Boosted Gabor Features Applied to Vehicle Detection
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Abstract

Robust vehicle detection is a challenging task given ve-
hicles with different types, and sizes, and at different dis-
tances. This paper proposes a Boosted Gabor Features
(BGF) approach for vehicle detection. The two main con-
ventional Gabor filter design approaches are a filter bank
design approach with fixed parameters even for different
applications and a learning approach. In contrast, the pa-
rameters of our boosted Gabor filters, learned from exam-
ples, differ from application to application. Moreover, our
boosted approach optimizes the filter parameters for every
image sub-window, and the boosted filters have a large re-
sponse for sub-windows containing a part of a vehicle re-
sulting in a greatly improved performance in vehicle detec-
tion.

Our vehicle detection has two basic phases in which we
build a multi-resolution hypothesis-validation structure. In
the vehicle hypothesis generation phase, hypothesis lists
are generated for three ROIs with different resolutions us-
ing horizontal and vertical edges ,and following that, a hy-
pothesis list for the whole image is obtained by combining
these three lists. In the subsequent hypothesis validation
phase, we validate the vehicle hypothesis list by inputting
the boosted Gabor feature vector into the support vector
machine.

In the context of vehicle detection, the resulting system
vields detection rates comparable to the best previous sys-
tems while achieving a 20 frames per second real-time per-
formance on a Pentium(R)4 CPU 2.4GHz.

1. Introduction

According to the statistics of China’s Ministry of Public
Safety, traffic accidents cause on average one injury every
minute and one death every 5 minutes in China. Clearly,

Intelligent Driver-Assistance and Safety Warning (IDASW)
Systems can be of use. In this paper we look in particular at
vehicle detection and tracking for such a system.

Currently, IDASW systems based on Radar have a higher
cost than those based on machine vision, while having nar-
row field of view and bad lateral resolution. In Adaptive
Cruise Control (ACC) systems, a camera can detect the cut-
in and overtaking vehicle from the adjacent lane earlier than
the radar. Due to these reasons, it is more difficult to ap-
ply such radar-based systems into practical IDASW sys-
tems. Consequently, robust and real time vehicle detec-
tion in video attracts more attention of scholars all over the
world [2] [3] [8].

2. Previous Work

D. Gabor first proposed 1D Gabor function in 1946 and
J.G. Daugman extended it to 2D later. In fact, a Gabor filter
is a local bandpass filter that can reach the theoretical limit
for the spatial domain and the frequency domain simultane-
ously. Consequently, Gabor filters have been successfully
applied into object representation in various computer vi-
sion applications, such as texture segmentation and recog-
nition [6], face recognition [10], scene recognition, and ve-
hicle detection [8].

The basic issue of a Gabor filter is how to select the pa-
rameters of a filter that responds mainly to an interesting
object, such as a vehicle or a pedestrian. Accurate detection
only occurs if the parameters defining Gabor filters are well
selected. Three main approaches have been proposed in the
literature for selecting Gabor filters for object representa-
tion: manual selection, Gabor filter bank design (including
filter design) [6], and a learning approach [8] [9] [10] [7].
In [1], Ilkka Autio proposed an approach for manual se-
lection: An initial set of Gabor filters were experimentally
selected from a larger set and then manually tuned. In gen-
eral, a Gabor filter bank design defines a small filter pool,
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and determines the parameters of its filters independent of
the application domain; moreover, the bandwidth of those
Gabor filter design approaches can not be determined au-
tonomously. In image browsing and retrieval, a strategy is
used to ensure that the half-peak magnitude support of the
filter responses in the frequency domain touch each other by
using a filter bank with 6 directions and 4 scales to compute
the features of a texture [5]. Due to independence between
filter bank and the application domain, such an approach
can be used for object classification, detection and track-
ing. The main problems of this filter design approach are
small filter pool sizes, no prior knowledge, and poor per-
formance. Learning-based Gabor filter design approaches
select the Gabor filters according to its application domain.
Du-Ming Tsai proposed an optimization algorithm for Ga-
bor filters using a simulated annealing approach to obtain
the best Gabor filter in texture segmentation [9]. A face
recognition application using a strong classifier cascaded by
weak classifiers was proposed by S.Z. Li; in his approach
weak classifiers were constructed based on both magnitude
and phase features from Gabor filters [10].

In terms of vehicle detection, Alberto Broggi introduced
a multi-resolution vehicle detection approach, and proposed
to divide the image into three fixed ROIs[2]. His approach
allows detection of multiple vehicles in a predefined region.
However, it uses a symmetry axis for detecting vehicles that
is not only time-consuming to compute but symmetry fea-
tures are somewhat problematic. In [8], Zehang Sun pro-
posed an Evolutionary Gabor Filter Optimization (EGFO)
approach for vehicle detection, and used the statistical fea-
ture of the response of selected Gabor filters to classify the
test image using a trained SVM classifier. Although good
performance has been reported, EGFO has large computa-
tional cost for selection of a Gabor filter. Moreover, each
Gabor filter is optimized for a complete image, but it is ap-
plied to each sub-window of a test image, which reduces the
quality of representation.

