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ABSTRACT 
Assigning a set of hypothesized knowledge components       
(KCs) to assessment items within an ed-tech system enables         
us to better estimate student learning. However, creating        
and assigning these KCs is a time consuming process that          
often requires domain expertise. In this study, we present         
the results of crowdsourcing KCs for problems in the         
domain of mathematics and English writing, as a first step          
in leveraging the crowd to expedite this task. Crowdworkers         
were presented with a problem and asked to provide the          
underlying skills required to solve it. Additionally, we        
investigated the effect of priming crowdworkers with       
related content before having them generate these KCs. We         
then analyzed their contributions through qualitative coding       
and found that across both the math and writing domains          
roughly 33% of the crowdsourced KCs directly matched        
those generated by domain experts for the same problems.  
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INTRODUCTION 
Many educational technologies, such as intelligent tutoring       
systems and online courseware, utilize knowledge      
component modeling to support their adaptivity. This treats        
student knowledge as a set of interrelated KCs, where each          
KC is “an acquired unit of cognitive function or structure          
that can be inferred from performance on a set of related           
tasks” [3]. A KC model is defined as a mapping between           
each question item and a hypothesized set of associated         
KCs that represent the skills or knowledge needed to solve  
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that item. This mapping is intended to capture the student’s          
underlying cognitive process and is vital to many core         
functionalities of an intelligent educational software,      
enabling features such as adaptive feedback and  hints [7]. 

The construction of such a mapping is typically carried out          
by learning science practitioners, such as subject matter        
experts, cognitive scientists and learning engineers, who       
inspect the materials and assign one or more KCs to each           
question [4]. This process is often a time consuming task,          
making both the creation of this map and continuous         
iteration challenging. An emerging area that has the        
potential to provide the human resources needed for scaling         
KC modeling is crowdsourcing [6]. Naturally, the challenge        
with this approach is that the population of crowdworkers is          
highly varied in their education level and domain        
knowledge proficiency. One method to potentially address       
this issue is to prime crowdworkers, having them solve         
several related problems before engaging in the KC        
modeling. Priming is done through exposing an individual        
to content before a certain problem, which can help them          
have an easier time recalling the concepts needed for the          
task at hand [1]. In this study, we would like to see if             
priming can be helpful in a crowdsourcing context instead         
of in the traditional learning context. 

Therefore, as a first step towards examining and promoting         
the feasibility of crowdsourced KC modeling, we studied        
how crowdworkers can provide the underlying KCs for an         
assessment activity. Using a crowdsourcing platform, we       
gathered participants and asked them to provide three KCs         
needed to solve a given problem in the domains of math and            
English writing, with or without having solved some related         
priming questions. Our research questions are as follows: 
RQ1: Are crowdworkers able to generate knowledge       
components that domain experts have identified? 
RQ2: Does priming participants improve the quality and        
quantity of the knowledge components they generate?  

From these questions, our goal is to see whether it is           
possible to employ crowdsourcing to generate a baseline        
KC model that is both interpretable and able to be translated           
into a more learnersourced context. 



 

METHODS 
The study consists of two related experiments that differ in          
their domain content for a specific part of the task. The first            
domain is mathematics, with a focus on the area of shapes,           
such as squares and rectangles. The second domain is         
English writing, with a focus on prose style involving         
agents and clause topics. The math content is at the middle           
school level and the writing content at the undergraduate         
level in the United States. For both of these domains, we           
conducted an experiment using the Amazon Mechanical       
Turk (AMT) platform. Eighty unique crowd workers on        
AMT, known as turkers, completed the math experiment        
and sixty unique turkers completed the writing, for a total of           
140 participants. Thirteen participants in the Writing       
experiment were removed from our analyses due to        
submitting invalid responses that indicated either a       
misunderstanding of the experiment instructions or      
behavior similar to a bot. Filtering these invalid participants         
left us with 47 total participants in writing, combined with          
the 80 from math, for a total of 127 participants. Among           
these participants, 55 self-identified as female and 72 as         
male. The mean selected age range was 35-44. All         
participants reported having at least a high school degree or          
equivalent. In each experiment, the tasks took roughly five         
minutes to complete. Participants were compensated $0.75       
upon completion, providing a mean hourly wage of $9. 

