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Abstract

The student model is one of the main components of an Intelligent Tutoring System and plays
a vital role in the system’s decision making, adaptability and evaluation. In many tutoring
systems, a common way of initializing the model is to analyze students’ performance in a pre-
test prior to the tutoring session. The test items are often designed in conventional formats such
as multiple-choice for ease of use, but may impact the model’s accuracy due to their scaffolded
nature, especially in a graphical knowledge domain. This thesis describes an approach to building
a student model from a non-scaffolded assessment environment in the domain of balanced binary
search trees. The model is then used to predict student’s performance throughout the tutoring
session. Evaluation on four semesters of data from using a red-black tree tutor shows that having
a consistent and bias-free format for the pre and post-test makes the overall assessment more
accurate, and that an effective Bayesian student model can be constructed from unconstrained

student inputs in this setting.
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Chapter 1

Introduction

Data structures are an important part of a computer science education and often listed as one
of the programming fundamentals in ACM’s recommended curriculum [29]. The structures
typically covered in an introductory course include arrays & linked lists, stack & queues, heaps,
trees and hash tables. While iterative structures like arrays are straightforward, other recursive
structures such as trees often pose challenges to students. Nevertheless, trees are highly valuable
thanks to their logarithmic complexity. At Lafayette College, a type of tree being taught is red-
black tree, a state-of-the-art balanced binary search tree available through the Java API [37]. In
this thesis I present my work on the development of an Intelligent Tutoring System that teaches
red-black tree, using the system as a platform to model students’ learning process and identify
common error patterns that will in turn help improve the teaching and learning experience in

this knowledge domain.

1.1 Intelligent Tutoring Systems

An Intelligent Tutoring System (ITS) is a computer system that provides immediate and cus-
tomized feedback to learners without human intervention. The incentive to develop I'TSs comes
from educational studies showing that individual tutoring is much more effective than group
teaching [8,9]. The need for a tool to promote effective learning on a large scale, in combi-
nation with the rising field of Artificial Intelligence, brought together researchers from various
disciplines to collaborate on the development of I'TS in the late 1970s.

An ITS has four major components: domain modeling, student modeling, tutor modeling,
and user interface [20]. Domain modeling refers to encoding the domain knowledge in the
system. Student modeling means quantifying and capturing all relevant parameters about a

student, as well as updating them over time. Tutor modeling is a mechanism that combines



knowledge from the domain and student model to determine the system’s intervention, such
as whether it should offer any hint or feedback. Finally, the front-end user interface presents
relevant information to students and allows them to interact with the system. Among these,
student modeling plays the most important role in providing immediate and individualized
feedback. While the other three components are often developed beforehand by researchers and
domain experts, the construction of a student model only takes place once the student begins
using the system. Typical parameters of interest within the model include student performance,
knowledge, emotion and motivation, which are used to (1) predict a student’s behaviors or
answers during and after the tutoring session, and (2) assess the student’s mastery of the domain
knowledge. A good student model allows the system to become adaptive - to vary its content,
representation and responses according to the state of the learner [17]. Currently, Adaptive
Learning Systems are at the forefront of ITS thanks to their ability to completely replace a

human instructor in offering one-on-one tutor [5].

Student

r _ 1

| Assess prior | | Learn
. knowledge

L d

Measure
| improvements
L

nitialize student

Evaluate student

r— - 1 reo T 1 r——— 1
| | Update student

model | maodel | model
L — — — d b = L — — — d

Figure 1.1: A workflow diagram of a tutoring system’s components.

While there have been some initiatives to make ITSs openly available online [3], the systems
are usually deployed in a classroom setting. Researchers often cooperate with local school
teachers to integrate I'TS materials into the curriculum and set up study conditions, as this is
the best way to minimize external influences on the study’s results. In this scenario, a typical
ITS study consists of three stages: the pre-test, tutor and post-test |[14]. Figure describes
the student and the system’s respective role at each stage. From the students’ view, they first
take a pre-test to evaluate prior knowledge, then learn from the tutor, and finally take a post-

test to measure improvements. From the system’s view, the student model is initialized from
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pre-test data, then updated as the student interacts with the tutor, and finally evaluated based
on post-test performance.

Across different I'TSs, the design and implementation of each stage can vary greatly, depend-
ing on the tutoring domain. For example, the tests may be conducted online or on paper, using
multiple-choice, fill-in-the-blank or free response questions. The tutor can also include different
types of activities; typically students work on some exercises (with feedback & hints provided
by the system), but it may also be helpful to show them a complete worked out example [28§]
or have them identify errors in a given flawed solution [31]. Therefore, to discuss the Red-black

Tree Tutor’s design, we first introduce the domain knowledge.

1.2 Red-black Tree

A red-black tree (Figure is a self-balancing binary search tree with a number of properties
which guarantee an O(log N) height when the tree has N nodes [15]:

1. The nodes of the tree are colored either red or black.
2. The root node is always black.
3. A red node cannot have any red children.

4. Every path from the root to a null node contains the same number of black nodes.

Figure 1.2: An example red-black tree with 7 nodes.

Search in a red-black tree’s operation is identical to that in a conventional binary search tree,
while insertion and deletion are performed differently. To insert or delete a value, we first make

a top—downF_-] traversal from the root node to the appropriate leaf. At each node along the way,

!There are also bottom-up algorithms for insertion and deletion, but the current tutor only teaches the

top-down approach.
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depending on its color and the surrounding nodes, a tree transformation is performed. There
are six transformations used for insertion and eight for deletion (Table [L.1)). The role of these
transformations is to change the tree in such a way that when the actual insertion (or deletion)
is performed at the leaf node, there will be no need for any subsequent modifications to the tree
to preserve its properties. Thus the solution for a single node insertion (or deletion) consists of a
sequence of transformations ending with the actual insertion (deletion). Another perspective is
that the solution consists of a sequence of red-black trees starting with the initial tree and ending

with the final tree having one more (or less) node, which is the node just inserted (deleted).

Insertion

Deletion

Color flip
Single rotate
Double rotate

Insert node

Color flip
Single rotate
Double rotate

Delete node

Forward Drop

Color root black | Color root black

Switch value

Drop rotate

Table 1.1: Transformations in red-black tree insertion and deletion.

In insertion, color flip helps minimize the number of rotations that may arise from inserting
a new leaf node that is colored red. Single rotation and double rotation are used to correct
any violation of two consecutive red nodes resulting from either color flip or insert node. An
illustration of these operations is shown in Figure On the other hand, in deletion, both
color flip and single/double rotation are used to make the current node red; their preconditions
depend on the colors of the sibling node and its children. In cases where they do not apply, drop
rotate is used to move down to the next level. By convention, the root node is black so at the
end of each insertion/deletion, a color root black might be applied if necessary.

In a standard curriculum, students learn about red-black trees right after finishing binary
search tree, but often struggle because the tree transformations are quite complicated, especially
on a medium tree with more than 7 nodes, or three levels of depth. Furthermore, some transfor-
mations such as color flip operate differently for insertion and deletion, causing another source
of confusion. A previous study on this domain by Liew & Xhakaj [27] found that red-black trees

can be taught and learned effectively using a granularity approach - students should iteratively
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break down the problem into three steps of (1) identifying the current node, (2) selecting the

applicable transformation, and (3) applying the selected transformation.
‘@. @%@
—_—
/
C D E A B C (8
A B D E
—_
/
C D E A B C
D E

A B

Figure 1.3: Top-Down insertion rules (top to bottom): color flip, single rotation, double rotation.
X is the current node and relative to X, C1, C2, P, S, and G are the left child, right child, parent,

sibling and grandparent. A, B, C, D and E are other nodes which may or may not be present.