To reduce the computational burden and improve the
performance in vehicle detection, we propose a supervised
learning approach based on boosted Gabor features. A sim-
ilar attempt to select the Gabor features is described in [7].
However, the choosed Gabor feature set in that study is
larger than those in our study; moveover, the SVM is only
used to classify objects during the period of recognizing
step rather than the previous training step. Their approach
may result in performance decrease. In contrast, we use
SVM as classifier during the period of both training step
and classifying step.

3. Boosted Gabor Features Using AdaBoost
3.1 Gabor Feature

We first introduce some necessary definitions for Gabor
filters and basic concepts for vehicle representation. The
2D Gabor function can be defined as follows.

2 2
IR ESTE )
2T, 0

Gp(u,v)

Where
U = (u,v) - (cosp, sinp)
V = (—u,v)(sing, cosy)

and f is the radius frequency of a complex sinusoidal signal
modulating Gaussian function, ¢ is the direction of a Ga-
bor filter, o,, and o, are the scale parameters of the filter,
and p = ( f 0, 0u,0,) € R* represents all the parame-
ters of a Gabor filter. Clearly, for image pixel set {2, Ga-
bor features can be obtained by convolving the input image
I(u,v)((u,v) € Q) and a 2D Gabor filter g(u, v) written by

R(u,v) = / /Q (Em)g(u— Ev—n)dédn. ()

Although a linear feature could be directly used to repre-
sent an object, few scholars do that. The most used Ga-
bor features are thresholded Gabor features, Gabor-energy
features, Complex moment Gabor features, and grating cell
operator features. In this paper, we adopt the complex mo-
ment features of a Gabor filter response as the feature vector
of our classifier.

3.2 Boosted Gabor Features

Selection of different Gabor features has some effect on
detection performance, however, the primary issue of se-
lecting the Gabor filter is to find the Gabor filters strongly
responding to the object of interest. The filter parame-
ters are adjusted to obtain the strongest response for sub-
windows comprising a vehicle part. The image is divided
into 9 overlapping sub-windows, and the vehicle is repre-
sented with statistical features, mean u, standard deviation
0, and the skewness x, from a convolution between a sub-
window and a Gabor filter [8].

Having obtained Gabor features of an object, it is time to
evaluate the performance of a Gabor feature. Boosting ap-
proaches aim at improving the accuracy of any given learn-
ing algorithm and focusing on “difficult” examples. Ad-
aBoost algorithm proposed by E. Schapire is one of the
most popular variations of basic boosting algorithms [4]. In
its original form, it is used to improve the accuracy of any
given learning algorithm. In this paper, it is used to boost
the Gabor features for vehicle detection.
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There are many Gabor features associated with a sub-
window; however, few Gabor features are crucial for ve-
hicle detection. Consequently, feature selection must be
performed on these Gabor features. In this paper, we op-
timize the SVM classifier parameters for each of the nine
sub-windows, and then test the resulting nine classifiers for
each sub-window using test examples recording the clas-
sification rate of each Gabor filter for the 9 different sub-
windows. According to the results, we perform the boost-
ing task on a larger set of Gabor features using AdaBoost
algorithm, where each round of boosting finds one Gabor
feature for a sub-window from the candidate features. After
T iteration, it yields T Gabor filters for each sub-window
(See Table 1). In our experiments, a total of 36 filters are
combined into a feature vector to represent vehicles. The
detection performance of BGF approach using the features
after 4 iterations is better than those after 6 iterations.

The selection of a Gabor filter is to find the optimal pa-
rameter set in Gabor parameter space R*

{ph... S Piy e 7PN}

where p; = ( f;—, ©is Oui, Opi), and N is the number of Gabor
filters. For convenience of computing Gabor parameters are
discretized. We define the range of f to be [ Fonins fmuw].
According to the Nyquist theorem, the digital frequency
w = 7 corresponds to the maximum frequency of a band
limited signal, and the frequencies higher than 7 will be dis-
torted. We write wimaz= 27 frmaz/fs= 27 fmaI, and then
fmaI = Wpmaaz/27, where f is the general frequency, f is
the sampling frequency, and fi is the k-th normalized fre-
quency that can be discretized by

_1
S S fonaz \ ©
fk — fmln + max L mn (Lk Wlth a = AHLLL‘L

where L is the number of sample points and « is the sample
scale. For the direction ¢ of a filter, the filter response to an
object in [0, 7] is the same as to an object in [, 27].

The sample interval for uniform sampling is Ap =
180/ P degrees, where P is the number of samples for .
The scale parameters o, and o, are actually the effective
size of a Gaussian function, and their ranges are equal, say
[Omin, Omaz). The upper limit 0,0, = Ws/5, where W
is the sub-window width, resulting in 98.7% energy in the
range [—m, 7] of . At the same time, the lower limit o,
equals 0, and the number of samples for both o, and o, is
M.

In our experiments in this paper, a = 1.5588, L = 15,
P =15, M = 10, N = 22500, W, = 40, f €
[fmin, fmaz] = [0,0.5], and 0, o, €= [0, 8]. Fig.1 shows
our boosted Gabor filters for vehicle detection.