Each turker was assigned to one of two conditions. In the           
priming condition, participants solved two problems that       
cover content related to the area of different figures in the           
math experiment, and clause/actions of different sentences       
in the writing experiment; these problems were intended to         
prime participants for the subsequent main task. In the         
no-priming condition, these problems were not included       
and participants moved straight to the main task. 

In the main task, participants were given a word problem          
and asked to list three KCs that are required to solve the            
problem. The prompt for KCs was “As concisely as         
possible, please indicate a skill required to answer the         
above math problem about the wall.” in the math         
experiment and “As concisely as possible, please indicate a         
skill required to answer the above question that involved         
revising the sentence.” in the writing experiment. Note that         
the prompt uses the term “skill” rather than “knowledge         
component” to avoid jargon that may be confusing. 

Math and Writing Conditions 
The word problem for which participants were asked to         
generate KCs for in the math domain comes from a middle           
school algebra intelligent tutoring system. It involves       
finding the area of a wall that has a door and windows            
embedded within it as composite shapes. The problem in         
the writing domain comes from an online prose style course          
for freshmen and sophomores at a four-year university in         
the United States. It asks students to revise a sentence, so           

that the agent is in the subject position. An expert math           
instructor familiar with the domain knowledge and KC        
modeling process tagged the math problem with three KCs         
as described in Table 1. Similarly, a different expert         
instructor who taught the online writing course from which         
the problem comes from provided the four KCs for it, also           
in Table 1. These expert-generated KCs will serve as a          
baseline for our comparison with the turkers’ generated        
KCs. 

KC (Domain) Definition 

Compose-by-addition 
(M) 

In an equation such as a + b = c, given any 
two of a, b or c, find the third variable. 

Subtract (M) Subtract the area of one shape from another. 

Rectangle-area (M) Finding the area of a rectangle shape. 

Id-clause (W) Identify the clause-level topic of a sentence. 

Discourse-level (W) Keep the discourse-level topic of the sentence 
in focus 

Subject-position (W) Assess whether an entity is a subject 

Verb-form (W) Transform a passive verb to active verb 

Table 1. Expert-generated KCs in the math and writing         
experiment. The domain code “M” stands for math and “W”          
for writing. 

Coding of Knowledge Components  
Once all of the participants completed the task, we         
manually coded their 381 responses (240 from math, 141         
from writing). We considered a participant’s full text        
response to each of the three skill inputs in the main task as             
one contributed KC, so in total each participant made three          
contributions. Overall, the responses mostly consisted of       
sentence fragments and the occasional full sentences. No        
participant contributed any text longer than one full        
sentence, which is in line with the conciseness requirement         
in the provided instructions. With each input being treated         
as a single unit, a codebook was developed and iteratively          
refined between two research assistants. The codebook was        
then applied to the full dataset from each domain by the two            
research assistants, akin to [2]. Next, the code agreement         
was measured via Inter-Rater Reliability (IRR). The coders        
achieved a Cohen’s kappa of κ = 0.924 in the math           
experiment and κ = 0.901 in the writing experiment, both          
indicating a high level of agreement [5].  

With the codes applied, the contributed KCs were then         
categorized into three groups based on the extent of their          
applicability to the problems and whether they matched the         
expert-generated KCs. The first category is for responses        
that are specific to the problem and offer a sufficient          
amount of detail to indicate a skill that might technically be           
needed to solve it. We refer to such explanations as          



 

Relevant henceforth. Our second category, Direct Match, is        
representative of contributed KCs whose descriptions align       
with those of the expert-generated KCs. Note that this is a           
subset of Relevant, i.e., any Direct Match contribution is         
also Relevant. The third category denotes responses that are         
too broad to fit the problems, too vague, or do not convey a             
clear meaning. These types of responses are considered        
Irrelevant contributions. 