1.3 The Red-black Tree Tutor

The tutoring system is a web-based tutor that allows students to log in and complete assignments.
It has been developed since Summer 2016 in Scala & Play Framework [1], following the Model-
View-Controller mechanism. The front-end interface contains HTML, CSS and JavaScript code,
while the back-end is managed by MySQL and Play. Currently it is deployed on one of Lafayette’s
computing servers at [139.147.9.189 for the studies conducted here.

The tutor environment was adopted from [27], while the test environment was built to replace
the paper version of the pre and post test. Figure depicts a student’s dashboard which shows
the current tasks and progress. Students have to work through three tasks: pre-test, assignment
(tutor) and post-test, in that order. Each task only unlocks when all preceding tasks have been
finished. There is also a link to the lecture page, which is a summary of relevant red-black tree
rules and algorithms; students are free to consult this link, but only during the assignment.
There are also three corresponding tasks for tree deletion are not shown here. Instructors have
a separate dashboard to manage the classroom, change task settings, view student answers and
track their progress.

In the test sections, a typical insertion (deletion) problem for red-black trees involves inserting

a sequence of numbers to a starting tree (or deleting from it). Students have to show the state
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139.147.9.189

Home Lecture Log out

Exercise Page

Select one of the exercises below to start the tutor.

Work with four small insertion Construct a tree with provided hints Work with four small insertion
problems and feedbacks. problems
Completed: 4 out of 4 & Completed: 2 out of 20 Completed: 0 out of 4

Figure 1.4: The tutoring system’s web interface from the student’s view.

of the tree after every insertion/deletion; they are also encouraged to show any intermediate
states (the trees that are created along the path to the solution). To this end, the test interface
displays a “blank” binary tree canvas of 31 empty nodes (Figure . The student can click on
any node to specify its value and color - submitting a tree is therefore equivalent to entering all
of its nodes into the corresponding position in the tree canvas; nodes that are left empty are
assumed to be null black nodes. The interface is designed to look like a sheet of paper with
blanks to fill in - in this way, we ensure that (1) the tests do not provide any hints or clues as to
what the desired answer would be, and (2) the student’s answer is always in a format that can

be interpreted and analyzed by the system.

In the tutoring section, students perform the same task of inserting to (or deleting from) a
starting tree. However, a node-by-node modification of the current tree is not required; instead,
students only need to select a node and the transformation to apply at that node from a drop-
down list. The tutoring system has a solver module (Section 3.1) that can generate a solution
for any problem and also check the correctness of the student’s selection. If it is correct, the
system will automatically apply the chosen transformation and update the interface; otherwise,
a message is displayed to the student indicating that the current selection is incorrect. This
approach is based on the finding that learners often have difficulty identifying the transforma-
tions rather than applying them [27]; students also find the task of repeated application of the

transformations tedious and time consuming.
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Assessment Section

D - G

ffﬁfﬁf@x&hhhm
{2 = - Ny

Previous tree
ffﬁfﬁf@xhhhhm
° = N

Figure 1.5: The assessment interface. The current tree is shown on top and the previous tree

Insert number: 40

Current tree

bottom. In this problem, students have to insert 40 to the tree. Clicking on NEXT VALUE
will submit the student’s answer for inserting 40 and present the next number to insert. Clicking

on NEXT SEQUENCE will present the next problem with a new starting tree.

Traditionally, tutoring exercises are often designed as multiple choice questions, where there
is a single correct option, while the incorrect options are each worded in a way that targets a

specific misconception ,. For example, consider the following probability problem:

Question. If you roll a fair dice twice, what is the probability of getting a 6 both times?
(a) 1/6 (b) 1/36
(c) 1/3 (d) 1/12

Table 1.2: A sample multiple-choice question.

This question tests knowledge of the probability multiplication rule, i.e., if A and B are
independent events then P(A, B) = P(A) - P(B). In this case, the correct choice is 1/36, but
other choices are also designed to reflect common errors that students have typically made.
The instructor could then construct a direct mapping from the choices picked to the associated

misconceptions, based on teaching experience (Table. In other words, knowing which options
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138 112 195 71 127 Choose action v ---- Insert value: 195 View Instructions

Color flip
Color root black F— o
Cumentizes e

Single rotation
Double rotation

Feedback

You applied the incorrect
@ transformation at the incorrect
node. Take another look at the

current node 160 and think about
what you should do.

Hints

‘GET MORE HINTS

Note that the node to be added
should the a child of 160

Move On

Previous tree

( \’ NEXT SEQUENCE
Figure 1.6: The tutor interface. The student has picked 160 as the current node and is now
selecting the transformation to apply. If the student is correct, the chosen transformation will be

applied by the system, resulting in a new current tree, while the existing current tree becomes

the previous tree. If the student is incorrect, she will be informed in the Feedback section.

the student picked is sufficient to infer why she made that decision. However, there are difficulties

in adapting this approach in the domain of red-black trees:

Choice | Misconception

1/6 Student does not understand joint distribution of indepe-

dent events.

1/36 | No misconception. Student understands multiplication

rule.

1/3 Student mistakes addition rule for multiplication rule.

1/12 | Student understands the sample space incorrectly.

Table 1.3: Mapping between choices and misconceptions in the sample probability question.

e Multiple-choice questions can be answered by pure guessing. In our domain, the correct
tree can be identified quite easily if presented in multiple-choice format. Furthermore, the
options presented might not capture the full space of misconceptions that students have,

especially if each decision is not a simple primitive choice.

e Tree data structures are an example of problems where the steps are best input graphically

16



to show how the data structure changes internally. As we will discuss in Section 2.2, visu-
alization is an essential feature in data structures tutoring system. Conventional question

formats such as multiple-choice would therefore greatly constrain the student’s answer.

e Although not part of the study, the midterm and final exam require students to construct
a red-black tree on paper from scratch. The tutor’s testing environments should therefore

be consistent and as close to this realistic format as possible.

1.4 Bayesian student modeling

Consider a hypothetical scenario: a student is given a set of exercises related to some knowledge
P to test her understanding of the subject - a procedure that human teachers often follow [10].
Assume there are ten questions; if the student answers all ten correctly, it’s reasonable to assume
that she knows P well’l However, what can be inferred about her knowledge if she answers four
correctly and six incorrectly? Would there be a difference in her answering the first four correctly
and her answering the last four correctly? One could argue that, in the former case, the student
only understands P in some but not all contexts, while in the latter case, it’s also possible
that the student realizes her mistake in the first four answers and successfully fixes them in the
remaining six. Furthermore, a correct answer may be due to lucky guessing, while an incorrect
answer could be a careless slip, which should also be taken into account.

Bayesian belief network, or Bayesian network in short, is a method that can capture the
above pedagogical nuances and represent them in a sound mathematical system. Specifically,
Bayesian networks have been used in intelligent tutors to support classification and prediction,
model student knowledge and predict student behavior [33]. They operate on the assumptions

that:

(i) Real-world data, such as those collected from ITS, should be treated with some degree of

uncertainty and are therefore not always suited for clean statistics tests.

(ii) Student knowledge is abstract and not directly observable, but has a direct influence on stu-
dent actions (problems solved, hints requested, answers submitted), which can be explicitly

observed.

(iii) In education, prediction of students’ current and future performances should be based on
past performances. The belief of a teacher or system about student knowledge should

depend on both new observations and past evidence.

2to the extent covered in the given exercises.
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Figure 1.7: An example Bayesian network. Source: .

1.4.1 Bayesian network

A Bayesian network is a directed graph that represents the causal relationship between
random variables. Each node captures one variable, while a directed edge from node A to B
depicts the fact that A causes B; A is then called the parent and B the child. Each edge has an
associated weight, which is a conditional probability table depicting the probabilities of the child
node, given each possible configuration of its parents (Figure . The nodes without parents
have a prior probability. Once the topology and weights of a network have been specified, it can

be used to calculate the probability of any given joint distribution of its variables. For instance,

P(j,m,a,=b,me) = P(j | a)P(m | a)P(a | b A =e)P(=b) P(=e)
= 0.90 x 0.70 x 0.001 x 0.999 x 0.998

= 0.000628.

