. Zhang and Kosecka [32] built a GPS-tagged image
repository in urban environments and find correspondences
between a query image and the database based on SIFT
features [20]. Hays and Efros [10] leveraged GPS-tagged
internet images to estimate a probability distribution over
the earth and Kalogerakis et al. [13] extended the work to
disambiguate locations of the images without distinct land-
marks. They applied a travel prior in the form of temporal
information in the images. Baatz et al. [3] estimated image
location based on a 3D elevation model of mountain ter-

rains and evaluated their method on the scale of a country
(Switzerland).

Pure image based localization has also been studied ex-
tensively. Torralba et al. [30] used global context to recog-
nize a scene category using a hidden Markov model frame-
work. Se et al. [26] applied a RANSAC framework for
global camera registration. Robertson and Cipolla [24] es-
timated image positions relative to a set of rectified views
of facades registered onto a city map. Zamir and Shah [31]
leveraged the Google Street View images that provide ac-
curate geo-location. Cummins and Newman [6] showed a
visual SLAM system that reliably estimates camera poses.
Structure from motion have also been employed for large
scale image localization. Snavely et al. [28] exploited struc-
ture from motion to browse a photo collection from the ex-
act location where it was taken. They used hundreds of im-
ages to register in 3D. Agarwal et al. [1] presented a paral-
lelizable system that can reconstruct hundreds of thousands
of images (city scale) within two days. Frahm et al [8]
showed larger scale reconstruction (millions of images) that
can be executed on a single PC.

As the database becomes larger, the matching process
between a query image and the database becomes compu-
tationally expensive. A number of algorithms have been in-
troduced to accelerate the matching process. A vocabulary
tree proposed by Nistér and Stewénius [22] has been widely
adopted in image localization. Havlena et al. [9] indexed
images using visual vocabularies to measure similarity be-
tween images and construct a graph that prioritizes image
matching. Irschara et al. [11] synthesized views by exploit-
ing the relationship between images and the point cloud and
indexed synthesized view points based on coverage of pro-
jected 3D points. Tree building and search method based on
N-best paths was proposed by Schindler et al. [25], while a
vector quantization method was adopted by Baatz et al. [2].
Chen et al. [4] applied the visual vocabulary tree to localize
images from various mobile devices. A graph representa-
tion of a image set can reduce the search space significantly.
Simon et al. [27] presented a method to find a minimal set
of images that can represent whole image sets via 3D recon-
struction. Snavely et al. [29] employs skeletal graph models
to identify a compact subset among a highly redundant im-
age collection. Li et al. [17] represented a collection of im-
ages with an iconic image graph that enabled them to search
on a tree structure. Li and Kosecka [16] showed a method
to select discrimitve features that are optimized for location
recognition. Ni et al. [21] adapted compact image epitomes
for query image localization.

Our image localization approach exploits a 3D point
cloud reconstructed by a collection of images. Our database
representation includes 3D points and corresponding fea-
ture vectors. We find a compact subset of the 3D point cloud
such that a query image can find at least bmatches. This ap-
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proach is related to the method by Li et al. [18]. They pro-
posed a prioritization scheme to avoid having to match ev-
ery point in the model against the query image. They show
that using a reduced set of points of the highest priority is
better than using all 3D points, as it permits registration of
more images while reducing the time needed for registra-
tion. Since this method does not constrain the set of possible
views, it outperforms the algorithm by Irschara et al. [11]
in terms of the number of images that can be registered.
However, while inverse matching from 3D points to image
features can find correct matches quickly through search
prioritization, it has difficulty on larger models. In their
most recent work by Li et al. [19], the method of “inverse-
matching” is used in conjunction with the traditional 2D-to-
3D “forward matching” to create a bi-directional matching
scheme for enhancing the similarities of correspondences.
In this paper, we formulate the 3D point cloud reduction
problem as a mixed integer quadratic programming prob-
lem. Our method produces the optimal solution given the
objective function, whereas existing methods suffer from
sub-optimality. Also our formulation allows us to design
and modify the objective function depending on applica-
tions.