Figure 1. Boosted Gabor filters using Ad-

aBoost algorithm: each row shows the
boosted Gabor filters for one sub-window,
and the i-th column represents the Gabor fil-
ter after the i-th iteration.

4. Application to Vehicle Detection
4.1 SVM Classifier

SVM is an efficient approach to find the optimal hy-
perplane in a binary classification: this hyperplane has the
maximum margin between two distinguished classes, which
ensures not only the minimum empirical risk, but also the
minimum Vapnik Chervonenkis (VC) confidence. If the
training examples from two classes cause the two classes’
margin to be maximal, then the classification hyperplane
satisfies the following equation:

L
F@) =" yiaik(w, z;) +b 3)
1=1

where z,z; € % are N-dimensional input feature vectors,
L is the number of examples, y; € (—1,1) is the label of
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Table 1. BGF Algorithm Description

Input:
Training examples 1 (I;,y;),1<i<n
Training examples 2 (I;,y;),n+1<j<n+m;
Gabor filters: c1,--- ,cn;
y; is the i-th label of an example
Computation:
For each sub-window s
For each Gabor filter ¢
For each training example (I;, y;)
r(li,e;8) = (L;Ns)xci=1,---,n
Train the SVM classifier using the features
For each training example (I;, y;)
r(lj,¢s)={IjNs)xe,j=n+1,--- ,n+m
Classifying the training examples 2
Do T times
Obtaining one feature using AdaBoost algorithm;
Output:
The 4 Gabor filters after 4 iterations with weights o ;
for each sub-window.

the i-th example, and k(z, ;) is the inner product function.
‘We use radial basis function as kernel function, defined as

e = a?
202

k(x,z;) = exp( ) 4

4.2 Hypothesis-Validation Structure for
Vehicle Detection

Inspired by A. Broggio[2], we extract three ROISs, a near
one, one in the middle, and a far one, from a 640 x 480
image. His approach uses fixed regions at the cost of flex-
ibility, we remove this limitation and build a simple and
efficient hypothesis-validation structure in 3 steps. (1) We
generate ROI Candidates using a vanishing point of the road
in the original image. (2) We create a multi-resolution ve-
hicle hypothesis based on the preceding candidate regions.
From the analysis of edge histograms, we generate hypothe-
ses for each ROI and combine them into a single list. (3) We
conduct vehicle validation using the boosted Gabor features
and SVM classifier. According to the judging of the clas-
sifier, we determine whether hypotheses represent a vehicle
or a non-vehicle (see [3], for details).

5. Experimental Results and Analysis

We have carrried out vehicle dectection using, apart from
our approach, the EGFO approach and a no-boosting ap-
proach. The distribution of Gabor filter parameters , ( f s O,
Oy O'y), are shown in Fig.1. We can see that our boosted

Gabor filters are different from the optimized Gabor filters
using EGFO because each Gabor filter in our approach is
optimized for a sub-window rather than for a complete im-
age. For the frequency of Gabor filters, the boosted filters
tend to have a low frequency due to large structures in ve-
hicles, like windows and bumpers. are more The directions
of most of the boosted Gabor filters are close to 0°, 45°,
90°, 135° (see 2nd sub-figure of Fig.1), due to prevalence
of these angles in vehicles. In addition, from the latter two
sub-figures of Fig.1, it follows that o, is larger than o, in
accordance with vehicles being wider than high. To summa-
rize, the choice of Gabor filter parameters is heavily depen-
dent on the detection object, a Gabor filter that works well
for vehicles probably does not work for pedestrians, and
vice versa. Our Gabor filter selection optimized for vehi-
cle detection results in better performance than those based
on previous selection methods. For training the classifier,

005 01 015 02 025 03 0% 04 045 05

Figure 2. The Distribution of the Parameters
of Gabor Filters

we selected 500 images from our vehicle database which
was collected in Xi’an in 2005. They contain 1020 positive
examples and 1020 negative examples. In testing the classi-
fier, we use 500 negative and positive examples independent
of the training examples.

For the validation of the performance of our BGF ap-
proach, the vehicle detection experiments were performed
on three different optimization approaches for 22,500 Ga-
bor filters. The experimental results show the Average Right
Rate (ARR) of a no-boosting Gabor feature approach is
90%, that of BGF approach is 96%, and that of EGFO ap-
proach is 91%. Fig.4(a) is the comparison of our detector
with the other two approaches, and the Receiver Operating
Characteristics (ROC) curves that compare different boost-
ing approaches are shown in Fig.4(b). These figures show
that our vehicle detector has a good discriminability while
a low decision bias comparing both no-boosting and EGFO
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Figure 3. Vehicle Detection Based on
Hypothesis-Validation

algorithms.

6 Conclusions and Future Work

In this paper we have introduced a boosting approach for
Gabor filters, and a structure of hypothesis and validation
for vehicle classification and detection. The experimental
results of our system so far show that the algorithm has good
classification and detection performance for on-road real-
time vehicle detection. Further research work will focus on
other detection tasks, such as pedestrian detection and face
detection.
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