Note that Figure is an example of a static Bayesian network, which is suitable for prob-
abilistic inference over variables that don’t change over time. In contrast, dynamic Bayesian
network is often used to model variables that can change, such as student knowledge and
mastery, since we expect the student to improve over the course of learning. In particular, a
dynamic network tracks the posterior probability of variables whose values change over time,
given a sequence of observations. It consists of time slices representing relevant temporal states
in the process to be modelled . For instance, let us now denote X; as the state of variable
X at time ¢;. The network in Figure [1.8| represents the fact that C;,; depends probabilis-

18



tically on A and B (just like in a static network), but also on its immediate previous state
C;. This additional dependency allows us to model a variety of pedagogical nuances; setting
P(Ciy1 = True | C; = False) = 0.1, for example, would model forgetting by expressing that
there is a 10% chance the student doesn’t know about Concept C at time ¢;,; despite knowing
it at time C;. While the student model in this thesis work does not take into account forgetting,
the use of a dynamic network can still help satisfy assumption (iii) as mentioned earlier, which

is most relevant in education.

Explanation Explanation Explanation Explanation
A B A B
Concept C »| Concept C
Y A
Answer 1 Answer 2

Time t; Time tj;1

Figure 1.8: An example dynamic Bayesian network. Source: |11].

1.4.2 Bayesian Knowledge Tracing

In the context of ITS, a popular method of applying dynamic Bayesian network is called Bayesian
Knowledge Tracing (BKT) [13,/48], which models student knowledge as a latent variable, up-
dated by observing the correctness of a student’s answer when she applies the corresponding
skill. All variables in the network are binary; the skills are measured as mastered or not, and
the correctness observations are either right or wrong. BKT associates each skill with four

parameters:

e P(Lg) - prior: the probability that the student has known this skill beforehand.
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e P(9) - slip: the probability that the student makes a mistake when applying a known skill.

e P(G) - guess: the probability that the student answers correctly despite not knowing a
skill.

e P(T) - transition: the probability that the student’s skill mastery changes from False to

True after a time step.

Let P(L;) be the probability that the student knows a skill, or the mastery probablity in short,
at time step ¢ (each time the student submits an answer is labeled with time step, following the

convention of a dynamic network). The variable values are then specified as follows:
1. The initial mastery probability is taken from the prior: P(L1) = P(Ly).

2. At time step ¢, to predict the correctness of a successive future answer P(Cyyq):

P(Cia) = P(Ly) - (1 = P(5)) + (1 = P(Ly)) - P(G).

3. Each time the student submits an answer, which is immediately graded for correctness, the
posterior mastery probability P(L;y1) is calculated based on the current mastery proba-

bility P(L;) serving as the prior:

e If answer is correct:

P(L; & Correct)
P(Correct)
) P(L) - (1- P(S))
P(Ly) - (1= P(5)) + (1 = P(Ly)) - P(G)

P(L; | Correct) =

e If answer is incorrect:

P(L; & Incorrect)
P(Incorrect)
P(L) - P(S)
(L) P(8) + (1 - P(L) - (1 - P(G))

P(L; | Incorrect) =

e Update:
P(Lt11) = p(Le) + (1 = p(Ly)) - P(T).

An advantage of Bayesian network is that it is intuitive and can operate with or without
training data. In particular, the network weights can either be refined from training data or
specified in advance by domain experts. ITS studies usually follow the latter option, as it is
generally difficult to gather sufficient data to perform meaningful training; at Lafayette College,

for instance, on average there are only about 30 students in CS 150 each semester. Hence the
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network’s flexibility makes it an appropriate tool for my study. Another important property
is its conservativenes [45]; the network is not influenced by minor changes in information. If a
small amount of data contradicts the prior knowledge, which the network has high confidence
in, its belief only changes slightly. Similarly, human instructors and tutoring systems should not
update their belief about student knowledge based on one single action, as it might be the result

of the student making a lucky guess or careless mistake, especially in multiple-choice questions.

1.5 Contributions

As mentioned earlier, Xhakaj’s previous papers and thesis work [27,46,47] have demonstrated
the effectiveness of the granularity approach in teaching red-black trees. My thesis work builds
upon the tutoring system developed in these studies, with the goal of constructing an effective

student model. I have made improvements in the following aspects:

e Automated assessment. An important goal in assessing student performance is to find
out why the student makes certain errors, as it helps the instructor adapt the teaching
style/materials accordingly to address the cause of such errors. Thanks to ITS, it is
now often the tutoring system that performs grading tasks in place of the instructor,
thereby raising the need for an automated error analysis mechanism. I have developed
a grading algorithm that can evaluate students’ test answers and identify the first error
in the majority of cases [25]. Beyond automating the test procedures, the algorithm also

provides input for subsequent student modeling and data mining tasks.

e Bayesian student model. In many tutoring systems, a common way of initializing a
student model is to analyze student’s performance in a pre-test prior to the tutoring session.
The test items are often designed in conventional formats such as multiple-choice for ease of
use, but may impact the model’s accuracy due to their scaffolded nature. I have proposed
an approach to build a student model from a non-scaffolded test environment in the domain
of red-black trees [34]. The model can predict students’ performance throughout the

tutoring session with good accuracy.

e Data mining. While Xhakaj’s work focused on individual students’ improvement through
the use of the tutoring system, I extended this analysis to class-wide statistics that reveal
both the common difficulties that students face in general while learning and the aspects

of the tutoring system that can further improved [35].
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Chapter 2

Related Work

This chapter provides a brief overview on two areas closely related to the Red-Black Tree Tutor:
student modeling and Computer Science ITS. In student modeling, I discuss the two general
research directions and present a case study of the ANDES physics tutor [12], which shares
many similarities with the Red-black Tree Tutor. In Computer Science ITS, I introduce the

breadth of the field and then focus on ITSs in data structure domains.

2.1 Student modeling research

According to [20], student modeling, despite being only one of the four main components of an
ITS, has received the most attention from researchers. One reason is that student modeling can
be applied to a wider range of research questions beyond ITS [40]. Another lies in the inter-
disciplinary challenges inherent in student model construction, which bring together combined
efforts from several areas. A student model should ideally capture as much information about
the student’s cognitive and affective state as possible while being dynamic enough to accurately
reflect the student’s improvement over time [36]. To this end, several approaches, both from a
cognitive science view and from a machine learning view, have been proposed.

Traditionally, student models are constructed based on cognitive science, with the assumption
that how humans learn can be modeled as a computational process [36]. Two common techniques
in this area are model tracing and constraint-based modeling. Model tracing [23| believes in the
computer’s ability to model the learning process step by step and rule by rule; in this approach
the tutor attempts to infer the steps that the student could have taken to arrive at the solution
and performs necessary interventions. In particular, Xhakaj’s thesis work involved building an
example-tracing tutor [2], which is an extension of this direction. In contrast, constraint-based

modeling [33] proposes that only errors can be recognized and captured by the computer; the
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tutor’s intervention is based only on the student’s solution state, not the steps taken to get there.
A study comparing the two techniques [22] shows that model tracing can provide more effective
interventions and is less dependent on the domain knowledge, but takes more efforts to develop

than constraint-based modeling.

Recently machine learning techniques have also been developed for the task of student mod-
eling. These rely on the abundance of log data from students’ interactions with the tutoring
system and offer two advantages over cognitive-based techniques [20]. First, machine learning
does not rely on any assumption about computers being able to model human learning. Second,
they can be used to model a variety of properties, such as performance, emotion and robust
learning. It should be noted that machine learning and cognitive-science based techniques are
not mutually exclusive. The Red-Black Tree Tutor, for instance, employs approaches from both

model tracing and Bayesian learning.

