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Abstract Perception of symmetric image patterns is one of the important stages in visual
information processing. However, local interference of the input image disturbs the detection
of symmetry in artificial neural network based models. In this paper, we propose a noise-robust
neural network model that can correct asymmetric corruptions and returns clear symmetry
axes. For efficient detection of bilateral symmetry as well as asymmetry correction, our
network adopts directional blurring filters. The filter responses are fed to oscillatory neurons
for line extraction, which serializes the activation of multiple symmetry axes. Given an
activated symmetry axis, the network estimates the difference of counterparts to generate a
masking filter that covers the asymmetric parts. The network reconstructs the ideal mirror-
symmetric image with complete symmetry axes by self-correction of corruptions. Through
simulations on corrupted images, we verify that our network is superior to Fukushima’s
symmetry detection network. Our network successfully presents biologically plausible and
robust symmetry perception mechanism.
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1 Introduction

Symmetries are everywhere; it is easily found in both natural scenes and man-made structures.
We perceive symmetric patterns more intuitively than those that are not. Scientific studies
prove that mammals prefer symmetric patterns to asymmetric patterns in terms of visual
perception [5,6,15,23]. Also, it is known that utilizing symmetry information in computers
does help understanding of images as well [9,21]. Symmetry detection has been successfully
used for practical applications such as face detection [25,27], shape matching [22], and urban
scene figure groupings [18], as well as biological modeling of visual selective attention [8].

There are mainly two approaches in bilateral symmetry axes detection. One is to take
mathematical algorithms and the other is to adopt biological mechanisms. Many of methods
in the algorithmic approach use local feature descriptors [13,16] to detect symmetric patterns
in images [3,14]. Compared to pixel-wise comparison method [1], local descriptor-based
methods substantially speed up the detection process by reducing the number of symmetry
axis candidates. In addition, recent works advance to detect symmetric axes from curved
[2,12], skewed [10,11], or three-dimensional patterns [26]. This approach concentrates on
the aspect of practical usage.

On the other hand, the second approach considers biological plausibility of the model; the
whole process of symmetry detection are expressed in terms of parallelized neural computa-
tion in artificial neural networks(ANN). The scope of our work also lies within this approach.
Spatial filter responses [4,17] are commonly used for feature extraction. Poirier and Wilson
[20] presented symmetry perception model based on their previous model of shape perception
in visual cortex [19]. Fukushima [7] successfully demonstrated a fast and reliable symmetry
axis detection network.

Although various symmetry axis detection methods have been studied, they do not work
well when asymmetric corruptions exist. Correction of asymmetries is significantly important
for robust symmetry axes detection. In order to solve this problem, we propose an ANN model
that provides robust symmetry axes detection and is able to correct asymmetries by itself.
We first detect symmetry axes by comparing filter responses of counter parts. By utilizing
directional filters, we are informed of in which direction there exists strong asymmetries.
Oscillator alternatively activates one symmetry axis by one, and corrects asymmetries by
masking them with back projection of asymmetric measure provided in filter responses. As
a result, image with perfect symmetry is returned with clear symmetry axes.

Rest of the paper is organized as follows. In Sect. 2, we describe our neural network model
for symmetry detection. In Sect. 3, experimental results are presented. We close our paper
with conclusion in Sect. 4.

2 Method

The proposed network consists of two parts. In Part 1, symmetry axes are detected, and in
Part 2, asymmetry is self-corrected. The overall structure of proposed network is described
in Fig. 1. There are mainly three contributions in our network. First, we propose directional
blurring filters for symmetry axis detection and asymmetry correction. Second, we adopt
oscillatory network to serialize symmetry axis activation for back projection of asymmetries.
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Fig. 1 The architecture of self-correcting symmetry detection network

Third, we extend symmetry axis detection network to asymmetry correction with aid of
oscillatory network.

2.1 Part 1 - Symmetry Axis Detection

2.1.1 Edge Extraction (UG and US layer)

Part 1 resembles much of the process in [7]. Input image is introduced to layer of photorecep-
tors, U0. It proceeds to layer of lateral geniculate nucleus cells (LGNs), UG , for extracting
positive and negative contrast by off-center-on-surround cells and on-center-off-surround
cells, respectively. UG layer returns U (k)

G (m, n), where k is the index for off-center (k = 1)

and on-center (k = 2) cell-plane, and (m, n) is the image coordinate. From U (k)
G (m, n), we

detect directional edges in US layer, which returns U (k)
S (m, n). In contrast with [7], we have

an additional layer, U sum
S (m, n) = ∑K

k=1 U (k)
S (m, n), which sum up the edge information

altogether.