RESULTS 
RQ1: Are crowdworkers able to generate knowledge       
components that domain experts have identified? The math        
experiment yielded 240 responses in total from both        
conditions. In the priming condition, 87/120 (72.5%)       
contributed KCs were categorized as Relevant and 38/120        
(31.67%) were Direct Match. In the no-priming condition,        
94/120 (78.33%) were categorized as Relevant, and 38/120        
(31.67%) were also Direct Match. In other words, roughly         
one third of the KCs in the math experiment were          
equivalent to those from domain experts. 

The writing experiment yielded 141 responses in total from         
both conditions. In the priming condition, 39/66 (59.09%)        
contributed KCs were categorized as Relevant and 24/66        
(36.36%) were Direct Match. In the no-priming condition,        
41/75 (54.67%) contributed KCs were categorized as       
Relevant and 26/75 (34.67%) were Direct Match. Table 2         
shows a breakdown of how many of the expert-generated         
KCs were matched by participants in each domain and         
condition. 

KC (Domain) Priming  No Priming  

Compose-by-addition (M) 0 0 

Subtract (M) 26 24 

Rectangle-area (M) 12 14 

Id-clause (W) 0 0 

Discourse-level (W) 4 8 

Subject-position (W) 11 6 

Verb-form (W) 9 12 

Table 2. Count of contributed KCs in each condition that          
matched the expert-generated KCs. The domain code “M”        
stands for math and “W” for writing. 

RQ2: Does priming participants improve the quality and        
quantity of the knowledge components they generate? First,        
we looked at the contributed KCs that are Relevant (Table          
3). An unpaired t-test showed no significant difference in         
the number of Relevant KCs between the two conditions,         
t(77) = -.778, p = .439. Similar results were observed in the            
writing condition, where there was no significant difference        
between the priming and no-priming condition, t(44) =        
.366, p = .717.  

 

 Math - 
Priming 

Math - No 
Priming 

Writing - 
Priming 

Writing - 
No Priming 

Relevant  
M (SD) 

2.18 
(1.06) 

2.35  
(0.95) 

1.77 
(1.23) 

1.64  
(1.25) 

Direct Match 
M (SD) 

0.95 
(0.783) 

0.95 
(0.749) 

1.09 
(1.11) 

1.04 
(1.10) 

Table 3. Descriptive statistics of the number of Relevant and          
Direct Match KCs in each condition. 

However, when comparing between domains (and      
collapsing the conditions), an independent two-tailed t-test       
showed that participants in the math domain generated        
significantly more Relevant KCs than those in the writing         
domain, t(125) = 2.79, p = .006. We also examined the           
number of Relevant KCs that each individual contributed.        
Table 4 shows the number of participants who contributed         
0, 1, 2 and 3 relevant KCs in each condition; in all cases,             
the majority of participants had all three responses marked         
as Relevant. 

# of 
Relevant 

Math - 
Priming 

Math - No 
Priming 

Writing - 
Priming 

Writing - 
No Priming 

0 5 3 5 7 

1 4 4 4 4 

2 10 9 4 5 

3 21 24 9 9 

Table 4. The number of participant contributions categorized        
as Relevant across each condition. 

Next, we looked at the contributed KCs that are Direct          
Match (Table 5). An unpaired t-test showed no difference in          
the number of Direct Match KCs between the priming         
condition and no-priming condition in the math experiment        
-- t(77) = 0, p = .998 -- as well as the writing experiment --               
t(44) = .158, p = .875. In other words, having participants           
do priming problems in the domain of math or writing          
before the KC labeling task had no effect on the number of            
contributions that were categorized as Direct Match.       
Furthermore, unlike in the case of Relevant KCs, there was          
no significant effect of the domain on the number of Direct           
Match KCs, t(125) = -.690, p = .491. 