A crucial requirement for machine learning techniques is that the input data must be accurate.
If the data collection method (i.e., test questions) contain instructional scaffoldings, they could
potentially overestimate the students’ performance; in some cases, students might be able to
answer a question correctly without fully understanding the underlying knowledge, thanks to
the provided scaffold. In this sense, multiple choice questions are not a preferred option; while
frequently used thanks to their convenience, they pose several challenges in assessing a student’s
knowledge or skills. Specifically, the formulation of questions and answers could provide implicit
hints to the correct answers. Furthermore, this format is more suitable for testing isolated
knowledge rather than high-level thinking [7], and in many cases students’ partial knowledge
is ignored [6]. Finally, questions can be answered by lucky guessing, which undermines the
reliability of the test [49]. Students could potentially make a different set of mistakes if they had
to synthesize the answer from scratch. Free response questions do not face any of these issues,

but are difficult to administer on a large scale because of the need for human graders.

In practice, many intelligent tutoring systems opted for the middle ground by using a re-
stricted language such as numerics for student answers. In this way, there is still a large solution
space that makes guessing ineffective while the information derived from students’ assessment is
accurate enough to be used in constructing student model. For example, physics tutors such as
ANDES [12] and OLAE [30] teach college-level Newtonian mechanics by having students identify
the forces acting on a physical object and express them in a system of equations. ANDES, in
particular, builds a static Bayesian network for each exercise (task-specific network); the net-
work represents how each step can be derived from combining the previous steps and relevant

physics rule [11]. When a problem solving step is entered by the student, the corresponding
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node in the network is set to True and the posterior probabilities of all other nodes are updated,
given this evidence. The task-specific network is used to guess the implicit reasoning behind the
students’ action; its accuracy is influenced by how many steps the student did not show (i.e., the
student performed them on scratch paper or in her mind) and how many alternative solutions
there are. Another network being used is the domain-general network, which tracks long-term
evolution of student knowledge. The Red-black Tree Tutor also employs a similar two-network
architecture; its structure and interaction will be elaborated later on in Chapter 3. In the case of
ANDES, this design choice was demonstrated to be capable of both knowledge tracing and plan
recognition. However, the prior probabilities of rule nodes in the network were determined from
a multiple-choice pre-test, which has pedagogical limitations as mentioned earlier. In addition,
because each question can only involve a few rules, only a small portion of rule nodes had their
priors determined, while the others were set to 0.5 by default. To address this issue in my tutor,
I introduced non-scaffolded test questions that involve comprehensive domain knowledge and

more closely match real world situations.

2.2 ITS in Computer Science & Data Structures

Several ITSs have been developed for various topics in computer science education, such as
SQL [32], Python [38], Java [21], PHP [44], and APT usage |24]. However, most of these systems
belong to a programming-related domain. To my knowledge, there are only a few which focus
on data structures. Learning a data structure requires not only basic coding knowledge but also
the ability to visualize how the associated operations change the internal state of the structure.
Therefore, the tutors in this domain usually have a graphical interface which students can interact
with. Here I present an overview on a number of them.

ADIS [42] is a prototype animated data structure ITS used for teaching linked-lists, stacks,
queues, trees and graphs. It was one of the first interactive web-based tutoring systems devel-
oped. In the examples presented, the system displays a visualization of a linked list; students can
pick any node and select the atomic operation (add pointer, remove pointer, add temp node, ...)
to perform at that node. The student model follows the constraint-based modeling approach,
and the system only provides error feedback when some constraints have been violated, which
guarantee a wrong solution. While ADIS was only a proof of concept, a similar ITS on linked
list developed later [19] was evaluated in a real classroom setting; its results showed that stu-
dents who used the tutor demonstrated good learning gain, and there was a positive correlation

between their in-tutor performance and final grade in the class.
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A study conducted by Estela, Carlos & Juan [4] compared the teaching of binary search
trees in three conditions: (i) traditional instruction, (ii) web instruction, and (iii) multimedia-
interactive. The learning media was a PDF file in condition (i), a static webpage in condition
(ii), and a multimedia system with sound and images in condition (iii). Students in condition
(iii) also did exercises on an interactive interface with a canvas tree and a list of numbers to
work with, very similar to that of the Red-Black Tree Tutor; however, the only atomic operation
supported was drag & drop, as binary tree does not involve any color change or rotation. The
results showed that students in the multimedia condition performed significantly better than
those in the other two.

In the specific domain of red-black trees, Liew & Xhakaj’s work [27] was the first I'TS devel-
oped. Its results show that the granularity approach, which require students to follow explicit
small steps, helped significantly improve their performance in insertion exercises. The system
was built only for tutoring, while the tests were conducted on paper and evaluated by a human
instructor. [26] introduces an improved ITS that provides an online assessment environment
and a grading algorithm, thereby automating the test procedures. My work builds upon this
foundation by proposing a more accurate grading algorithm [25], building a student model [34],

and performing cross-semester data mining [35].
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Chapter 3

Student Modeling and Performance

Prediction

The domain of red-black trees is very similar to Newtonian physics in that there are rules
(tree transformations) which students learn to apply in different contextsﬂ The context in this
case is the subtree surrounding the current node that is considered in each insertion (deletion)
transformation’s precondition. Student modeling requires keeping track of the student’s mastery
of each transformation in all relevant contexts, as their performance might differ based on the
context and not just the rule. To achieve this goal, I followed the approach used in the ANDES
system of having two Bayesian networks [11], one for domain-general knowledge and one for
task-specific knowledge.

As mentioned earlier, the design of a Bayesian network requires establishing the connection
between the rules and student actions. In multiple-choice format, we could construct a mapping
from each option to its corresponding knowledge /misconception (Table. While this approach
still works in the tutoring session, where students select a node and then the rule to apply, it
cannot be applied to the non-scaffolded test environments, where the only inputs are raw binary
trees. As information from the pre-test is required to initialize the student model, I devised a

grading algorithm to extract relevant information from test answers as follows.

3.1 Grading Algorithm

To be fully automated, the system has to grade answers both in the tutor and in the tests.
I will first introduce the tutor grading module as the easier case, then show how it can be

utilized in the test grading module. Note that each module works on one subproblem (i.e.,

IFrom now on we will refer to tree transformations as rules in the student model.
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the insertion/deletion of one single number) at a time. As each exercise typically involves

inserting/deleting several numbers, a new module will be invoked for each number.

3.1.1 Tutor grading module

Grading in the tutoring section takes place in real-time, so that immediate feedback and hints
can be provided to students. The inputs/outputs of this module is described in Figure . At
each time step, we are given the state of the current tree as well as the number to insert/delete,
and have to check whether the next student answer is correct, while accounting for possible
alternative solutions. In the previous thesis work [46], Xhakaj built an example-tracing tutor
to perform this task, but had to manually input the solution sequence, and only one default

solution is accepted. To address this shortcoming, I implemented the following algorithm:

1. Input:

e The question prompt, which includes the starting tree 7; and the number to in-
sert/delete n.

e The state of the current tree T'. [

e The next student answer s*, which includes the position of a node in 7" and the
transformation to apply at that node.

2. Output:

e Is the student correct? If not, how do we determine the type of error (incorrect node

or transformation) and provide specific feedback?

“Note that the tutor only allows the student to progress on submitting correct answers. Hence we can assume

the student has been correct on all previous trees leading to 7'

Figure 3.1: A summary of the tutor grading problem.

1. From the starting tree Ty and the input number n, following the textbook algorithm [43],
generate a canonical sequence of steps (s;) used to insert/delete n.
For example, if T is an empty tree and n = 5, (s;) includes two steps: s; = insert node 5

(at root) and sy = color root black.

