Abstract

Question answering requires access to a knowledge base to check facts and reason about information. Knowledge in the form of natural language text is easy to acquire, but difficult for automated reasoning. Highly-structured knowledge bases can facilitate reasoning, but are difficult to acquire. In this paper we explore tables as a semi-structured formalism that provides a balanced compromise to this trade-off. We first use the structure of tables to guide the construction of a dataset of over 9000 multiple-choice questions with rich alignment annotations, easily and efficiently via crowd-sourcing. We then use this annotated data to train a semi-structured feature-driven model for question answering that uses tables as a knowledge base. In benchmark evaluations, we significantly outperform both a strong unstructured retrieval baseline and a highly-structured Markov Logic Network model.

1 Introduction

Question answering (QA) has emerged as a practical research problem for pushing the boundaries of artificial intelligence (AI). Dedicated projects and open challenges to the research community include examples such as Facebook AI Research’s challenge problems for AI-complete QA (Weston et al., 2015) and the Allen Institute for AI’s (AI2) Aristo project (Clark, 2015) along with its recently completed Kaggle competition1. The reason for this emergence is the diversity of core language and reasoning problems that a complex, integrated task like QA exposes: information extraction (Srihari and Li, 1999), semantic modelling (Shen and Lapata, 2007; Narayanan and Harabagiu, 2004), logic and reasoning (Moldovan et al., 2003), and inference (Lin and Pantel, 2001).

Complex tasks such as QA require some form of knowledge base to store facts about the world and reason over them. By knowledge base, we mean any form of knowledge: structured (e.g., tables, ontologies, rules) or unstructured (e.g., natural language text). For QA, knowledge has been harvested and used in a number of different modes and formalisms: large-scale extracted and curated knowledge bases (Fader et al., 2014), structured models such as Markov Logic Networks (Khot et al., 2015), and simple text corpora in information retrieval approaches (Tellex et al., 2003).

There is, however, a fundamental trade-off in the structure and regularity of a formalism and its ability to be curated, modelled or reasoned with easily. For example, simple text corpora contain no structure, and are therefore hard to reason with in a principled manner. Nevertheless, they are easily and abundantly available. In contrast, Markov Logic Networks come with a wealth of theoretical knowledge connected with their usage in principled inference. However, they are difficult to induce automatically from text or to build manually.

In this paper we explore tables as semi-structured knowledge for multiple-choice question (MCQ) answering. Specifically, we focus on tables that represent general knowledge facts, with cells that contain free-form text (Secton 3 details the nature and semantics of these tables). The structural properties of tables, along with their free-form text content represents a semi-structured balanced compromise in the trade-off between degree of structure and ubiquity. We present two main contributions, with tables and their structural properties playing a crucial role in both. First,
we crowd-source a collection of over 9000 MCQs with alignment annotations to table elements, using tables as guidelines in efficient data harvesting. Second, we develop a feature-driven model that uses these MCQs to perform QA, while fact-checking and reasoning over tables.

Others have used tables in the context of QA. Question bank creation for tables has been investigated (Pasupat and Liang, 2015), but without structural guidelines or the alignment information that we propose. Similarly, tables have been used in QA reasoning (Yin et al., 2015b; Neelakantan et al., 2015; Sun et al., 2016) but have not explicitly attempted to encode all the semantics of table structure (see Section 3.1). To the best of our knowledge, no previous work uses tables for both creation and reasoning in a connected framework.

We evaluate our model on MCQ answering for three benchmark datasets. Our results consistently and significantly outperform a strong retrieval baseline as well as a Markov Logic network model (Khot et al., 2015). We thus show the benefits of semi-structured data and models over unstructured or highly-structured counterparts. We also validate our curated MCQ dataset and its annotations as an effective tool for training QA models. Finally, we find that our model learns generalizations that permit inference when exact answers may not even be contained in the knowledge base.

2 Related Work

Our work with tables, semi-structured knowledge bases and QA relates to several parallel lines of research. In terms of dataset creation via crowdsourcing, Aydin et al. (2014) harvest MCQs via a gamified app, although their work does not involve tables. Pasupat and Liang (2015) use tables from Wikipedia to construct a set of QA pairs. However their annotation setup does not impose structural constraints from tables, and does not collect fine-grained alignment to table elements.