3. Method
A camera pose in 3D (translation and orientation) can be

estimated by finding correspondences between 3D points
from a database and 2D points from the image captured
by the camera. A state-of-the-art perspective-n-point al-
gorithm allows us to recover the pose parameters mini-
mally from four 2D-3D point correspondences [15] given
the camera intrinsic parameters. Finding the correspon-
dences is computationally prohibitive for real-time image
localization when the number of 3D points in the database is
large [1, 8, 19]. In Section 3.1, we introduce an algorithm to
intelligently reduce the number of 3D points in the database
based on training images. Using this reduced database, we
present a novel criterion for finding 2D-3D correspondences
in Section 3.2.

3.1. Database Reduction

Given 3D points in the database, we seek a compact sub-
set of the points such that at least b number of points in
the subset are visible from a query image. This problem
is closely related to the maximum coverage problem, or K-
cover problem. In this section, we start from the well known
maximum coverage problem and derive our objective func-
tion in the form of a mixed-integer quadratic programming
problem.

Let S = {pi}i=1,··· ,N be a set of all 3D points, p, where
N is the number of points and let Sin ⊂ S be a subset of
points where pi is discarded if pi /∈ Sin. We want to find a
Sin that satisfies a user-defined criterion.
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Figure 1. A quadratic term in Equation (4) allows us to design the
binary relation between two points. We penalize co-occurring fea-
ture points for accurate camera pose localization. (a) The quadratic
term in Equation (4) contributes to produce a more stable/accurate
localization. (b) Green points are points that are selected by solv-
ing Equation (4) while orange points are selected by solving Equa-
tion (3). By penalizing the co-occurance, the quadratic term en-
courages widely distributed correspondence configuration. Vari-
ance of point distribution is 303.65 and 174.24 for green and or-
ange points, respectively.

The maximum coverage problem is to find K points that
maximize the number of correspondences, i.e.,

maximize
x

1TAx (1)

subject to
1Tx ≤ K
x ∈ {0, 1}N ,

where x is a binary vector whose ith element is one if the pi
is kept or zero otherwise and 1 is a vector whose element
is one, i.e., if pi ∈ Sin, then xi = 1. A is an F by N
visibility matrix where F is the number of images, i.e., if the
jth point is visible from the ith image, Aij = 1, otherwise
Aij = 0. Note that Ax is a vector whose ith element is the
number of correspondences for the ith image. Equation (1)
does not explicitly encode the fact that there must be at least
b number of correspondences to estimate the image pose
parameters in 3D. By incorporating such a constraint, the
problem can be formulated as:

minimize
x

1Tx (2)

subject to
Ax ≥ b1
x ∈ {0, 1}N ,

where b is the minimum number of 2D-3D correspondences
to be kept for each image. Equation (2) directly minimizes
the number of elements in Sin while maintaining the num-
ber of correspondences larger than b. Therefore, the small-
est subset of 3D points can be obtained.

When prior knowledge about a 3D point is available,
a different weight on each point can produce a solution
(Equation (2) has the same weight on all points.). For in-
stance, a point that is frequently matched to the training
images is more favorable because it is more likely to be
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matched to a query image. To weigh on each point individ-
ually, Equation (2) can be modified as:

minimize
x

qTx (3)

subject to
Ax ≥ b1
x ∈ {0, 1}N ,

where q is a weight vector. Binary relation between two
correspondences can also be considered. For example, spa-
tially widely distributed 3D point configuration is favorable
because it can enhance the accuracy of image localization;
the uncertainty of pose estimation becomes higher when the
baseline between 3D points becomes smaller. By encour-
aging high 2D/3D Euclidean distance between two corre-
spondences or penalizing co-occurance in the same image,
a desirable solution that produces highly accurate image lo-
calization can be achieved. This relation can be encoded
in the form of a binary quadratic programming problem as
follows:

minimize
x

1

2
xTQx + qTx (4)

subject to
Ax ≥ b1
x ∈ {0, 1}N ,

where Q is a symmetric matrix. Qij accounts for a weight
on the binary relation between the ith and jth points. Fig-
ure 1(a) shows that the quadratic term can contribute to-
wards accurate and robust image localization. This is also
observed in the image itself; the solution from quadratic
programming produces more widely distributed correspon-
dences.