2. Based on (s;), generate the sequence of resulting trees (7;), where the first tree is Ty and
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any subsequent T; results from applying s; to T;_1:

Ty, 2T 27,5 BT,

3. Let j denote the position of the current tree T" within (7;), so 7' = T;. In other words, the
student has completed the steps si, s2,. .., s; so far. We compare the submitted answer s*

to the expected next step s;;:

o If the two match, the student is correct. Set T' = T}, as the current tree and display

it on the tutor interface.

e If the two don’t match, try applying s* to T', resulting in 7™ and generate the solution

for the remaining steps required to insert n to 7.
— If the generation works, s* is correct; replace the canonical solution with this new
solution.

— Otherwise, if at any point an exception is raised, s* is incorrect. Further check to
see if s* differ s;,; with respect to the node position or selected transformation,

and display the appropriate output message (e.g., Figure .

4. If the student has finished inserting n, invoke a new module for inserting/deleting the next

number. The new initial tree is the final tree in this subproblem, T}.

The above algorithm has been tested and successfully deployed since the first iteration of

the Red-Black Tree Tutor. It can generate solutions and grade answers to any given exercises.

This versatility means that the instructor only needs to specify the initial tree and number

sequence, while the rest is handled by the tutoring system. In fact, the system currently allows

the instructor to randomly generate any number of exercises as additional practice for students

outside of the study.

3.1.2 Test grading module

Grading in the test sections only takes place after students have finished the study. Unlike the

tutoring environment, the test environments’ non-scaffolded design (Figure [1.5) means that we

do not have any information about which node the student is at or which transformation she

is trying to perform at any time, which makes grading a harder problem. The module’s inputs

and outputs are described in Figure |3.2
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1. Input:

e A starting tree Ty and the number to insert/delete.

e A sequence of trees that the student submitted 77,75, ..., 1.

2. Output:

e [s the student correct? If not, where did the first error occur? What is its type and

context?

Figure 3.2: A summary of the grading module.

It is important to note that there are three different types of errors: (i) incorrect node
selection, (ii) incorrect transformation selection, and (iii) incorrect transformation application EI
Furthermore, each tree operation can be applied in more than one context; for example, color
flip at the root node is performed differently from color flip at a non-root node (Figure [3.3)). The
student might be able to apply a certain transformation in one context but not the other; for
each error, we would therefore also like to know the context in which it occurred. To this end,

I developed a grading algorithm as follows:

1. From the starting tree and the number to insert/delete, generate a sequence of transfor-

mations sq, Sa, ..., S, as the default canonical solution.

2. Look at every pair of input trees (7;,7;) in the student’s tree sequence. Perform a set of
searches to see whether there exists a transformation (or combination of transformations)

that turns 7; into 7). Brute-force is used to detect single transformations:

detect_trans(treel, tree2):
for N in treel’s nodes:
for T in all possible trans:
treeResult = apply T at node N
if treeResult matches tree2 completely:
return (N, T, Correct App)
if treeResult matches tree2 structurally, but not color-wise:
return (N, T, Incorrect App)

return Unrecognized

Ztype (iii) does not occur during the tutor because the system performs the transformations in place of the

students.
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while heuristics are to detect combinations of transformations. In particular, we check if

any combination reported in Table [3.1]is responsible for turning 7; into Tj.

Insertion combinations Deletion combinations

Insert to empty tree and color root black Switch value and delete node
Color flip at root and color root black | Color flip at root and color root black

Insert node and single rotate Single rotate and delete node

Insert node and double rotate Double rotate and delete node

Table 3.1: Common combinations of transformations in test answers.

If any transformation (or combination) is detected, keep a record of it; otherwise move on

to the next pair.

3. Based on the results in Step 2, infer the sequence of transformations sq, s», ..., s,, that the
student was following, for example:

s1= color flip s3= insert node
— —
To Tn To Ty T, T
———

so= single rotate

The node at which each transformation is applied is also recorded.

4. Compare the solution sequence () with the student’s solution (s) elementwise. If the two
match completely, the student is correct. If at any point there is a mismatch (S; # s;),
look for any alternative solution (S’) where the step at index i can be s; (for example,

color root black could occur at different places in a correct solution).

o If (') exists, replace (S) with (S’) and continue the comparison.

e Otherwise, the student is incorrect. Further examine the difference between S; and

s; to deduce the error type.

5. Record the error contexts (if any). In insertion problems, the context is the node at
which the error occurred, along with its grandparent, parent and children (if they exist).
In deletion problems, the context also includes the sibling and sibling’s children. This
definition is based on which nodes are included in the preconditions of insertion and deletion

transformations.

The grading algorithm uses the constraints imposed on binary search trees (ordering and

relationship of nodes) and its knowledge of red-black trees to construct the canonical solution
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Figure 3.3: Different contexts of color flip in tree deletion. Color flip at root (top) only switches

its color, whereas color flip at non-root (bottom) also changes the parent and sibling.

sequence. The key assumption is that the algorithm has a sufficient set of transformations (both
primitive and those that are combinations of primitives) to recognize all transformations that
a student might make. If there is a step that the system does not recognize, then the step is
skipped and the next step is checked to see if it is the result of some step or combination of
steps. The result of the comparison steps is a sequence of transformations that the algorithm
has identified. In Step 4, this sequence is compared to the sequence from the solution to try and
find a match taking into account that a different ordering of transformations can also lead to a
solution. Essentially, we first try to infer the steps that the student has attempted from the raw
input trees; these steps, along with the problem prompt, are then input to the tutor grading
module. As we will discuss later on, these heuristics are sufficient to analyze most of the student

answers recorded in this study.

While single step detections are rather straightforward, and can be handled by brute-force,
multiple step detections are based on actual data on what steps the students tend to combine
(Table . When students are proficient in the domain knowledge, which usually occurs in
the post test, they are able to visualize the resulting tree in their mind. Then they tend to
simply overwrite the current tree on screen with the resulting tree. Having the capability to
detect when students combine multiple steps is therefore an important factor in reducing the
proportion of unrecognized transformations. Note that because all input trees have at most 31
nodes, grading can execute and finish almost immediately. Therefore the grading results do not
have to be saved to the database; they can simply be computed every time the result page is

loaded.

The output of the grading algorithm is then used to construct the topology of the following

Bayesian networks.
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3.2 Domain-general network

The domain-general network encodes long-term knowledge and represents the system’s assess-
ment of the student’s rule mastery after the last performed exercise. It consists of two kinds of
nodes: Rule node, which conveys the student’s rule mastery in all contexts, and Context-Rule
node, which conveys rule mastery in a specific context. Both have boolean values, True for
mastered and False for unmastered. The Rule nodes are independent of each other and each
Rule node is connected to its corresponding Context-Rule nodes as depicted in Figure [3.4 The

conditional probability table of each Context-Rule given its parent Rule is:

(1) P(Context; =T | Rule = T') = 1, because by definition, mastery of a rule means being able
to apply it in all contexts.

(2) P(Context; = T' | Rule = F) = diff;, the difficulty of context i, or the number of times

the student makes an error in context ¢ divided by the total number of times that context i

appears in the test.

Figure 3.4: The subgraph of a Rule and its corresponding Context-Rules. The domain-general

network contains several such subgraphs, one for each Rule.

The network is constructed in real time right after the assessment of the pre-test; each tree
transformation gets one representative Rule node, while the Context-Rule nodes are based on
the error contexts identified by the grading algorithm. This is an improvement from ANDES’
network, whose nodes are specified by experts beforehand as part of the domain knowledge. The
mechanism to dynamically generate the network structure would allow each student to have an
individualized model and the tutor’s framework to be more applicable in other domains.

As an example, consider a portion of a student’s domain-general network after the insertion
pre-test (Figure . Every time she makes an error, the surrounding context is recorded and
added to the domain-general network; if that context is already present, its difficulty will get

updated instead.
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Figure 3.5: An example domain-general network with two Rules: color flip and single rotate.