On the inference side Pasupat and Liang (2015) also reason over tables to answer questions. Unlike our approach, they do not require alignments to table cells. However, they assume knowledge of the table that contains the answer, a priori – which we do not. Yin et al. (2015b) and Neelakantan et al. (2015) also use tables in the context of QA, but deal with synthetically generated query data. Sun et al. (2016) perform cell search over web tables via relational chains, but are more generally interested in web queries. Clark et al. (2016) combine different levels of knowledge for QA, including an integer-linear program for searching over table cells. None of these other efforts leverage tables for generation of data.

Our research more generally pertains to natural language interfaces for databases. Answering questions in this context refers to executing queries over relational databases (Cafarella et al., 2008; Pimplikar and Sarawagi, 2012). Yin et al. (2015a) consider databases where information is stored in n-tuples, which are essentially tables. Also, investigation of the relational structure of tables is connected with research on database schema analysis and induction (Venetis et al., 2011; Syed et al., 2010). Finally, unstructured text and structured formats links to work on open information extraction (Etzioni et al., 2008) and knowledge base population (Ji and Grishman, 2011).

3 Tables as Semi-structured Knowledge Representation

Tables can be found on the web containing a wide range of heterogenous data. To focus and facilitate our work on QA we select a collection of tables that were specifically designed for the task. Specifically we use AI2’s Aristo Tablestore2. However, it should be noted that the contributions of this paper are not tied to specific tables, as we provide a general methodology that could equally be applied to a different set of tables. The structural properties of this class of tables is further described in Section 3.1.

The Aristo Tablestore consists of 65 handcrafted tables organized by topic. Some of the topics are bounded, containing only a fixed number of facts, such as the possible phase changes of matter (see Table 1). Other topics are unbounded, containing a very large or even infinite number of facts, such as the kind of energy used in performing an action (the corresponding tables can only contain a sample subset of these facts). A total of 3851 facts (one fact per row) are present in the manually constructed tables. An individual table has between 2 and 5 content columns.

The target domain for these tables is two 4th grade science exam datasets. The majority of the tables were constructed to contain topics and facts

2http://allenai.org/content/data/AristoTablestore-Nov2015Snapshot.zip
Phase Change	Initial State	Final State	Form of Energy Transfer
Melting causes a solid to change into a liquid by adding heat
Vaporization causes a liquid to change into a gas by adding heat
Condensation causes a gas to change into a liquid by removing heat
Sublimation causes a solid to change into a gas by adding heat

Table 1: Part of a table concerning phase changes in matter. Rows are facts. Columns without header text provide filler text, so that each row forms a sentence. In columns with header text, the header describes the type of entry in the column; the header is a hypernym of the text in the body below.

from the publicly available Regents dataset\(^3\). The rest were targeted at an unreleased dataset called Monarch. In both cases only the training partition of each dataset was used to formulate and handcraft tables. However, for unbounded topics, additional facts were added to each table, using science education text books and websites.

3.1 Table Semantics and Relations

Part of a table from the Aristo Tablestore is given as an example in Table 1. The format is semi-structured: the rows of the table (with the exception of the header) are a list of sentences, but with well-defined recurring filler patterns. Together with the header, these patterns divide the rows into meaningful columns. This semi-structured data format is flexible. Since facts are presented as sentences, the tables can act as a text corpus for information retrieval. At the same time the structure can be used – as we do – to focus on specific nuggets of information. The flexibility of these tables allows us to compare our table-based system to an information retrieval baseline.

Such tables have some interesting structural semantics, which we will leverage throughout the paper. A row in a table corresponds to a fact\(^4\). The cells in a row correspond to concepts, entities, or processes that participate in this fact. A content column\(^5\) corresponds to a group of concepts, entities, or processes that are the same type. The header cell of the column is an abstract description of the type. We may view the head as a hypernym and the cells in the column below as co-hyponyms of the head. The header row defines a generalization of which the rows in the table are specific instances.

This structure is directly relevant to multiple-choice QA. Facts (rows) form the basis for creating or answering questions, while instances of a type (columns) act as the choices of an MCQ. We use these observations both for crowd-sourcing MCQ creation as well as for designing features to answer MCQs with tables.