The inequality constraint Ax ≥ b1 in Equation (2), (3),
and (4) is a hard constraint, i.e., if the total number of cor-
respondences of the ith image is less than b, there is no fea-
sible solution. For some training images, the number of
correspondences do not need to be greater than b because
the images are not informative. The hard constraint can be
relaxed by introducing a slack variable as follows:

minimize
x,ξ

1

2
xTQx + qTx + λ1Tξ (5)

subject to
Ax ≥ b1− ξ
x ∈ {0, 1}N
ξ ∈ {0,Z+}F

,

where ξ is a semi-positive integer vector that allows small
violation of the inequality constraint and λ determines the
hardness of the inequality constraint. When λ goes to in-
finite, the constraint becomes hard, i.e., the same as Equa-
tion (4), and when λ approaches zero, the constraint be-
comes soft. This slack variable also prevents the solution
from overfitting to the training images. As shown in Fig-
ure 2(a), λ controls the shape of graph. λ = 0.1 well gen-
eralizes the shape of the testing graph shown in Figure 4(a).
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Figure 2. (a) Slack variable in Equation (5) allows small violation
of the inequality constraint. This prevents the solution to over-
fit the training data. When λ = 0.1, it predicts the underlying
distribution of test images well. Compare the shape of the test-
ing set graph shown in Figure 4(c) and 4(a). (b) Mahalanobis dis-
tance measure rejects more false positive matches, i.e., fewer noisy
matches. As a result, the RANSAC success rate becomes higher.

Q, q, and λ are user designable parameters based on appli-
cations.

3.2. Matching Process

The number of correspondences per image decreases as
the size of database becomes smaller. The database size re-
duction accelerates the matching process whereas finding
correct 2D-3D matches becomes more challenging. The
number of inliers is significantly lower than the number of
outliers(< 5%). We intend the number of correspondences
to be similar to b when solving Equation (5), where b is a
small number compared to the number of all feature points
in a query image. Lower probability of choosing the inlier
requires many iterations for RANSAC [7]. To have a 95%
success rate, the required number of iterations is more than
4.8×105 for 5% of inliers using the four point method [15].

A previous method for finding correct matches relies on
a discriminative measure, i.e., the ratio test [20] to reject
false positive matches. If the ratio between distances of the
nearest neighbor and the second nearest neighbor is smaller
than a threshold (0.7 is popularly used), the 2D and 3D
points are considered to be a correct match. This ratio test
ensures that the match is distinctive. However, the ratio cri-
terion produces many false positives for our case where cor-
rect matches are extremely sparse among all detected fea-
ture points in the query image. To reduce the number of
false positive matches, Li et al. [18] used a bidirectional
matching method with different ratio tests, and Li et al. [19]
applied a co-occurance prior distribution for false positive
rejection. Unlike previous methods, we utilize a generative
measure, Mahalanobis distance, by learning a distribution
of descriptors directly from the training images. This ap-
proach can provide a more strict criterion for false positive
detection.

A 3D point associates with at least two similar descrip-
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(a) Discriminative measure
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Descriptors

(b) Generative measure

Figure 3. We present a novel method to reject false positive
matches by learning a distribution of descriptors from the train-
ing images. (a) Previous methods have used a discriminative mea-
sure, the ratio test. If the ratio between distances of the nearest
and the second nearest neighbor is less than 0.7, it is considered
to be a match. (b) Instead, we learn the covariance of descriptors.
This measure results in a more strict criterion, which enables us to
reject false positive matches. We show the decision boundary of
matching.

tors because two images are minimally required to be tri-
angulated to estimate the 3D point. In many cases, a point
corresponds to more than two descriptors from the train-
ing images. From many descriptors associated with a sin-
gle 3D point, we learn the covariance of the descriptors,
Cy = YYT, where Y =

[
y1 − ȳ · · · ym − ȳ

]
, yi

is a descriptor vector, ȳ is the mean descriptor vector, and
m is the number of the descriptors associated with the 3D
point. The covariance enables us to define a Mahalanobis
distance between 3D and 2D descriptors to measure the sim-
ilarity, i.e.,

d(ȳ, z) =

√
(z− ȳ)