2.1.2 Sliced-Cone Filtering (UC Layer)

For symmetry axis detection, our proposed network uses directional blurring filters, named
as ‘sliced-cone filters.’ While [7] applies cone filters to blurred edges of each direction, our
sliced-cone filter itself possesses directional property. Therefore, we do not need edge blurring
in each direction in US . Instead, we use summation of orientational edges, U sum

S (m, n).
The sliced-cone filter of kth direction ak = 2πk

K is defined by

F (k)SC (m, n) = F (k)S (m, n)× FC (m, n), (1)

F (k)S (m, n) =
{

1 i f |atan2(n,m)− ak | ≤ π
K and 0 <

√
m2 + n2 < L

0 otherwise
(2)
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FC (m, n) = ϕ(L −√m2 + n2)

L
(3)

Here, (2) is slice filter of direction ak , and (3) is cone filter of radius L , where ϕ(α) =
max(α, 0). Sliced-cone filter is generated by diving a cone into K radial slices. Each slice
is assigned a directional angle for detecting edges in corresponding directions. Sliced-cone
filter returns filter response U (k)

C (m, n) as defined below.

U (k)
C (m, n) =

L∑

n′=−L

L∑

m′=−L

F (k)SC (m
′, n′)×U sum

S (m + m′, n + n′). (4)

The set of sliced-cone filters is rotation-invariant that it can be used to detect any direction
of symmetry axis. The shape of long and thin slice is advantageous to detect and re-locate
asymmetric parts. And it covers the entire local region of all directions, unlike simple line-
shaped filters.

2.1.3 Symmetry Axis Detection (UH and UX Layer)

To determine symmetry axis, we compare left and right side of an axis. We take the same
approach here as in [7]. Given a symmetry axis candidate at position (m, n) and orientation ak ,
we compare sliced-cone filter responses of direction ak+i and ak−i for i = 1, 2, . . . , K/2. If
all pairs of filter responses U (k+i)

C (m, n) and U (k−i)
C (m, n) are equal, the candidate is regarded

as symmetry axis. This process is described in Fig. 2.
In UH layer, we calculate symmetry measure of axis orientation ak at point (m, n) of

image as,

U (k)
H (m, n) = ϕ

⎛

⎜
⎜
⎝

K/2∑

i=1

⎡

⎢
⎢
⎣γi

(
U (k+i)

C (m, n)+U (k−i)
C (m, n)

)

︸ ︷︷ ︸
summation term

−δ
∣
∣
∣U

(k+i)
C (m, n)−U (k−i)

C (m, n)
∣
∣
∣

︸ ︷︷ ︸
difference term

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠ . (5)

Here, γi = �min
( 4i

K , 2− 4i
K

)
and two variables δ and � are constant.

Symmetry axis is detected by acquiring the common parts of filter responses U (k+i)
C (m, n)

and U (k−i)
C (m, n). We subtract the difference term from the summation term to leave the

Fig. 2 Symmetry axis detection process. Black lines indicate given symmetry axis candidates with angles of
ak (k = 1, 2, ..., 36). Colored pairs of lines with same colors indicate pairs of directions of sliced-cone filters
with angles of ak+i and ak−i , to verify the symmetry of given axis (black line). (Color figure online)
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Fig. 3 Two edge pixels

commons of the two filter responses. To reduce false positives of symmetry axis for small
i, γi is maximized when ak+i and ak−i are perpendicular to ak and minimized when they are
parallel to ak .

The output of the Part 1 UX (m, n) = max
k

U (k)
H (m, n) displays detected symmetry axes.

Individual neurons may generate noise. However, activated neurons on a long line reliably
represent local mirror-symmetry.

2.1.4 Oscillatory Network

To correct asymmetries, we generate masks by back projection of asymmetric filter response
on the symmetry axis. We use locally-excitatory globally-inhibitory oscillator networks
(LEGION) [24] and mutual excitatory connectivity between co-linear edge pixels for sequen-
tial activation of symmetry axes.