4 Crowd-sourcing Multiple-choice Questions from Tables

We use Amazon’s Mechanical Turk (MTurk) service to generate MCQs by imposing constraints derived from the structure of the tables. These constraints help annotators create questions with scaffolding information, and lead to consistent quality in the generated output. An additional benefit of this format is the alignment information, linking cells in the tables to the MCQs generated by the Turkers. The alignment information is generated as a by-product of making the MCQs.

We present Turkers with a table such as the one in Figure 1. Given this table, we choose a target cell to be the correct answer for a new MCQ; for example, the red cell in Figure 1. First, Turkers create a question by using information from the rest of the row containing the target (i.e., the blue cells in Figure 1), such that the target is its correct answer. Then they select the cells in the row that they used to construct the question. Following this, they construct four succinct choices for the question, one of which is the correct answer and the other three are distractors. Distractors are formed from other cells in the column containing the target (i.e. yellow cells in Figure 1). If there are insufficient unique cells in the column Turkers create their own. Annotators can rephrase and shuffle the contents of cells as required.

In addition to an MCQ, we obtain alignment information with no extra effort from annotators. We know which table, row, and column contains the answer, and thus we know which header cells might be relevant to the question. We also know the cells of a row that were used to construct a question.

\(^3\)http://allenai.org/content/data/Regents.zip
\(^4\)Also predicates, or more generally frames with typed arguments.
\(^5\)Different from filler columns, which only contain a recurring pattern, and no information in their header cells.
Table 2: Comparison of different ways of generating MCQs with MTurk.

<table>
<thead>
<tr>
<th>Task</th>
<th>Avg. Time (s)</th>
<th>$/hour</th>
<th>% Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rewrite</td>
<td>345</td>
<td>2.61</td>
<td>48</td>
</tr>
<tr>
<td>Paraphrase</td>
<td>662</td>
<td>1.36</td>
<td>49</td>
</tr>
<tr>
<td>Add choice</td>
<td>291</td>
<td>2.47</td>
<td>24</td>
</tr>
<tr>
<td>Write new</td>
<td>187</td>
<td>5.78</td>
<td>38</td>
</tr>
<tr>
<td>TabMCQ</td>
<td>72</td>
<td>5.00</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 3: Examples of MCQs generated by MTurk. Correct answer choices are in bold.

<table>
<thead>
<tr>
<th>Question</th>
<th>Choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is the orbital event with the longest day and the shortest night?</td>
<td>A) Summer solstice</td>
</tr>
<tr>
<td></td>
<td>B) Winter solstice</td>
</tr>
<tr>
<td></td>
<td>C) Spring equinox</td>
</tr>
<tr>
<td></td>
<td>D) Fall equinox</td>
</tr>
<tr>
<td>Steel is a/an _____ of electricity</td>
<td>A) Separator</td>
</tr>
<tr>
<td></td>
<td>B) Isolator</td>
</tr>
<tr>
<td></td>
<td>C) Insulator</td>
</tr>
<tr>
<td></td>
<td>D) Conductor</td>
</tr>
</tbody>
</table>

5 Solving MCQs with Table Cell Search

Consider the MCQ “What is the process by which water is changed from a liquid to a gas?” with choices “melting, sublimation, vaporization, condensation”, and the table given in Figure 1. Finding the correct answer amounts to finding a cell in the table that is most relevant to a candidate QA pair. In other words, a relevant cell should confirm the assertion made by a particular QA pair.

By applying the reasoning used to create MCQs
bles be defined as T every table for a given QA pair efficient.

During inference the partition over all the cells in all the tables to yield a probability distribution. These scores translate to a solution for an MCQ. We define a log-linear model that scores every cell t_{nm}^{ij} of every table in our collection according to a set of discrete weighted features, for a given QA pair. We have the following:

$$\log p(t_{nm}^{ij}|q_n, a_n^k; A_n, T) = \sum_d \lambda_d f_d(q_n, a_n^k, t_{nm}^{ij}; A_n, T) - \log Z$$

Here λ_d are weights and $f_d(q_n, a_n^k, t_{nm}^{ij}; A_n, T)$ are features. These features should ideally leverage both structure and content of tables to assign high scores to relevant cells, while assigning low scores to irrelevant cells. Z is the partition function, defined as follows:

$$Z = \sum_{m,i,j} \exp\left(\sum_d \lambda_d f_d(q_n, a_n^k, t_{nm}^{ij}; A_n, T)\right)$$

Z normalizes the scores associated with every cell over all the cells in all the tables to yield a probability distribution. During inference the partition term $\log Z$ can be ignored, making scoring cells of every table for a given QA pair efficient.