T
C−1

y (z− ȳ), (6)

where z is a query descriptor. The main benefit of this dis-
tance is that we can estimate the probability of the match
given the query descriptor. Also the distance is a normalized
measure, therefore a single threshold can be applied to all
points to reject false positives. This generative measure is
a much tighter criterion than the discriminative measure in
previous works while generalizing well across all matches
as long as the query image is drawn from the distribution of
the training images. Figure 2(b) shows the effectiveness of
our distance measure. The ratio between the number of in-
liers and matches is higher than the ratio test, which results
in higher success rate for RANSAC given the same number
of iterations.

In practice, we look for bidirectionally consistent
matches: we match from a query image to the 3D database
and vice versa, and keep only the consistent matches. From
these consistent matches, we apply Mahalanobis distance
test based on Equation (6), i.e., if d(ȳ, z) > t, we reject
the match. t is a threshold. For the covariance matrix, we
use C̃y = Cy + I to avoid ill-conditioned inverse oper-

ation. Instead of representing a distribution of descriptors
with a D by D matrix where D is the feature dimension,
only diagonal elements in C̃y is used (off-diagonal terms
are extremely sparse) for compute and memory efficiency.
We use the variance of each element of the descriptors by
assuming that there is no correlation across elements in a
descriptor.

4. Result
We test our algorithm on four real datasets: two from

our own data collection and two from standard benchmark
datasets provided by Li et al. [18]. All quantitative eval-
uation is compared to the baseline greedy algorithm pre-
sented by Li et al. [18]. For our data collection, we re-
construct 3D points from videos that exhaustively scan the
space of interest. We use a standard structure from mo-
tion algorithm to reconstruct the 3D scene. We ask peo-
ple to wear head-mounted cameras and move freely in the
space. We use one of the videos as the test set and the rest
of the videos as the training set. Two sequences, outdoor
and indoor, are used for our evaluation. For the standard
datasets, we used Dubrovnik and Rome data reconstructed
by internet photos. We use known camera intrinsic param-
eters available from the meta data and estimate image pose
in 3D using the efficient perspective-n-point algorithm [15].
While the minimal number of correspondences for image
localization is four given intrinsic parameters, accurate and
robust estimation typically requires more correspondences.
Only when the number of inliers from RANSAC is higher
than 10, the image is considered to be registered. The el-
ement of the unary weight, q, is set to qi = qmax − qi,
where qi is the number of times the ith point is visible and
qmax = max{qi}i=1,··· ,N . For the binary weight, Q, we
penalize the co-occurance of two points by linearly increas-
ing the Qij whenever the ith and jth points are observed
from the same image. To solve the mixed-integer quadratic
programming problem, we use the commercial optimization
software Gurobi1.

4.1. Our datasets: Outdoor and Indoor

We set the threshold, b, for inequality constraint in Equa-
tion (4) to 20 to ensure that the number of correspondences
is greater than 10 (registration threshold). Figure 4(a) shows
the number of inliers after RANSAC (images are sorted in
descending order based on the number of inliers). Our algo-
rithm outperforms the greedy algorithm, particularly around
10 to 20 inliers. This is an important range for image lo-
calization because the accuracy of the localization degrades
significantly within the range (the grey gradient encodes the
accuracy of localization in Figure 4(a).). Figure 4(b) shows
that the solution obtained by our method is more accurate

1http://www.gurobi.com
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(a) Indoor sequence: Inlier
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Figure 4. (a) and (c): our method outperforms a greedy solution which has comparable size, particularly around 10 to 20 of the number
of inliers where camera localization becomes inaccurate. The grey gradient at the bottom of the graph shows the accuracy changes as the
number of inliers increase. To get the same threshold, b, with our method, the greedy solution is more than twice larger than ours. (b) and
(d): image localization accuracy is measured. Our method consistently performs better than comparable size of the greedy solution. Note
that the quadratic term produces the highest accuracy among our solutions.

