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Glossary

Abbreviations

MO Abbrev. for Mathematical Olympiad, the highest-level math contest for

high school students in a region - for example, VMO (Vietnam), USAMO

(America), IMO (International).

TST Abbrev. for Team Selection Test, a test given to top performers in a na-

tional olympiad to select the nation’s representative team for an international

olympiad.

Mathematical notions

a, b, c, r, R Unless otherwise specified, in 4ABC, a, b, c denote the lengths of segments

BC,CA,AB respectively. p is its semiperimeter, i.e., p = 1
2
(a + b + c). r and

R denote its inradius and circumradius respectively.

S4XY Z Denote the area of 4XY Z.

(XY Z) For any three non-collinear points X, Y, Z, denote the circumcircle of 4XY Z.

(I; r) and

(I)

Denote the circle with center I and radius r. When it is clear from the context

that there is only one circle with center I, the parameter r can be omitted.

AB The algebraic length of segment AB. If
−→
AB points in the positive direction,

AB = |
−→
AB|; otherwise, AB = −|

−→
AB|.

(ABCD) For any four collinear points (A,B,C,D), denote the cross-ratio

(ABCD) =
AC

AD
:
BC

BD
.

When (ABCD) = −1, A and B are harmonic conjugates of each other with

respect to C and D.

(AB,CD) The oriented angle starting at AB and ending at CD.
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1 Introduction

We begin with an analysis of a simple geometry problem, proposed by Dr. Trinh Le, deputy

delegate of the Vietnam IMO team.

Problem 0

In 4ABC consider a point D on segment BC. Let I and J be the midpoints of DB and

DC respectively. The perpendicular bisectors of DB and DC intersect AB at M and AC

at N respectively. Let O be the circumcenter of 4ABC . Prove that AMON is a cyclic

quadrilateral.

A

B C

O

D

M

N

Figure 1: Prove that AMON is a cyclic quadrilateral.

The following six solutions were devised by six students from the Ho Chi Minh City VMO

team. Let us first take a look at their approaches and analyze the pros and cons of each.
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Proof 1

A (b,c)

B (-1,0) C (1,0)

O

D (d,0)

M

N

T (0,0)

KU V

Let T be the midpoint of BC. Consider the Cartesian coordinate system Txy where T

is the origin, Tx is BC and Ty is the perpendicular bisector of BC.

Denote the following coordinate points: B(−1, 0), C(1, 0), D(d, 0) and A(a, b).

Let U and V be the midpoints of AB and AC respectively, and let K be the projection of

O on MN . Furthermore, for any line l, denote ~nl as its normal vector.

We can then compute the followings:

1. (AB) : y =
b(x+ 1)

a+ 1
, (AC) : y =

b(x− 1)

a− 1
.

2. U

(
a− 1

2
,
b

2

)
, V

(
a+ 1

2
,
b

2

)
,M

(
d− 1

2
,
b(d+ 1)

2(a+ 1)

)
, N

(
d+ 1

2
,
b(d− 1)

2(a− 1)

)
.

3. xO = xT = 0,
−→
OU ‖ −−→nAB ⇒ O

(
0;
a2 + b2 − 1

2ab

)
.

4. (MN) :
b(a− d)

a2 − 1

(
x− d− 1

2

)
+ y − b(d+ 1)

2(a+ 1)
= 0.

5.
−−→
OK ‖ −−→nMN ⇒

xK

yK − a2+b2−1
2b

=
b(a− d)

a2 − 1
.

Observe that yU = yv = b
2
, so it turns out the line UV is (UV ) : y = b

2
. Furthermore, the

point K is uniquely determined from (4) and (5), and we notice that
(
xK = d−a

2
, yK = b

2

)
satisfies both. Hence K

(
d−a
2
, b
2

)
and therefore K ∈ UV . By the converse Simson’s theorem

AMON is cyclic. (QED)
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Proof 2

Let N ′ 6= A be the intersection point of (AMO) and AC. We prove AN ′ = AN , which

would imply N ′ ≡ N . Denote DB = x, then

BM =
x

2 cosB
, AM = c− x

2 cosB
, AN = b− a− x

2 cosC
. (1)

A

B C

O

D

M

N’ = N

Since AMON ′ is a cyclic quadrilateral, by Ptolemy’s theorem:

AO ·MN ′ = AM ·ON ′ + AN ′ ·OM. (2)

Further observe that ∠OMN ′ = ∠OAC = 900 − B and ∠ON ′M = ∠OAB = 900 − C.

Hence, in 4OMN ′, applying the sine Rule, we have

ON ′

OM
=

cosB

cosC
.