These scores translate to a solution for an MCQ. Every QA pair produces a hypothetical fact, and as noted in Section 3.1, the row of a table is in essence a fact. Relevant cells (if they exist) should confirm the hypothetical fact asserted by a given QA pair. During inference, we assign the score of the highest scoring row (or the most likely fact) to a hypothetical QA pair. Then the correct solution to the MCQ is simply the answer choice associated with the QA pair that was assigned the highest score. Mathematically, this is expressed as follows:

$$a_n^* = \arg \max_{a_n^k} \max_{m,i,j} \sum_j \sum_d \lambda_d f_d(q_n, a_n^k, t_{nm}^{ij}; A_n, T)$$

5.1 Model and Training Objective

Let $Q = \{q_1, ..., q_N\}$ denote a set of MCQs, and $A_n = \{a_n^1, ..., a_n^k\}$ be the set of candidate answer choices for a given question q_n. Let the set of tables be defined as $T = \{T_1, ..., T_M\}$. Given a table T_m, let t_{nm}^{ij} be the cell in that table corresponding to the ith row and jth column.

We define a log-linear model that scores every cell t_{nm}^{ij} of every table in our collection according to a set of discrete weighted features, for a given QA pair. We have the following:

$$\log p(t_{nm}^{ij}|q_n, a_n^k; A_n, T) = \sum_d \lambda_d f_d(q_n, a_n^k, t_{nm}^{ij}; A_n, T) - \log Z$$

Here λ_d are weights and $f_d(q_n, a_n^k, t_{nm}^{ij}; A_n, T)$ are features. These features should ideally leverage both structure and content of tables to assign high scores to relevant cells, while assigning low scores to irrelevant cells. Z is the partition function, defined as follows:

$$Z = \sum_{m,i,j} \exp\left(\sum_d \lambda_d f_d(q_n, a_n^k, t_{nm}^{ij}; A_n, T)\right)$$

Z normalizes the scores associated with every cell over all the cells in all the tables to yield a probability distribution. During inference the partition term $\log Z$ can be ignored, making scoring cells of every table for a given QA pair efficient.

These scores translate to a solution for an MCQ. Every QA pair produces a hypothetical fact, and as noted in Section 3.1, the row of a table is in essence a fact. Relevant cells (if they exist) should confirm the hypothetical fact asserted by a given QA pair. During inference, we assign the score of the highest scoring row (or the most likely fact) to a hypothetical QA pair. Then the correct solution to the MCQ is simply the answer choice associated with the QA pair that was assigned the highest score. Mathematically, this is expressed as follows:

$$a_n^* = \arg \max_{a_n^k} \max_{m,i,j} \sum_j \sum_d \lambda_d f_d(q_n, a_n^k, t_{nm}^{ij}; A_n, T)$$

5.1.1 Training

Since FRETS is a log-linear model, training involves optimizing a set of weights λ_d. As training data, we use alignment information between MCQs and table elements (see Section 4.1). The predictor value that we try to maximize with our model is an alignment score that is closest to the true alignments in the training data. True alignments to table cells for a given QA pair are essentially indicator values but we convert them to numerical scores as follows. For a correct QA hypothesis we assign a score of 1.0 to cells whose row and column and both aligned to the MCQ (i.e. cells that exactly answer the question), 0.5 to cells whose row but not column is aligned in some way to the question (i.e. cells that were used to construct the question), and 0.0 otherwise. For an incorrect QA hypothesis we assign a score of 0.1 to random cells from tables that contain no alignments to the QA (so all except one), with a probability of 1%, while all other cells are scored 0.0. The intuition behind this scoring scheme is to guide the model to pick relevant cells for correct answers, while encouraging it to pick faulty evidence with low scores for incorrect answers.