(a) Outdoor sequence (b) Indoor sequence (c) Dubrovnik

Figure 5. Our method significantly reduces the number of points. Grey points are original 3D points, blue points are the reduced subset,
and red points are reconstructed image locations.

than the greedy method. The same observation also applies
to the outdoor sequence as shown in Figure 4(c) and Fig-
ure 4(d). In both sequences, our method achieves over 90%
image registration rate. Figure 5(a) and 5(b) show the qual-
itative results of our method.

4.2. Standard Datasets: Dubrovnik and Rome

We apply our algorithm to two standard datasets pro-
vided by Li et al. [18]. While these datasets contain
many images (6000 for Dubrovnik and 16000 for Rome),
the number of image samples per area is lower than our
datasets, i.e., covering area per image is fairly large. To
account for sparse training images, we raise b to 80. Due
to memory constraint, we only employ binary linear pro-
gramming, i.e., Equation (2) and (3). Figure 6(a) shows our
method can register about 80% of query images and con-
sistently outperforms the greedy solution. Our localization
error is also lower than the greedy algorithm as shown in
Figure 6(b). Our experiments on Dubrovnik data produce

similar observations as shown in Figure 6(c) and 6(d). De-
tailed comparison is listed in Table 1 and 2. Figure 5(c)
shows camera registration (red points) using the reduced set
of 3D point cloud (blue points).

Table 1. Registration performance for Rome data (885 query im-
ages)

N 1Tx Greedy N qTx Greedy

λ=1 94708 786 662 λ=500 100048 806 676

λ=0.5 57263 730 540 λ=300 50652 722 603

λ=0.1 20157 584 416 λ=100 24460 620 466

Table 2. Registration performance for Dubrovnik data (780 query
images)

N 1Tx Greedy N qTx Greedy

λ=0.5 46820 711 716 λ=400 37664 711 704

λ=0.25 17436 602 604 λ=100 16759 649 637

λ=0.125 10502 560 536 λ=50 10230 598 576
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(c) Dubrovnik: Inlier
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(d) Dubrovnik: Error

Figure 6. (a) and (c): we reduce the 3D points by varying slack parameter, λ. As λ decreases, the reduction rate significantly increases. The
difference between the greedy method and ours is more emphasized. For all experiments, our method consistently register more images
than the greedy method. (b) and (d): our method is more accurate.

5. Discussion
In this paper, we present an algorithm to find a compact

subset of 3D points based on view-statistics for efficient im-
age localization. This compact subset of 3D points speeds
up the matching process and results in a comparable image
localization rate. We formulate the problem as a mixed-
integer quadratic programming problem. This formulation
allows a user to design the objective function depending on
applications unlike existing greedy methods. We demon-
strate that our solution outperforms a related greedy method
on standard datasets. We also introduce a method to cali-
brate descriptors associated with a 3D point by learning a
distribution of the descriptors directly from the training im-
ages. This generative measure provides higher success rate
on a RANSAC based matching.

Our formulation of the database reduction problem al-
lows a user to design the objective function based on the ap-
plication. This enables users to manipulate the desired out-
put easily and to incorporate domain knowledge. One inter-
esting future direction might be to learn Q and q for differ-
ent target camera motion and different types of databases.
For example, camera motion in a vehicle is different from
that of a first-person camera. The reduced point set should
reflect and benefit from the prior knowledge about cam-
era motion. Also if the database contains a subset of
GPS-tagged images, weights on points corresponding to the
tagged images should be different. The optimal weight can
be learned from different datasets.

We show that the data reduction problem is inherently a
mixed integer quadratic programming problem. It is a non-
convex optimization that requires high capacity of memory
and heavy computation where the global optimum cannot
be guaranteed. For our outdoor dataset (30,000 points), it
took 30 minutes on an Intel i7 CPU@2.5GHz with 16GB
memory to solve the mixed integer quadratic programming
problem using a branch and bound method. Such mem-
ory requirement and computation are apparent limitations
of our method. However, efficient optimization algorithms

have solved large scale problems via spectral or semidef-
inite relaxation [23]. Rapid advances in computing power
and memory capacity will also enable us to handle the prob-
lem at large scale.
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