Multiplying both sides of (2) by cosC
OM

we have

(AO cosC) · MN ′

OM
= (AM cosC) · ON

′

OM
+ AN ′ cosC.

which yields

AN ′ cosC = (AO cosC) · sin∠MON ′

sin∠ON ′M
− (AM cosC) · cosB

cosC

=

(
a

2 sinA
· cosC · sinA

cosC

)
−
(
c− x

2 cosB

)
cosB

=
a+ x

2
− c cosB.

7
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From (1) we also have

AN cosC = b cosC − a− x
2

,

hence AN ′ = AN would be equivalent to

a+ x

2
− c cosB = b cosC − a− x

2
,

which can be rewritten as a = b cosC + c cosB, which is true. Thus AN ′ = AN and

therefore N ′ ≡ N . (QED)

Proof 3

A

B C

O’ = O

D

M

N

K

(AMN) intersects the diameter AK of (ABC) at O′ 6= A. We will prove that AK =

2AO′, which implies O′ ≡ O.

Observe that 4O′MN ∼ 4KBC so

OM

KB
=
MN

BC
=
O′N

KC
= k,

which means that

MN = kBC, O′M = kKB, O′N = kKC. (3)
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Applying Ptolemy’s theorem to cyclic quadrilaterals AMO′N and ABKC we have

AO′ ·MN = AM ·O′N + AN ·O′M. (4)

AK ·BC = AB ·KC + AC ·KB. (5)

Dividing both sides of (4) by k we have

AO ·BC = AM ·KC + AN ·KB. (6)

From Solution 2, with DB = x, we also have

AM = c− x

2 cosB
,AN = b− a− x

2 cosC
.

Further note that that KB = 2R cosC and KC = 2R cosB. Looking at (5) and (6), to

show AK = 2AO′ we need to prove that

AB ·KC + AC ·KB = 2(AM ·KC + AN ·KB),

which is equivalent to

c cosB + b cosC = 2 cosB
(
c− x

2 cosB

)
+ 2 cosC

(
b− a− x

2 cosC

)
,

which reduces to a = b cosC+c cosB, which is true. Hence O ≡ O′ ∈ (AMN) and therefore

AMON is cyclic. (QED)
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Proof 4

A

B C

O

D

M

N

U V

R SI J

Let U, V be the midpoints of AB,AC respectively and R, S be the projections of U, V

onto BC respectively. It is easy to see that IR = JS. Indeed, on axis BC, denote the

direction of
−−→
BC as the positive direction. We then have

IR = BR−BI = BU cos(BR,BU)− x

2
=
c cosB − x

2
,

JS = CS − CJ = CV cos(CS,CA) +
a− x

2
=
−b cosC + a− x

2
.

Since a = b cosC + c cosB, IR = JS so IR = JS.

Applying Thales’s theorem for UR ‖MI and V S ‖ NJ we have

MU

IR
=
BU

BR
=

1

cosB
,
NV

SJ
=
CN

CJ
=

1

cosC
.

Hence
MU

NV
=
IR

JS
· cosC

cosB
=

cosC

cosB
=
OU

OV
.

Observe that 4OMU and 4ONV are directionally similar. Let f be the spiral similarity

with center O, angle (OU,OV ) and ratio k = OU
OV

, then f(U) = V, f(M) = N .

Hence (MO,MU) ≡ (NO,NV ) (mod π), so AMON is a cyclic quadrilateral. (QED)
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Proof 5

A

B C

O

D

M

N

E

X

Y

Let E be the reflection of D across MN . We then have

∠MEN = ∠MDN = 1800 − ∠MDB − ∠NDC = 1800 −B − C = A.

Hence, AENM is a cyclic quadrilateral, which implies ∠AME = ∠ANE. Note that

ME = MD = MB and NE = ND = NC, so 4MBE and 4NCE are isosceles. In

other words, ∠AME = 2∠MBE and ∠ANE = 2∠NCE. Therefore ∠MBE = ∠NCE, so

AECB is cylic and E ∈ (ABC).

Observe that OM and ON are the perpendicular bisectors of EB and EC respectively. Let

X = OM ∩BE, Y = ON ∩ CE, then EXOY is a cyclic quadrilateral.

Hence

∠MON = 1800 − ∠XEY = 1800 − A,

which means AMON is cyclic. (QED)
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Proof 6

A

B C

O’ = O

D

M

N

E

Let E 6= D be the other intersection point of (DMN) and BC.

We have ∠EMN = ∠EDN = C, A = ∠MDN = ∠MEN so 4EMN ∼ 4ACB.