Given these scores assigned to all cells of all tables for all QA pairs in the training set, suitably normalized to a probability distribution over tables for a given QA pair, we can then proceed to train our model. We use cross-entropy, which minimizes the following loss:

On training data, we experimented with a few different scoring heuristics and found that these ones worked well.
Table 4: Summary of features. For a question (q) and answer (a) we compute scores for elements of tables: whole tables (t), rows (r), header rows (h), columns (c), column headers (qh) and cells (s).

Answer-focus (af) and question-focus (qf) terms added where appropriate. Features marked ♦ denote soft-matching variants, marked with while those marked with a † are described in further detail in Section 5.2. Finally, ● features denote those that received high weights during training with all features, and were subsequently selected to form a compact FRETS model.

5.2 Features

The features we use are summarized in Table 4. These features compute statistics between question-answer pairs and different structural components of tables. While the features are weighted and summed for each cell individually, they can capture more global properties such as scores associated with tables, rows or columns in which the specific cell is contained. Features are divided into four broad categories based on the level of granularity at which they operate. In what follows we give some details of Table 4 that require further elaboration.

5.2.1 Soft matching

Many of the features that we implement are based on string overlap between bags of words. However, since the tables are defined statically in terms of a fixed vocabulary (which may not necessarily match words contained in an MCQ), these overlap features will often fail. We therefore soften the constraint imposed by hard word overlap by a more forgiving soft variant. More specifically we introduce a word-embedding based soft matching overlap variant for every feature in the table corresponding word-embedding soft overlap feature is of a fixed vocabulary (which may not necessarily overlap features will often fail. We therefore soften the constraint imposed by hard word overlap by a more forgiving soft variant. More specifically we introduce a word-embedding based soft matching overlap variant for every feature in the table corresponding word-embedding soft overlap feature is defined below.

$$L(\vec{\lambda}) = \sum_{q_i} \sum_{a_i} \sum_{m,i,j} p(t_i^{mij} | q_i, a_i; T) \cdot \log p(t_i^{mij} | q_i, a_i; A_n, T)$$

(4)

Here $p(t_i^{mij} | q_i, a_i; T)$ is the normalized probability of the true alignment scores.

While this is an indirect way to train our model to pick the best answer, in our pilot experiments it worked better than direct maximum likelihood or ranking with hinge loss, achieving a training accuracy of almost 85%. Our experimental results on the test suite, presented in the next section, also support the empirical effectiveness of this approach.

5.2.2 Question parsing

We parse questions to find the desired answer-type and, in rarer cases, question-type words. For example, in the question “What form of energy is required to convert water from a liquid to a gas?”, the type of the answer we are expecting is a “form of energy”. Generally, this answer-type corresponds to a hypernym of the answer choices, and can help find relevant information in the table, specifically related to columns.
By carefully studying the kinds of question patterns in our data, we implemented a rule-based parser that finds answer-types from queries. This parser uses a set of hand-coded regular expressions over phrasal chunks. The parser is designed to have high accuracy, so that we only produce an output for answer-types in high confidence situations. In addition to producing answer-types, in some rarer cases we also detect hypernyms for parts of the questions. We call this set of words question-type words. Together, the question-type and answer-type words are denoted as focus words in the question.

5.2.3 TF-IDF weighting

TF-IDF scores for weighting terms are pre-computed for all words in all the tables. We do this by treating every table as a unique document. At run-time we discount scores by table length as well as length of the QA pair under consideration to avoid disproportionately assigning high scores to large tables or long MCQs.

5.2.4 Salience

The salience of a string for a particular QA pair is an estimate of how relevant it is to the hypothesis formed from that QA pair. It is computed by taking words in the question, pairing them with words in an answer choice and then computing PMI statistics between these pairs from a large corpus. A high salience score indicates words that are particularly relevant for a given QA pair hypothesis.

5.2.5 Entailment

To calculate the entailment score between two strings, we use several features, such as overlap, paraphrase probability, lexical entailment likelihood, and ontological relatedness, computed with n-grams of varying lengths.

5.2.6 Normalization

All the features in Table 4 produce numerical scores, but the range of these scores vary to some extent. To make our final model more robust, we normalize all feature scores to have a range between 0.0 and 1.0. We do this by finding the maximum and minimum values for any given feature on a training set. Subsequently, instead of using the raw feature value of a feature f_d, we instead replace it with \(\frac{(f_d - \min f_d)}{(\max f_d - \min f_d)} \).