To understand how we detect and activate an axis, imagine two edge pixels ei and e j as
in Fig. 3. Here, θi , θ j , and θi j denote the orientation of edge pixels ei and e j , and line ei e j ,
respectively. The distance between two edge pixels is denoted as di j . The angle between each
edge pixel and line ei e j is defined as φi j = D(θi − θi j ) and φ j i = D(θ j − θi j ). We use a
function D(θ) = θ − � θ

π
+ 0.5�π to convert angle into the range of [−π2 , π2 ), where �x� is

the round down value of x .
We detect straight lines based on the closeness and co-linearity between two edge pixels,

using excitatory connection wi j = fd(di j ) fl(φi j , φ j i ) and inhibitory connection vi j =
ginh fd(di j ). The term fd(di j ) and fl(φi j , φ j i ) denote distance factor and linearity factor,
respectively. They are computed as

fd(di j ) =
{(

σd
di j

)2
if di j > σd ,

1 otherwise
, and (6)

fl(φi j , φ j i ) =
{

cos b
(|φi j | + |φ j i |

)
if b

(|φi j | + |φ j i |
) ≤ π

2 ,

0 otherwise,
(7)

where b is a constant. The neurons that are close together and appear on a straight line score
high value for excitatory connection wi j .

The total connection from neuron i to neuron j iswi j−vi j = fd(di j )( fl(φi j , φ j i )−ginh),
where ginh is a threshold parameter that controls neurons’ activation.

Oscillator X (k)(m, n) represents the activity of the symmetry axis with orientation ak

and position (m, n). It receives external input U (k)
H (m, n). The network generates alternate

activation of symmetry axes. (See [24] for the details).
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2.2 Part 2 - Asymmetry Reconstruction and Correction

Sequentially activated symmetry axis is fed to Part 2 for asymmetry reconstruction and
correction.

2.2.1 Asymmetry Reconstruction

Given one activated symmetry axis, we calculate back projection coefficient for each of
neurons on the symmetry axis. It is computed from the difference term in (5). If oscil-
lator X (k

′)(m, n) is activated, we compare filter response U (k)
C (m, n) and its counter part

U (k′′)
C (m, n), which satisfy k′′ = mod(2k′ − k− 1, K )+ 1; they correspond to U (k+i)

C (m, n)

and U (k−i)
C (m, n) in (5), respectively. The bilateral difference accumulates to the back pro-

jection coefficient B(k)C (m, n).

B(k)C (m, n) =
K∑

k′=1

A(k
′)(m, n)× ϕ

(
U (k)

C (m, n)−U (k′′)
C (m, n)

)
. (8)

In (8),

A(k)(m, n) =
{

1 i f X (k)(m, n) ≥ �x ,

0 otherwise
(9)

is the discretized neural activity X (k)(m, n) with threshold �x .
Sliced-cone filters F (k)SC (m, n) project back B(k)C (m, n) and reconstruct asymmetric parts.

Sliced-cone filters F (k)SC (m, n) reconstruct asymmetric parts by back projection with coef-

ficient of B(k)C (m, n). The process is described in Fig. 4b. The back projection result
BP (m, n)(see Fig. 4c) is

BP (m, n) =
K∑

k=1

L∑

n′=−L

L∑

m′=−L

F (k)SC (m
′, n′)× B(k)C (m + m′, n + n′). (10)

2.2.2 Asymmetry Correction

To correct asymmetries, we generate a mask M(m, n) (see Fig. 4d) by accumulating back
projection coefficient BP (m, n) with lateral inhibition BI (m, n).

M(m, n)← ψ [M(m, n)+ μ (BP (m, n)−max (ηBI (m, n), ε))] . (11)

In this equation, ψ [α] = max(min(α, 1), 0) is a clipping function. The lateral inhibition is
defined as

BI (m, n) =
K∑

k=1

L∑

n′=−L

L∑

m′=−L

(
FC (m

′, n′)
)2 × A(k)(m − m′, n − n′). (12)

As an asymmetric image pixel gets closer to the symmetry axis, it receives stronger back-
projection (Compare the left and the right side in Fig. 4c). The inhibition term BI (m, n)
compensates for the spatial irregularity and eliminates the local blurring artifacts of back
projection.
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Fig. 4 a Asymmetry part with respect to given symmetry axis, b back projection of B(k)C (m, n) by sliced-cone

filter F(k)SC (m, n), c accumulated back projection, BP (m, n), d generated mask, M(m, n)

Fig. 5 a Input images, b example of an image with line noises, and c ellipse noises

The mask is applied to U sum
S (m, n) by

U sum
S (m, n)← (1− M(m, n))U sum

S (m, n). (13)

U sum
S (m, n) is recurrently updated in a way that asymmetries are removed.