# of Direct 
Match 

Math - 
Priming 

Math - No 
Priming 

Writing - 
Priming 

Writing - 
No Priming 

0 10 11 10 11 

1 25 21 2 5 

2 2 7 8 6 

3 3 1 2 3 

Table 5. The number of participant contributions categorized        
as Direct Match across each condition. 

DISCUSSION AND FUTURE WORK 
From our study, we found that crowd workers can be          
leveraged to identify a subset of knowledge components        
that comprise a problem. In both the math and writing          
domain, participants were able to make contributions that        



 

were relevant to the problems and, in some cases, even          
directly matched the KCs generated by expert instructors.        
Furthermore, we showed that prior training in KC modeling         
or priming for the problem content was not a necessary          
prerequisite. While our findings suggest a step towards        
leveraging crowdworkers to assist with this task, it still         
required human oversight and some expert-generated KCs       
were missed by participants altogether. Further work       
remains to find ways to better leverage participants in both          
their accuracy of KCs and requiring less processing. 

MTurk participants are able to generate a few accurate KCs 
Across both conditions in the math experiment, roughly        
three-fourths of participant contributions were categorized      
as relevant. These were akin to KCs and pertinent to the           
problem, just not at the appropriate level for the problem in           
the context of the course and for the specific level of the            
learner. Around a third of the contributed KCs in the math           
experiment were also categorized as a direct match to the          
expert-generated KCs originally tagged to the problems.       
While some of these were more detailed than others, they          
were indicative of the KCs being measured by the         
problems. These Direct Match contributions could directly       
be applied to a skill mapping or underlying KC model used           
in the system that the problems are hosted in. 

In the writing experiment, half of the contributed KCs in          
each condition were considered relevant. Given that the        
average education level among our turkers is at the high          
school level while this domain is at the undergraduate level,          
we believe this proportion of relevant contributions is an         
encouraging result. Furthermore, participants in both      
conditions had a third of their contributions categorized as a          
direct match to the expert-generated ones. These KCs were         
often more detailed than the ones provided in the math          
condition and could also be directly used in the underlying          
model of a system. 

On the other hand, there were no contributed KCs that          
directly matched the Compose-by-addition KC in the math        
experiment or the Id-clause in the writing experiment        
(Table 2). Based on Table 1, we found that these two KCs            
have very specific definitions that the average turkers could         
not be reasonably expected to come up with, especially         
given that our instruction prompted for conciseness.       
However, an interesting future work would be designing the         
prompts in a way that promotes deeper thinking and helps          
participants get closer to these specific expert-generated       
KCs while avoiding the mentioned pitfall. Overall one-third        
of participant KCs fitting that of experts is not a bad first            
attempt, but a higher accuracy with less processing is         
desirable in order to be implemented into an actual system. 

Priming participants had little effect on their contributions 
In both experiments, we wanted to see how priming         
participants with related problems before having them       
perform the KC task might impact their contributions. This         

was conducted to partially mimic how students might        
engage in the task during one of their courses, as they           
would be readily solving such problems. Ultimately there        
was no effect of priming on the number of relevant or direct            
match contributions in both the math and writing        
experiments. In the math experiment, the priming questions        
were correctly answered by almost all participants,       
suggesting such questions might have been too easy to         
engage them in deeper processing. The opposite was        
observed in the writing experiment, where the priming        
questions were mostly incorrectly answered, indicating they       
may have been too difficult. Additionally, since there were         
only two additional problems, the material may not have         
been sufficient to prime participants to the content. 

While the analyses we performed here may end up taking          
more time than the task of generating the KCs themselves,          
we plan to work towards a method that can greatly expedite           
such tasks. Ultimately we would like to scale this up into a            
learnersourced context, such as embedding these prompts       
into an online course. Our next step is to reduce or automate            
the need for this heavy qualitative analysis of such         
contributions if possible, so that the insights provided from         
the crowdworkers or learners can be better leveraged. 
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