6 Experimental Results

We train FRETs (Section 5) on the TabMCQ dataset (Section 4) using adaptive gradient descent with an L2 penalty of 1.0 and a mini-batch size of 500 training instances. We train two variants: one consisting of all the features from Table 4, the other – a compact model – consisting of the most important features (above a threshold) from the first model by feature-weight. These features are noted by ● in the final column of Table 4.

We run experiments on three 4th grade science exam MCQ datasets: the publicly available Regents dataset, the larger but unreleased dataset called Monarch, and a third even larger public dataset of Elementary School Science Questions (ESSQ)\(^9\). For the first two datasets we use the test splits only, since the training sets were directly studied to construct the Aristo Tablestore, which was in turn used to generate our TabMCQ training data. On ESSQ we use all the questions since they are independent of the tables. The Regents test set consists of 129 MCQs, the Monarch test set of 250 MCQs, and ESSQ of 855 MCQs.

Since we are investigating semi-structured models, we compare against two baselines. The first is an unstructured information retrieval method, which uses the Lucene search engine. To apply Lucene to the tables, we ignore their structure and simply use rows as plain-text sentences. The score for top retrieved hits are used to rank the different choices of MCQs. The second baseline is the highly-structured Markov-logic Network (MLN) model from Khot et al. (2015) as reported in Clark et al. (2016), who use the model as a baseline\(^10\). Note that Clark et al. (2016) achieve a score of 71.3 on Regents Test, which is higher than FRETs’ scores (see Table 5), but their results are not comparable to ours because they use an ensemble of algorithms. In contrast, we use a single algorithm with a much smaller collection of knowledge. FRETs rivals the best individual algorithm from their work.

We primarily use the tables from the Aristo Tablestore as knowledge base data in three different settings: with only tables constructed for Regents (40 tables), with only supplementary tables constructed for Monarch (25 tables), and with all ta-

\(^10\)We do not re-implement the MLN, and therefore only cite results from previous work on part of our test suite.
Table 5: Evaluation results on three benchmark datasets using different sets of tables as knowledge bases. Best results on a dataset are highlighted in bold.

<table>
<thead>
<tr>
<th>Model</th>
<th>Data</th>
<th>Regents Test</th>
<th>Monarch Test</th>
<th>ESSQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lucene</td>
<td>Regents Tables</td>
<td>37.5</td>
<td>32.6</td>
<td>36.9</td>
</tr>
<tr>
<td></td>
<td>Monarch Tables</td>
<td>28.4</td>
<td>27.3</td>
<td>27.7</td>
</tr>
<tr>
<td></td>
<td>Regents+Monarch Tables</td>
<td>34.8</td>
<td>35.3</td>
<td>37.3</td>
</tr>
<tr>
<td></td>
<td>Waterloo Corpus</td>
<td>55.4</td>
<td>51.8</td>
<td>54.4</td>
</tr>
<tr>
<td>MLN</td>
<td>(Khot et al., 2015)</td>
<td>-</td>
<td>47.5</td>
<td>-</td>
</tr>
<tr>
<td>FRETS</td>
<td>Regents Tables</td>
<td>60.7</td>
<td>47.2</td>
<td>51.0</td>
</tr>
<tr>
<td>Compact</td>
<td>Monarch Tables</td>
<td>56.0</td>
<td>45.6</td>
<td>48.4</td>
</tr>
<tr>
<td></td>
<td>Regents+Monarch Tables</td>
<td>59.9</td>
<td>47.6</td>
<td>50.7</td>
</tr>
<tr>
<td>FRETS</td>
<td>Regents Tables</td>
<td>59.1</td>
<td>52.8</td>
<td>54.4</td>
</tr>
<tr>
<td></td>
<td>Monarch Tables</td>
<td>52.9</td>
<td>49.8</td>
<td>49.5</td>
</tr>
<tr>
<td></td>
<td>Regents+Monarch Tables</td>
<td>59.1</td>
<td>52.4</td>
<td>54.9</td>
</tr>
</tbody>
</table>

The word vectors we used in soft matching feature variants (i.e., ♦ features from Table 4) for all our experiments were trained on 300 million words of Newswire English from the monolingual section of the WMT-2011 shared task data. These vectors were improved post-training by retrofitting (Faruqui et al., 2014) them to PPDB (Ganitkevitch et al., 2013).