The left side of the graph indicates two error contexts of color flip. Context 1 likely results
from mistaking the precondition of color flip in insertion for that in deletion; Context 2 shows
that the student incorrectly believes the current node having one red child already leads to color
flip. The right side of the graph shows two error contexts of single rotate. Both of these indicate
that the student mistakes the precondition of double rotate for that of single rotate. In fact, we
can see the two are symmetric and may as well be merged into one; however, the system records
these contexts automatically while having no knowledge of “symmetry,” so it still considers them
as distinct. Subsequent analysis shows that, even while having some contexts isomorphic to each
other, the student model still yields good accuracy in performance prediction. An interesting
future work would be to see if having a mechanism to merge isomorphic contexts could improve

such accuracy in any significant way.

3.3 Task-specific network

The task-specific network encodes the student’s rule mastery in a specific exercise and is auto-
matically generated by the solver module along with the exercise solution. We employ three kinds
of nodes: Context-Rule, Fact and Rule-ApplicationH Each Fact node expresses a property of the
current tree, e.g., “the current node is black” or “the parent node is red”. The Rule-Application
node has a boolean value, which is set to True if the student applies the rule correctly, and
False otherwise. Figure shows the node connections in the network. In essence, the sys-

tem analyzes the current context, expressed by the Fact nodes, to bring up the corresponding

3The ANDES network also has Goal and Strategy nodes because it is designed for additional purposes,
including plan recognition and self-explained examples. However, in the scope of this work, I am only concerned

with knowledge tracing.
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Figure 3.6: The task-specific network.

Context-Rule node. The rationale is that if the student previously made an error in a particular
context, when that context shows up again in the current exercise, we would like to see whether
the same error occurs. If no error is made, the student’s mastery in this context has improved.
This mechanism is expressed by the weight of the edge leading to each Rule-Application node.

For efficiency, instead of specifying a full conditional probability table, we only state two rules:

(1) P(Rule-Application = T' | all parents = T') = 1 — P(S5).

(2) P(Rule-Application = T' | at least one parent = F') = P(G).

Here P(S) and P(G) are respectively the slip and guess probabilities, which we set to an
initial value of 20%. Equation (1) states that if the student sees the current context and knows
the rule to apply, she should be able to perform a correct rule application, unless she makes a
careless mistake (slips). Likewise, (2) states that if the student either is unaware of the current
context or does not know the rule, she is unlikely to perform the correct action without making
a guess. Observations from past studies show that some students accidentally picked the wrong
choice from the drop-down menu despite knowing the answer, whereas others tried to game the
system by submitting every possible choice until they were correct. The probabilities P(S) and
P(G) are introduced to account for these cases; they are also part of the BKT parameters.

When the student submits a correct answer, the Rule-Application node is set to True, and

the posterior probability of its parent Context-Rule is updated. The system then performs the
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selected application, resulting in a new state of the current tree with different properties (Facts
2a, 2b and 2c), and the next Context-Rule (Context 2) is taken into account. At the end of
each exercise, the task-specific network is discarded, but the probabilities of all Context-Rules
are saved to the domain-general network, so that they can be used as priors for the next time

these contexts appear. This process is called roll-up in ANDES.

3.4 Three methods for evaluation

In order for the system to be dynamic (i.e., to generate dynamic exercises that address an
individual student’s weakness), it needs to have knowledge of what the student knows and does
not know at any given time. In the context of the Red-black Tree Tutor, the system should be
able to predict whether the student’s next answer is correct or not, based on her performance
so far in the tutoring session and in the pre-test. To my knowledge there has not been any prior
work on performance prediction in the domain of binary search tree. Therefore, to get a better

idea of how well the student model performs, I implemented and evaluated three approaches:

1. Baseline prediction. Every time the student submits an answer in the tutoring session,
the system predicts that the answer is correct with a fixed p = 0.5 probability. The
performance of this method will serve as a baseline to compare with that of the next two

methods.

2. Bayesian model with error contexts. A two-part Bayesian network, as defined above,
is constructed for each student. The system makes its predictions based on the probability
value of the Context-Rule node which corresponds to the current context. As defined

earlier, context refers to the structure of the subtree surrounding the current node.

3. Bayesian model with extended error context. The same Bayesian model function-
ality in method 2 is used, but the definition of a context is extended to include both the
surrounding subtree and the previous operation. The rationale is that so far we have con-
sidered each transformation in isolation, but the nature of the solution to a red-black tree
problem is a sequence of transformations, one following another. It might be the case that
how the student performs in the current step also depends on her previous step. With this
distinction, there will be more contexts to analyze, and I would like to see how it affects

the system’s accuracy.
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Chapter 4

Evaluation & Results

The proposed approaches were evaluated on data from students in CS 150 at Lafayette College.
The data was taken from four semesters - Fall 2016, Spring 2017, Fall 2017 and Spring 2018.
The semester enrollments are 29, 50, 26, and 33, respectively. Insertion and deletion concepts

are taught separately, each following the same timeline:
1. Week 1 - lectures on the material (2.5 hours)
2. Week 2, day 1 - pre-test (0.5 hour)
3. Week 2, day 1 - use of tutoring system (1 hour)
4. Week 2, day 2 - post-test (0.5 hour)

The pre and post tests are identical in content, both consisting of a small number of exercises
in which students attempt to insert (delete) a node, given a starting tree. Problems in the
insertion tutor require students to insert nine numbers starting from an empty tree. Similarly,
problems in the deletion tutor require students to delete all values from an initial tree with nine

nodes. The number of questions in each session is listed in Table [4.1]

Pre-test Tutor Post-test
Insertion 4 20 4
Deletion 7 25 (F2017, S2018) 7
20 (other semesters)

Table 4.1: Number of questions in each session.
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Semester | Application | Selection | Unrecognized

Pre F2016 19 62 7
Post F2016 18 37 2
Pre S2017 54 79 13
Post S2017 34 42 6
Pre F2017 4 40 4
Post F2017 8 20 4
Pre S2018 30 45 o
Post S2018 12 25 4

Semester | Application | Selection | Unrecognized

Pre F2016 22 76 9
Post F2016 20 45 6
Pre S2017 20 109 14
Post 52017 33 30 13
Pre F2017 19 53 11
Post F2017 8 ol 3
Pre S2018 25 46 Y
Post 52018 10 25 2

Table 4.2: Breakdown of student errors for insertion problems (top) and deletion (bottom).

4.1 Assessment of students’ test performance

While not the focus of this thesis work, it is useful to first compare the students’ performance
in the pre and post tests to see if Xhakaj’s results about student improvement [46] can be
reproduced, using the automated grading algorithm’s analysis.

For individual student improvement, I performed a paired samples t-test to compare the

student’s number of first errors in the pre-test ey, and in the post-test e,0s:. Results show that:

e In tree insertion, there was a significant difference between e,,.. (M = 2.81, SD = 1.35)

and €05 (M =1.72,SD = 1.35); t(137) = —8.23, p = 2.95- 10713,

e In tree deletion, there was a significant difference between e, and eyt (M = 3.63, SD =

1.08) and epq (M = 2.68, SD = 1.48); (137) = —5.33, p=3.12-107".
Hence the impact of the tutoring system on reducing student errors is statistically significant
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at the 1% level.

For cumulative data, Table show the total number of errors made in the pre and post
tests in each semester across all students. The number of unrecognized errors is approximately
10% in the pre-tests and 4% in the post-tests. I analyzed the unrecognized errors by hand and
found that in most cases I (the human instructor) was also unable to determine the error type.
Many of these errors were generated by students who were “gaming” the system to finish the
tests faster by making random selections and then submitting the random answer. The data
show that the most common error was committed when selecting the appropriate transformation
to apply (from the Selection column). This error is caused by the student either (1) selecting
the wrong node as the current node or (2) not correctly recognizing the preconditions for each
transformation. The data format provided in the student answers, in the form of raw tree
sequences, is insufficient to disambiguate between those two errors.

