®

Check for
updates

Determining What the Student
Understands - Assessment
in an Unscaffolded Environment

C. W. Liew®™ and H. Nguyen

Lafayette College, Easton, PA 18042, USA
{liewc,nguyenha}@lafayette.edu

Abstract. Assessment of skills and process knowledge is difficult and
quite different from assessing knowledge of content. Many assessment
systems use either multiple choice questions or other frameworks that
provide a significant amount of scaffolding and this can influence the
results. One reason for this is that they are easy to administer and the
answers can be automatically graded. This paper describes an assessment
tool that does not provide scaffolding (and therefore hints) and yet is able
to automatically grade the free form answers through the use of domain
knowledge heuristics. The tool has been developed for a tutoring system
in the domain of red black trees (a data structure in computer science)
and has been evaluated on three semesters of students in a computer
science course.

Keywords: Assessment - Computer science
Unscaffolded environments

1 Introduction

One of the keys to developing effective tutoring systems is the ability to deter-
mine what a students knows or understands both before and after a tutoring
session. Without this capability, we would be unable to either develop effec-
tive tutoring strategies or to evaluate the efficacy of any teaching or tutoring
approach. However assessing a student’s knowledge, skills or conceptual under-
standing can be a difficult task. It’s not enough to determine what they can or
cannot do but if we are to help students improve, we have to be able to narrow
down to the specific issues that are a problem and also the contexts in which
they occur.

This paper describes a tool that accurately assesses student knowledge and
skills without needing any scaffolding that would bias the assessment. The tool
consists of two modules that provide a non-scaffolded test taking environment
and corrects the student answers to the tests. The grading module identifies
(1) correct and incorrect answers, (2) where the first error occurs in incorrect
answers and (3) the type of error in the majority of the cases. The tool and the
(© Springer International Publishing AG, part of Springer Nature 2018

R. Nkambou et al. (Eds.): ITS 2018, LNCS 10858, pp. 339-344, 2018.
https://doi.org/10.1007/978-3-319-91464-0_37

340 C. W. Liew and H. Nguyen

associated tutoring system have been implemented for the domain of balanced
binary trees, an important data structure in computer science. The tool has been
successfully used to assess three semesters of students taking the data structures
class at our institution.

2 Problem Domain: Balanced Binary Trees - Red Black
Trees

Binary trees are a fundamental data structure in computer science and are com-
monly taught in the second computer science course (CS2). Balanced binary
trees are a natural extension of binary trees and provide good performance for
sorting and searching regardless of how the input data is arranged. Red black
trees are one particular type of balanced binary trees - others include AVL [4]
trees and 2-3 trees [1]. With data structures like these, students have to know
how to program them (use them) also have to understand the underlying con-
cepts underlying the operations. The basic insertion and deletion operations are
much more complex when compared to those of a standard binary tree.

A red black tree is a self balancing binary search tree that has the following
properties [5]:

1. The nodes of the tree are colored either red or black.

2. The root of the tree is always black.

3. A red node cannot have any red children.

4. Every path from the root to a null link contains the same number of black
nodes.

The top-down algorithms [5] to insert or delete a value from a red-black tree
starts at the root and, at every iteration, moves down to the next node, which
is a child of the current node. At each node, it applies one or more transfor-
mation rules so that when the actual insertion (or deletion) is performed no
subsequent actions are needed to maintain the tree’s properties. Other types of
balanced trees also use a similar approach. In our work we used red-black tree
as an exemplar to evaluate our ideas and implementations, but they should be
applicable to balanced trees in general. The transformation rules for insertion
are called color flip, single rotation, double rotation, simple insertion, and color
root black. There are more rules for deletion and they are called color flip, single
rotation, double rotation, simple deletion, switch value, drop, drop&rotate and
color root black.

3 Assessment and Related Work

Many tutoring systems have designed tests that accept answers in a restricted
input language (e.g., numerics only). This leaves the problem with a large solu-
tion space that renders guessing ineffective. Previous work on developing assess-
ment tools in unscaffolded environments used domain knowledge to infer struc-
ture and reasoning. For example, the PHYSICS-TUTOR system [2] used knowl-
edge of basic physics to heuristically determine the intent of students when

Assessment in an Unscaffolded Environment 341

they are solving mechanics problems in introductory physics courses. They used
domain knowledge, algebraic knowledge and heuristics to accurately determine
correctness and errors even if there were missing equations or factors and the
answers contained numbers instead of variables.