The results of these experiments is presented in Table 5. All numbers are reported in percentage accuracy. We perform statistical significance testing on these results using Fisher’s exact test with a p-value of 0.05 and report them in our discussions.

First, FRETS – in both full and compact form – consistently outperforms the baselines, often by large margins. For Lucene, the improvements over all but the Waterloo corpus baseline are statistically significant. Thus FRETS is able to capitalize on data more effectively and rival an unstructured model with access to orders of magnitude more data. For MLN, the improvements are statistically significant in the case of Regents and Regents+Monarch tables. FRETS is thus performing better than a highly structured model while making use of a much simpler data formalism.

Our models are able to effectively generalize. With Monarch tables, the Lucene baseline is little better than random (25%). But with the same knowledge base data, FRETS is competitive and sometimes scores higher than the best Lucene or MLN models (although this difference is statistically insignificant). These results indicate that our models are able to effectively capture both content and structure, reasoning approximately (and effectively) when the knowledge base may not even contain the relevant information to answer a question. The Monarch tables themselves seem to add little value, since results for Regents tables by themselves are just as good or better than Regents+Monarch tables. This is not a problem with FRETS, since the same phenomenon is witnessed with the Lucene baseline. It is noteworthy, however, that our models do not suffer from the addition of more tables, showing that our search procedure over table cells is robust.

Finally, dropping some features in the compact model doesn’t always hurt performance, in comparison with the full model. This indicates that potentially higher scores are possible by a principled and detailed feature selection process. In these experiments the difference between the two FRETS models on equivalent data is statistically insignificant.

6.1 Ablation Study

To evaluate the contribution of different features we perform an ablation study, by individually removing groups of features from the full FRETS
model, and re-training. Evaluation of these partial models is given in Table 6. In this experiment we use all tables as knowledge base data.

Judging by relative score differential, cell features are by far the most important group, followed by row features. In both cases the drops in score are statistically significant. Intuitively, these results make sense, since row features are crucial in alignment to questions, while cell features capture the most fine-grained properties. It is less clear which among the other three feature groups is dominant, since the differences are not statistically significant. It is possible that cell features replicate information of other feature groups. For example, the cell answer-type entailment feature indirectly captures the same information as the header answer-type match feature (a column feature). Similarly, salience captures weighted statistics that are roughly equivalent to the coarse-grained table features. Interestingly, the success of these fine-grained features would explain our improvements over the Lucene baseline in Table 5, which is incapable of such fine-grained search.

7 Conclusions

We have presented tables as knowledge bases for question answering. We explored a connected framework in which tables are first used to guide the creation of MCQ data with alignment information to table elements, then jointly with this data are used in a feature-driven model to answer unseen MCQs. A central research question of this paper was the trade-off between the degree of structure in a knowledge base and its ability to be harvested or reasoned with. On three benchmark evaluation sets our consistently and significantly better scores over an unstructured and a highly-structured baseline strongly suggest that tables can be considered a balanced compromise in this trade-off. We also showed that our model is able to generalize from content to structure, thus reasoning about questions whose answer may not even be contained in the knowledge base.

We are releasing our dataset of more than 9000 MCQs and their alignment information, to the research community. We believe it offers interesting challenges that go beyond the scope of this paper – such as question parsing, or textual entailment – and are exciting avenues for future research.

Acknowledgement

We’d like to thank AI2 for funding this research and the creation of our MCQ dataset. The first and third authors of this paper were also supported in part by the following grants: NSF grant IIS-1143703, NSF award IIS-1147810, DARPA grant FA87501220342. Thanks also go to the anonymous reviewers, whose valuable comments helped to improve the quality of the paper.

References

Bahadir Ismail Aydin, Yavuz Selim Yilmaz, Yaliang Li, Qi Li, Jing Gao, and Murat Demirbas. 2014. Crowdsourcing for multiple-choice question answering. In Twenty-Sixth IAAI Conference.