Comparing the difference between the number of errors in the pre-test and that in the post-
test across semesters (Figure , we see that the errors in node selection all decrease;
in insertion exercises there is a steady 50% reduction from pre test to post test, whereas the
differences vary more in deletion exercises. The number of unrecognized errors also decrease
across all semesters, suggesting that students are less likely to game the system once they have
finished the tutor and understood the materials; however, due to the grading algorithm being
able to recognize more than 90% of the answers, there are not many unrecognized errors across

both test conditions.

Differences in number of errors between insertion pre and post
test, per error types, across semesters
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Figure 4.1: Insertion pre-test and post-test error count comparison.
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Differences in number of errors between deletion pre and post
test, per error types, across semesters
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Figure 4.2: Deletion pre-test and post-test error count comparison.

Interestingly, the number of errors in applications do not seem to decrease by much; we only
see a difference of 1 in Fall 2016 insertion, 2 in Fall 2016 deletion, and even —4 in Fall 2017
insertion (in this case, the number of error increases from pre test to post test). To understand
why this is the case, I further broke down the data by the type of transformations (Table .
The largest number of errors were made in applying the color flip transformation. This is one
of the simpler transformations in that the colors of three nodes (current node, two children)
are flipped. Most of the errors occurred due to the students not recognizing the applicable
preconditions and selecting the transformation. Note that the grading tool only grades up until
the first error so that if students were to make subsequent errors those errors would not be
detected. This explains why the errors in single rotation and double rotation do not appear to
decrease significantly (in some cases they increase) between the pre and post test. In the pre-test,
because most students forgot about color flip, they did not have many opportunities to apply
single rotation or double rotation, resulting in few application errors reported. In the post-test,
students did learn to perform color flip, which them prompted them to apply rotations on more
occasions, in which case more application errors were likely to occur. On further analysis, if
we only consider students who did make rotation errors in the pre-test, then their number of
rotation errors in the post-test also decreased significantly, by almost 75%. Overall these findings

are consistent with those reported in Xhakaj’s thesis.

Deletion operations are more complex than insertion operations and, as an added level of
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Semester | Color | Single | Double | Insertion | Recolor | Unrecog
Flip Rot Rot Root
Pre F16 42 19 13 12 2 7
Post F16 15 16 17 6 1 2
Pre S17 67 25 19 30 3 13
Post S17 26 24 19 7 2 6
Pre F17 20 11 5 2 8 4
Post F17 12 6 9 3 1 4
Pre S18 32 15 10 5 7 3
Post S18 18 8 7 2 4 2

Table 4.3: Errors for each type of insertion operation

difficulty, many of the operations share the same name as the insertion operations even though

the preconditions and semantics are different. Just like for insertion, the most common error was

committed when selecting the appropriate transformation to apply. Table[4.4shows a breakdown

of the data by the type of transformation. The largest number of errors were made in applying

the drop € rotate transformation. This is a case that is poorly explained and illustrated in the

textbook. Using similar analysis, we also show the the difference between the number of errors

in the pre-test and post-test, per transformations, across semesters in Figure [4.4]

Semester | Color | Single | Double | Deletion | Recolor | Switch | Drop & | Unrecog
Flip | Rotate | Rotate Root Value | Rotate
Pre F16 1 15 19 4 6 11 50 9
Post F16 2 10 10 3 12 3 31 6
Pre S17 3 37 36 2 3 20 72 14
Post S17 1 18 22 2 10 5 63 13
Pre F17 0 14 14 0 1 19 35 11
Post F17 3 5 4 1 12 3 33 3
Pre S18 2 11 13 1 3 10 37 15
Post S18 2 5 5 0 8 0 27 6

Table 4.4: Errors for each type of deletion operation
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Differences in number of errors between insertion pre and post test, per
transformations, across semesters
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Figure 4.3: Insertion pre-test and post-test error count comparison, per transformations.

Differences in number of errors between deletion pre and post test, per

transformations, across semesters
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Figure 4.4: Deletion pre-test and post-test error count comparison, per transformations.
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4.2 Modeling of students’ performance on the tutor

Each time the student submits an answer, the tutoring system attempts to predict whether that
answer is correct, using one of the three methods outlined earlier. Then the actual grading
is performed to check whether this prediction is right. The accuracy of the student model is
defined as the number of correct predictions divided by the total number of predictions. In all
subsequent tables, unless otherwise specified, the data are averaged across all students in each

semester.

4.2.1 Baseline prediction

The data for predicting with fixed probability p = 0.5 are shown in Table [£.5] The columns,
from top to bottom, respectively refer to the followings: number of average and total correct
predictions, mean accuracy, standard deviation of accuracy, lowest and highest accuracy across

all students in the semester. The resulting accuracy also approximates 50% with small variances.

Insertion F2016 | S2017 | F2017 | S2018
Correct/Total | 187/372 | 200/399 | 184/371 | 179/375

Accuracy 50% 51% 51% 51%
Stdev Acc 5% 6% 4% 5%
Min Acc 41% 41% 43% 43%
Max Acc 60% 58% 60% 57%

Deletion | F2016 | S2017 | F2017 | S2018
Correct/Total | 188/383 | 195/383 | 267/461 | 262/472

Accuracy 47% 50% 52% 53%
Stdev Acc 4% 6% 4% 5%
Min Acc 44% 42% 45% 42%
Max Acc 59% 58% 60% 61%

Table 4.5: System’s baseline accuracy on the insertion and deletion tutor.

4.2.2 Bayesian model with error contexts

We evaluate the Bayesian student model on both the insertion tutor and deletion tutor (Table

. Note that because there are five more exercises in the deletion tutor of Fall 2017 and Spring
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2018, the number of answers submitted (and the number of predictions) in these two semesters
are higher than in others. We can see that data across the fall semesters are consistent. There
is more variation in Spring 2017 due to the larger number of students enrolled, but only in the
insertion tutor. The system achieves the highest accuracy (76%) when predicting performance in
the deletion tutor of Fall 2017 - this can be explained by the increased number of exercises, which
allows the Bayesian network more opportunities to update itself and to yield better predictions
in turn. Overall, using Bayesian modeling yields a 20% improvement in accuracy, compared to

baseline prediction.

Insertion F2016 | S2017 | F2017 | S2018
Correct/Total | 268/372 | 259/399 | 267/371 | 272/375

Accuracy 72% 66% 72% 73%
Stdev Acc 4% 8% 5% 5%
Min Acc 63% 50% 62% 65%
Max Acc 81% 86% 83% 84%

Deletion F2016 | S2017 | F2017 | S2018
Correct/Total | 270/383 | 268/383 | 351/461 | 360/472

Accuracy 70% 70% 76% 74%
Stdev Acc 5% 4% 4% 4%
Min Acc 64% 61% 68% 65%
Max Acc 82% 80% 83% 81%

Table 4.6: System’s accuracy on the insertion tutor and deletion tutor, using Bayesian modeling.

4.2.3 Bayesian model with extended error contexts

Table shows the model’s accuracy when accounting for the previous transformations in the
contexts. The average accuracy is around 80%, while the maximum accuracy can reach as high
as 96% (in Fall 2017). A comparison of the three prediction methods’ average accuracy (Figure
, shows that this approach has, by far, yielded the best accuracy, about 10% more than
using Bayesian model with the standard error context, and 30% more than baseline prediction.