In the red black tree domain students are assessed not for their knowledge
of content but their skill in applying the insertion and deletion algorithms both
of which require that a student knows how to apply the transformations and
can recognize when they are applicable. In addition, students can either com-
bine several base (canonical) steps into a larger one or can change the order in
which transformations are applied (typically with a color flip). Multiple choice
questions are not a good mechanism for assessing skills in this domain. The ideal
assessment tool would handle these issues and provide an environment similar to
a test where students are provided with a blank sheet of paper and free response
questions. The questions would test the students understanding and the tool
would allow the students to make the same mistakes that they would make on
the paper test. The tool would also be able to grade the exam and determine
each student’s problem areas.

4 The Tutoring and Assessment Interfaces

The system has 3 sections - the pre-test, the tutor, and the post-test. In the
test sections, a typical insertion (deletion) problem for red-black trees involves
inserting a sequence of numbers to a starting tree (or deleting from it). Students
have to show the state of the tree after every insertion/deletion; they are also
encouraged to show any intermediate states (the trees that are created along the
path to the solution). To this end, the test interface displays a “blank” binary
tree canvas of 31 empty nodes. The student can click on any node to specify its
value and color - submitting a tree is therefore equivalent to placing all of its
nodes in the appropriate position in the tree canvas; nodes that are left empty
are assumed to be null black nodes. The interface is designed to look like a sheet
of paper with blanks to fill in - in this way, we ensure that the system does not
provide any hints or clues as to what the desired answer would be.

In the tutoring section, students perform the same task of inserting to (or
deleting from) a starting tree. However, a node-by-node modification of the cur-
rent tree is not required; instead, students only need to select a node and the
transformation to apply at that node from a drop-down list. The tutoring system
follows the granularity approach and requires the student to always select a node
and then a transformation. If the student’s selection is incorrect, the system will
immediately display an error message and provide feedback. If the selections are
correct, the system will apply the chosen transformation and update the trees -
the student does not have to manually update the tree.

5 The Assessment Tool

Assessment is more than just determining whether an answer is correct or incor-
rect. A good assessment tool will also produce information about the type of

342 C. W. Liew and H. Nguyen

error and the context to help the instructor or tutoring system determine how
to best help a student resolve the error in her knowledge. The answers generated
by a student when taking a test (pre or post) in our system are input to the
grading tool which analyzes them and reports whether the student’s answer(s)
were correct or incorrect and additionally where the first error occurred, the type
of error and the context in which the error was made. This information is used
to help us build a model of the student’s knowledge and the work on building
and using the student model is reported in a companion paper [3].

There are three different types of possible errors: (i) incorrect node selection,
(ii) incorrect transformation selection, and (iii) incorrect transformation appli-
cation. Furthermore, some tree transformations can be applied in more than one
context; for example, color flip at the root node is performed differently from
color flip at a non-root node. The student might know how to correctly select
and apply a transformation in one context but not in a different context. For
each error, we would therefore also like to know the context in which it occurred.

The grading algorithm uses the constraints imposed on binary search trees
(ordering and relationship of nodes) and its knowledge of red black trees to con-
struct the canonical solution sequence. The key assumption is that the algorithm
has a sufficient set of transformations (both primitive and those that are com-
binations of primitives) to recognize all transformations that a student might
make. The algorithm assumes that a student will never combine more transfor-
mations than the system has. Thus the algorithm does not have to consider any
intermediate steps that the student makes. If there is a step that the system does
not recognize, then the step is skipped and the next step is checked to see if it
is the result of some step or combination of steps. The result of the comparison
steps is a sequence of transformations that the algorithm has identified. This
sequence is compared to the sequence from the solution to try and find a match
taking into account that a different ordering of transformations can also lead to
a solution. This approach is sufficient to determine whether an answer is correct
in all the cases that we have evaluated. If the answer is incorrect, the algorithm
then proceeds (starting from the first step) to compare the answer and the solu-
tion step by step. Heuristics are used to modify the canonical solution to take
into account macro-steps and reordered steps. These heuristics are sufficient to
analyze most of the student answers that we have seen.

6 Data and Analysis

We evaluated the grading tool on three semesters of student data - Fall 2016,
Spring 2017 and Fall 2017 - from a data structures class at our instituion. There
was a total of 105 students from the three semesters.