3 Experimental Results

To verify noise-robust symmetry axis detection and asymmetry correction ability of our
proposed network, we generated some corruptions or noises in the images provided by
Fukushima [7]. We used 16 input images of binary alphabetical characters or gray scale
patterns as shown in Fig. 5a. The size of each image is 79× 79. We combined filters of two
different scales L = 25 and 50 for more accurate symmetry detection. We set the number
of orientation K = 36. For calculation of U (k)

H (m, n) in Eq. (5), we used γ1 = 1.2
π

, and
δ = 5. For mask generation in Eq. (11), we used μ = 0.003, η = 0.6, and ε = 1.0. For fast
simulation of oscillatory network, we implemented simplified algorithm of LEGION in [24].
We used two types of noises: lines and ellipses. We limited the length of line and the major
/ minor of ellipse noises to be in range of 10 %–20 % of input image diagonal. To observe
symmetry axis detection performance change with respect to the degree of corruptions, we
increased the number of noises from 1 to 4. For more reliable analysis, we generated 10
random noise samples for each cases. An example of image with line and ellipse noises of 1
to 4 is shown in Fig. 5b, c respectively.

An example of the experimental data with noise is displayed in Fig. 6. Fukushima’s
network fails to detect all of the symmetry axes as shown in (g). However, in (b), our pro-
posed network detects weakly activated symmetry axes at first, and then by back projection,
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Fig. 6 a Input image corrupted with 4 noises of line and ellipse noises, and Usum
S (m, n), b symmetry axes

detected before oscillatory network, UX (m, n), c serially activated symmetry axis by oscillatory network, d
image mask and e self-corrected image with respect to activated symmetry axis, f accumulation of neural
activity in oscillator network (returned symmetry axes after oscillator), and g symmetry axes detected by
Fukushima’s network [7]

asymmetries are corrected successfully by mask generated in (d). Proposed network returns
corrected image along with clear symmetry axes in (e) and (f), respectively.

3.1 Evaluation of Symmetry Axis Detection

For quantitative analysis of symmetry axis detection performance, we evaluated the result
with F-measure: F = 2 × precision×recall

precision+recall , where precision = T P
T P+F P , and recall =

T P
T P+F N , TP = true positive (number of correctly detected pixels), FP = false positive (number
of falsely detected pixels), and FN = false negative (number of missing pixels). When the
result of symmetry axis detection is not binary as in Fukushima’s model [7], we calculated
F-value with respect to increasing thresholds and selected the maximum value. We compared
the average F-measure of our result before correction (initial UX (m, n)), our result after
correction (accumulated activity of neural oscillator), and Fukushima’s network result in
Fig. 6b, f, and g, respectively. As noise increases, proposed network shows less performance
drop compared to Fukushima’s. This shows that proposed network performs more robust
against corruption (see Fig. 7).

3.2 Evaluation of Asymmetry Correction

In this section, we analyze asymmetry correction performance of our proposed network in
quantitative manner. An example of asymmetry correction results is shown in Fig. 8. Figure 8f
is the ideal mirror symmetry image that can be obtained by optimal masking of noisy U sum

S .
Figure 8e resembles much of the ideal symmetry image in (f). Provided that the network
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Fig. 7 Averaged F values of 16 images with 10 samples for each, for a line noises, and b ellipse noises

Fig. 8 Self-correction examples. (a) Corrupted input image, (b) Usum
S (m, n), (c) detected symmetry axis,

(d) mask and (e) corrected image with respect to symmetry axis in (c), and (f) mirror-symmetry image with
respect to ground-truth symmetry axis of same direction as (c)

detects appropriate symmetry axis in (c), the proposed network successfully reconstructs
asymmetry masks in (d) and returns symmetry images.