I then performed additional analysis in this direction to see whether there is room for im-
provement and what problem-solving patterns students might have. Table breaks down the

accuracy in more details; each prediction is categorized as either correct, false positive or false
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Insertion F2016 | S2017 | F2017 | S2018
Correct/Total | 310/372 | 325/399 | 322/371 | 330/375
Accuracy 85% 81% 87% 83%
Stdev Acc % ™% % 8%
Min Acc 63% 62% 58% 60%
Max Acc 92% 94% 96% 92%
Deletion F2016 | S2017 | F2017 | S2018
Correct/Total | 320/383 | 305/383 | 388/461 | 390/472
Accuracy 82% 79% 85% 81%
Stdev Acc % 8% ™% ™%
Min Acc 62% 57% 65% 61%
Max Acc 91% 87% 90% 88%

Table 4.7: System’s accuracy on the insertion tutor and deletion tutor, using Bayesian modeling

with extended error context.

negative. False positive occurs when the student answer is incorrect but predicted to be correct;
false negative occurs when the student answer is correct but predicted to be incorrect. We see
that in most cases, if the student is correct, the system can predict so. The majority of incorrect
predictions occur in the false positive condition, when the system thinks that the student has
mastered the transformation but in actuality the student still has an erroneous model. This
suggests that we may be able to fine-tune the Bayesian network’s behavior, in particular by de-
creasing the conditional probability that the student can submit a correct answer if the system
thinks she understands the corresponding transformation.

Next, I computed the cumulative statistics for each semester. Specifically, I would like to
know the transformations involved in the answers that the system can predict accurately and in
those that the system cannot. Table .9 and Figure [4.7] breaks down this information from Fall
2017 based on the three categories Correct, False Positive and False Negative mentioned above.
Here the tree insertion transformations of interest are Insert node, Color flip, Single rotate, and
Double rotate. Data from the other three semesters are also similar. Table and Figure 4.8
present the same kind of data for the deletion tutor in Fall 2017. Here the tree transformations

of interest are Delete node, Color flip, Single rotate, Double rotate, Drop rotate and Switch value.
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Comparison of the prediction methods' average accuracy on
insertion
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Figure 4.5: Accuracy comparison on the insertion tutor.

Comparison of the prediction methods' average accuracy on
deletion
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Figure 4.6: Accuracy comparison on the deletion tutor.

I also looked at, among all the error contexts identified, which pair of sequential transfor-
mations (i.e., the current transformation following a previous transformation) occurs the most,
since our analysis includes the previous transformation in the error contexts. Table shows
that, in red-black tree insertion, students are most likely to make mistakes in rotation operations

if they previously performed an insert node operation. This pattern can be explained by the fact
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Insertion F2016 | S2017 | F2017

Correct 85% 81% 87T%

False Positive 11% 14% 10%

False Negative | 4% 5% 3%

Deletion F2016 | S2017 | F2017

Correct 82% 79% 85%

False Positive 15% 16% 13%

False Negative | 3% 5% 2%

Table 4.8: Prediction result categorization on the insertion tutor (top) and deletion tutor (bot-

tom), averaged by students.

Insert Color Flip | Single Rotate | Double Rotate
Correct 3353 (90%) | 792 (73%) 331 (79%) 348 (80%)
False positive | 327 (9%) | 229 (21%) 59 (14%) 66 (15%)
False negative | 53 (1%) 71 (6%) 31 (7%) 23 (5%)
Total 3733 1092 421 437

Table 4.9: System’s prediction result categorization for insertion tutor, cumulative in Fall 2017.

100% B False Negative

B F:lse Positive
B Correct

Percentage (%)

0%

Insert Color Flip Single Rotate Double Rotate

Transformation

Figure 4.7: Visualization of prediction result categorization for insertion tutor in Fall 2017.
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Delete Color Single Double Drop Switch
Flip Rotate Rotate Rotate Value
Correct 3413 (89%) | 786 (71%) | 341 (74%) | 367 (80%) | 292 (68%) | 795 (95%)
False positive | 385 (10%) | 243 (22%) | 79 (17%) | 54 (12%) | 101 (24%) | 27 (3%)
False negative | 52 (1%) 78 (8%) 41 (9%) 33 (7%) 36 (8%) 15 (2%)
Total 3850 1107 461 454 429 837

Table 4.10: System’s prediction result categorization for deletion tutor, cumulative in Fall 2017.

100% B False Megative

B Fzlse Positive
B Correct

Percentage (%)

Delete Color Flip Single Double Drop Rotate Switch value
Rotate Rotate
Transformation

Figure 4.8: Visualization of prediction result categorization for deletion tutor in Fall 2017.

that in most tree insertion problems, the final step is to insert a new node at a leaf node’s child;
however, sometimes a subsequent rotation at the newly inserted node is also required, which
students tend to forget about. It should be noted that a color flip may also result in consecutive
red nodes, thereby forcing a rotation to follow; the third and fourth case in Table (top)
represent this case. In general, from my teaching experience, all four cases occur very often, but

this is the first time we obtain a relative ranking of their frequencies.

Table (bottom) also shows that, in red-black tree deletion, students are most likely to
make mistakes in node deletion following switch value. Interestingly, as we previously analyzed,
students usually perform switch value correctly. However, after this step, they tend to move
straight to the leaf whose value was switched and delete it - this is correct in normal binary search

trees, but in red-black trees, we still have to traverse down one node at a time until reaching the
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Transformation | Previous Transformation | Count
SingleR Insert 90
DoubleR Insert 72
SingleR Cflip 65
DoubleR Cflip 50

Transformation | Previous Transformation | Count

Delete Switch 98
DoubleR Cflip 78
SingleR CHlip 76

Drop rotate - 27

Table 4.11: Most common pairs of insertion transformations in students’ errors across three

semesters in insertion (top) and deletion (bottom).

leaf, performing necessary transformations along the way before the actual deletion. Another
noteworthy point is that students tend to forget to execute the drop rotate operation, but only

when it is necessary to do so at the root (in this case, drop rotate is the first transformation in

the solution sequence, so it has no previous transformation).
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Chapter 5

Conclusion & Future Works

This thesis work explored the process of constructing an Intelligent Tutoring System called Red-
Black Tree Tutor. The system has been used at Lafayette College for four semesters and serves
as an effective platform to explore research questions pertaining to teaching and learning in a

complicated graphical domain such as balanced binary search tree. In particular,

e The system has successfully replicated the results of Xhakaj’s thesis [46], confirming that
the granularity approach and the associated tutor interface are effective in improving stu-
dents’ learning gains. It also automates the test procedures by offering an online non-
scaffolded testing environment and a grading algorithm that can handle mostly uncon-
strained inputs in this setting. The algorithm not only assigns a numerical score for each
submission but also identifies the first error in 90% of the cases and outputs class-wide
statistics comparing students’ performance in the pre and post test, with respect to each

tree transformation.

e [ have shown that a standard Bayesian student model can still be effective in the domain
of red-black trees, where a direct mapping from a student answer to its underlying knowl-
edge content is not obvious. An important assumption here is the distinction between
understanding of a rule (transformation) in general and understanding of such rule in a
specific context. By keeping track of students’ errors and their contexts, the model is able
to predict students’ accuracy throughout the tutoring session with good accuracy (=~ 70%).
Extending the error contexts to include the previous transformation, in addition to the

current subtree, further improves this accuracy (85%).

e Mining student logs has revealed common patterns about students’ problem-solving behav-

iors. For example, whether students make a mistake on one transformation may depend
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on the previous transformation (Table {4.11)). Certain pairs of transformations, such as
(Insert, Single Rotate) or (Switch Value, Delete) are much more error-prone than oth-
ers. This information provides valuable feedback to instructors who can then adjust the

instructional content to include common errors that students should avoid.

The Red-black Tree Tutor also opens up several exciting future directions. First and fore-
most, the student model has set up a solid foundation for the implementation of an adaptive
tutoring system, which, as outlined in the introduction, is a prominent feature. Second, gather-
ing more student data would allow the implementation of more sophisticated techniques, such
as hierarchical Bayesian learning or deep learning, in student model construction, which would
in turn further enhance the model’s accuracy. Finally, balanced trees in general share many
common properties and transformations; an adaptation of the current system to a related do-
main (e.g., AVL trees, AA trees, splay trees), could therefore provide insights on how general

the underlying framework is.
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