The concepts underlying insertion were taught in lecture for one week and
in the next week the students were evaluated over two days. On the first day,
the students were given a pre-test for thirty minutes followed by a session with
the tutoring system. Two days later, they were given the post-test which was
a duplicate of the pre-test. The number of unrecognized errors is approximately

Assessment in an Unscaffolded Environment 343

10% in the pre tests and 4% in the post tests. We analyzed the unrecognized errors
by hand and found that in most cases we (the human graders) were also unable
to determine the error type. Many of these errors were generated by students
who were “gaming” the system to finish the tests faster by making random
selections and then submitting the random answer. The data shows that the most
common error was committed when selecting the appropriate transformation to
apply. This error is caused by the student either (1) selecting the wrong node
as the current node or (2) not correctly recognizing the preconditions for each
transformation. The data provided in the student answers is insufficient for us
to disambiguate between those two errors.

Table 1 shows a breakdown of the data by the type of transformation. The
largest number of errors were made in applying the color flip transformation.
This is one of the simpler transformations in that the colors of three nodes (cur-
rent node, two children) are flipped. Most of the errors occurred due to the
students not recognizing the applicable preconditions and selecting the transfor-
mation. Note that the grading tool only grades up until the first error so that
if students were to make subsequent errors those errors would not be detected.
This explains why the errors in single rotation and double rotation do not appear
to decrease significantly (in some cases they increase) between the pre and post
test. The color flip transformation frequently leads to a succeeding rotation and
if a student does not apply the color flip they will not be tested on the second
transformation. The tutoring helps the students recognize when to apply the
color flip (decrease in errors between pre and post tests) and that leads them to
an error in the subsequent rotation.

Table 1. Errors for each type of insertion operation

Semester | Color flip | Single rot | Double rot | Insertion | Recolor root | Unrecog
Pre F16 |42 19 13 12 2 7
Post F16 | 15 16 17 6 1 2
Pre S17 |67 25 19 30 3 13
Post S17 | 26 24 19 2 6
Pre F17 |20 11 8 4
Post F17 | 12 6 1 4

Deletion operations are more complex than insertion operations and what
makes it more difficult is that many of the operations share the same name as the
insertion operations even though the preconditions and semantics are different.
Just like for insertion, the most common error was committed when selecting
the appropriate transformation to apply. The grading tool was able to correctly
determine the type of error in approximately 90% of the pre and post test errors.
Table 2 shows a breakdown of the data by the type of transformation. The largest
number of errors were made in applying the dropé&rotate transformation. This is
a case that is poorly explained and illustrated in the textbook.

344 C. W. Liew and H. Nguyen

Table 2. Errors for each type of deletion operation

Semester | Color | Single | Double | Deletion | Recolor | Switch | Drop & | Unrecog
flip rot rot root value |rotate

Pre F16 |1 15 19 4 6 11 50

Post F16 | 2 10 10 3 12 3 31

Pre S17 |3 37 36 2 3 20 72 14

Post S17 | 1 18 22 2 10 5 63 13

Pre F17 |0 14 14 0 1 19 35 11

Post F17|3 5 4 1 12 3 33 3

7 Conclusion

This paper has described an a tool for assessing student skills on red black
tree (specialization of binary search tree) insertion and deletion algorithms. The
advantage of the tool is that it provides a scaffolding-free (thus realistic) evalu-
ation environment while still being able to accurately determine the correctness
of student answers. In addition, it can classify 90% of the first error found in
each student’s answer. The tool uses strong domain knowledge and heuristics to
determine the likely type of error in each case and has been evaluated on three
semesters of student data from a data structures class. A companion paper shows
how the analysis from the assessment tool can be used to construct an effective
Bayesian student model.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Boston (1974)

2. Liew, C., Shapiro, J.A., Smith, D.: Determining the dimensions of variables in
physics algebraic equations. Int. J. Artif. Intell. Tools 14(1&2), 25-42 (2005)

3. Nguyen, H., Liew, C.W.: Building student models in a non-scaffolded testing envi-
ronment. In: Proceedings of International Conference on Intelligent Tutoring Sys-
tems (2018)

4. Sedgewick, R.: Algorithms. Addison Wesley, Boston (1983)

5. Weiss, M.A.: Data Structures & Problem Solving Using Java, 3rd edn. Pearson
Education Inc., London (2011)