We introduce two measures for the asymmetry correction performance: Asymmetry Cor-
rection Rate (ACR) and Symmetry Distortion Rate (SDR). Assume an input image Ii (m, n),
its ideal symmetric correction IG(m, n), and self-correction of input Ic(m, n). ACR is

defined as 1 −
∑

m,n φ(Ic(m,n)−IG (m,n))∑
m,n(Ii (m,n)−IG (m,n))

. SDR is the proportion of symmetry part that has

been accidentally removed by the network out of perfect symmetries, which is calculated by

SDR =
∑

m,n φ(IG (m,n)−Ic(m,n))∑
m,n IG (m,n)

.

For easier comparison of IG(m, n) and Ic(m, n), we selected images that have either
vertical or horizontal or both as ground-truth symmetry axes (Image 1-7, 11-12, and 14-16
of Fig. 5a ).

To observe pure asymmetry correction ability regardless of symmetry axis detection per-
formance, we only considered the reconstructed outputs from successfully detected symmetry
axes that shares more than 50 % similarities with the ground-truth axis.

The experimental result is summarized in Table 1. Proposed network corrects asymmetries
induced by ellipse noises better than line noises, while maintaining SDR as low as less than
1 %. The proposed network successfully corrects asymmetric parts while retaining symmetric
parts intact.
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Table 1 ACR and SDR
of line/ellipse noises

Number of noises Line noises Ellipse noises

ACR SDR ACR SDR

1 0.5774 0.0112 0.6782 0.0116

2 0.5344 0.0107 0.6253 0.0130

3 0.5700 0.0093 0.6175 0.0119

4 0.5184 0.0118 0.6599 0.0156

3.3 Discussion

Our network is mainly composed of symmetry axis detection and asymmetry correction. The
performance of the whole process depends on the initial detection of symmetry axes. If the
network fails to detect even a weak activation of symmetry axes, the proceeding stages can
neither correct asymmetries nor return clarified axes. This emphasizes the important role of
directional filtering in the initial stage.

While directional blurring filters enable reconstruction and correction of asymmetry, they
are sensitive to slight deviation of symmetry axes. When the angle of symmetry axis lies
in-between the angles of directional filters, network often failed to detect them. We might
reduce the sensitivity by increasing the number of directional filters or adopting circular
blurring filters as in Fukushima’s network [7].

The performance of asymmetry correction is not always stable and accurate. It sometimes
leaves artifacts on the image and masks empty spaces. Further optimization of directional
filter shape and mask generation method remains as a further work.

4 Concluding Remarks

In this paper, we proposed a biologically plausible symmetry detection network that can cor-
rect asymmetries by itself. We used directional blurring filters for symmetry axis detection
and asymmetry correction. Oscillatory neurons activate one symmetry axis at a time, and the
network corrects asymmetries by back projection of asymmetry measure with respect to acti-
vated axis. Through experiments with corrupted images of various cases, we verified that our
proposed network successfully detects symmetry axis against strong asymmetric corruptions.
In addition, proposed network corrects asymmetric parts and returns mirror-symmetry image
with clearly reconstructed symmetry axes. The extended function of asymmetry correction
opens more chances for practical applications in real environments.

Acknowledgments This research was supported by Basic Science Research Program through the National
Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2011-
0029816). Wonil Chang and Hyun Ah Song are co-first authors, who equally contributed to this paper. We
thank professor Fukushima for providing code for symmetry detection network [7].

References

1. Beck J, Hope B, Rosenfeld A (1983) (U.S.), N.S.F.: Human and machine vision. Academic Press
2. Chertok M, Keller Y (2010) Spectral symmetry analysis. IEEE Trans Pattern Anal Mach Intell 32(7):1227–

1238
3. Cho M, Lee KM (2009) Bilateral symmetry detection via symmetry-growing. In: Proceedings of the

British machine vision conference

123



Noise-Robust Detection of Symmetric Axes 189

4. Dakin S, Watt R (1994) Detection of bilateral symmetry using spatial filters. Spat Vis 8(4):393–413
5. Enquist M, Arak A (1994) Symmetry, beauty and evolution. Nature 372(6502):169–172
6. Frintrop S, Rome E, Christensen HI (2010) Computational visual attention systems and their cognitive

foundations: A survey. ACM Trans Appl Percept 7(1):6
7. Fukushima K (2005) Use of non-uniform spatial blur for image comparison: symmetry axis extraction.

Neural Netw 18(1):23–32
8. Jeong S, Ban SW, Lee M (2008) Stereo saliency map considering affective factors and selective motion

analysis in a dynamic environment. Neural netw 21(10):1420–1430
9. Kootstra G, Nederveen A, De Boer B (2008) Paying attention to symmetry. In: Proceedings of the British

Machine Vision Conference (BMVC2008), pp 1115–1125. The British Machine Vision Association and
Society for Pattern Recognition

10. Lazebnik S, Schmid C, Ponce J., et al. (2004) Semi-local affine parts for object recognition. In: British
Machine Vision Conference (BMVC’04), pp 779–788

11. Lee S, Liu Y (2010) Skewed rotation symmetry group detection. IEEE Trans Pattern Anal Mach Intell
32(9):1659–1672

12. Lee S, Liu Y (2012) Curved glide-reflection symmetry detection. IEEE Trans Pattern Anal Mach Intell
34(2):266–278

13. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–
110

14. Loy G, Eklundh JO (2006) Detecting symmetry and symmetric constellations of features. In: European
Conference on Computer Vision (ECCV2006), pp 508–521. Springer

15. Machilsen B, Pauwels M, Wagemans J (2009) The role of vertical mirror symmetry in visual shape
detection. J Vis 9(12):1–11

16. Mikolajczyk K, Schmid C (2004) Scale & affine invariant interest point detectors. Int J Comput Vis
60(1):63–86

17. Osorio D (1996) Symmetry detection by categorization of spatial phase, a model. Proceedings of the
Royal Society of London. Series B: Biological Sciences 263(1366):105–110

18. Park M, Brocklehurst K, Collins RT, Liu Y (2010) Translation-symmetry-based perceptual grouping
with applications to urban scenes. In: Asian Conference on Computer Vision (ACCV2010), pp 329–342.
Springer

19. Poirier FJ, Wilson HR (2006) A biologically plausible model of human radial frequency perception.
Vision Res 46(15):2443–2455

20. Poirier FJ, Wilson HR (2010) A biologically plausible model of human shape symmetry perception.
J Vis 10(1):1–16

21. Reisfeld D, Wolfson H, Yeshurun Y (1995) Context-free attentional operators: the generalized symmetry
transform. Int J Comput Vis 14(2):119–130

22. Temlyakov A, Munsell BC, Waggoner JW, Wang S (2010) Two perceptually motivated strategies for
shape classification. In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on,
pp 2289–2296. IEEE

23. Treder MS (2010) Behind the looking-glass: a review on human symmetry perception. Symmetry
2(3):1510–1543

24. Wang D, Terman D (1997) Image segmentation based on oscillatory correlation. Neural Comput 9(4):805–
836

25. Wang W, Gao Y, Hui SC, Leung K (2002) A fast and robust algorithm for face detection and localization.
In: Internatonal Conference on Neural Information Processing (ICONIP2002), vol. 4, pp 2118–2121.
IEEE

26. Wang Y, Xu K, Li J, Zhang H, Shamir A, Liu L, Cheng Z, Xiong Y (2011) Symmetry hierarchy of
man-made objects. In: Computer Graphics Forum, vol. 30, p 287–296. Wiley Online Library

27. Won WJ, Jang YM, Ban SW, Lee M (2007) Biologically motivated face selective attention model. In:
Internatonal Conference on Neural Information Processing (ICONIP2007), pp 953–962. Springer

123


	Noise-Robust Detection of Symmetric Axes by Self-Correcting Artificial Neural Network
	Abstract
	1 Introduction
	2 Method
	2.1 Part 1 - Symmetry Axis Detection
	2.1.1 Edge Extraction (UG and US layer)
	2.1.2 Sliced-Cone Filtering (UC Layer)
	2.1.3 Symmetry Axis Detection (UH and UX Layer)
	2.1.4 Oscillatory Network

	2.2 Part 2 - Asymmetry Reconstruction and Correction
	2.2.1 Asymmetry Reconstruction
	2.2.2 Asymmetry Correction


	3 Experimental Results
	3.1 Evaluation of Symmetry Axis Detection
	3.2 Evaluation of Asymmetry Correction
	3.3 Discussion

	4 Concluding Remarks
	Acknowledgments
	References