Let O′ be the orthocenter of 4EMN . We observe that BMO′E,AMO′N,CNO′E are

cyclic quadrilaterals, hence

∠O′BE = ∠O′ME = ∠O′NE = ∠O′CE,

so O′C = O′B. Similarly we have O′A = O′B (= O′C) and thus o′ is the orthocenter of

4ABC . In other words, O′ ≡ O.

We also have ∠MON = 1800 − ∠MDN = 1800 − A, which means AMON is cyclic.

Remark 1. We can observe the relation among the six solutions given above. While all solutions

involve the additional construction of some geometric objects (new point, new line, or new circle),

the more sophisticated this construction is, the simpler the subsequent proof becomes.

• Solution 1 is the most simple approach: by considering the problem in the context of

Cartesian coordinates. It is then straightforward to calculate the coordinates of every

point. The proof does apply a small twist, however, by invoking Simson’s theorem to turn

the problem of cyclicity into that of collinearity, thereby avoiding equations of circles which

are usually fairly complicated.

• Solution 2 and 3 “reverse” the problem by constructing the point N ′ 6= A as the intersection

of AC and (AMO). The motivation here is that, instead of having to deduce cyclicity,
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we assume cyclicity is already given. What remains is to show that both N ′ and N

share a common unique property, which in turn implies that N ′ is indeed N . This is

a recommended approach when one has not figured out how to effectively use all of the

information provided by the problem.

• Solution 4 builds upon the realization that all properties of M and N depend only on the

location of D on BC, i.e., the length of the segment DB. Hence we try to convert all

computations to those involving only the segments on BC. Thanks to this approach, there

are much less algebraic work to do.

• Solution 5 and 6 are two purely geometric solutions that one needs rich experience in

geometry to come up with. In particular, the idea of solution 5 is that since ∠MDN = A,

we create a reflection of D in order to obtain a cyclic quadrilateral. In solution 6, we use

the following lemma:

Lemma 1. Given 4ABC with three points X, Y, Z on BC,CA,AB respectively such that

4XY Z ∼ 4ABC. It follows that the orthocenter of 4XY Z is also the circumcenter of

4ABC.

While solutions such as 5 and 6 are always desirable, it can be difficult to identify the

underlying geometrical insights that in turn lead to such concise solutions, especially for students

not strong in geometry1. The goal of this article, then, is to provide a systematic approach

to tackling geometry problems using the tools from algebra and calculus. We will show how

algebraic techniques along the line of Solution 1 and 2 can be utilized to solve a variety of

Olympiad-level problems.

Remark 2. The given problem is in fact one in a series of similar geometric properties.

Problem 1

Let O, I and H be the circumcenter, incenter and orthocenter of 4ABC respectively. Con-

sider three points D ∈ BC, M ∈ CA, N ∈ AB.

• Prove that if BD = BM and CD = CN then I ∈ (AMN).

• Prove that if MD = MB and ND = NC then O ∈ (AMN).

• Prove that if DM = DB and DN = DC then H ∈ (AMN).

1including us, the authors.
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2 Background

We first highlight a number of theorems and solutions that are highly applicable. Note that

there are a number of textbook formulas - Pythagorean’s Theorem, Thales’ theorem, Law of

sines and Law of cosines - that are not introduced but also relevant here.

Theme 1. Useful equatilies.

• (Ptolemy) If ABCD is a cyclic quadrilateral then

AC ·BD = AB · CD +BC · AD.

• (Stewart) For any collinear points A,B,C and arbitrary point M ,

MA2 ·BC +MB2 · CA+MC2 · AB = −AB ·BC · CA.

• (Carnot) For any four arbitrary points A,B,C,D,

AD⊥BC ⇔ AB2 − AC2 = DB2 −DC2.

• (Heron) The area of 4ABC with side lengths a, b and c and semiperimeter p = a+b+c
2

is

S4ABC =
√
p(p− a)(p− b)(p− c).

Theme 2. Triangle lengths.

Given 4ABC (AB < AC) with altitude AD and bisector AF . Let E be the tangent point

of 4ABC ’s incircle and BC. We then see that

BD =
a2 + c2 − b2

2a
, BE =

a+ c− b
2

, BF =
ac

b+ c
,

which in turn yields

DE = BE −BD =
(b− c)(b+ c− a)

2a
.

Furthermore, from Stewart’s theorem, we have

AD =
√
AB · AC −DB ·DC =

2
√
bcp(p− a)

b+ c
=

2bc

b+ c
· cos

A

2
.

Theme 3. Trigonometric expressions.

In any 4ABC, we have

cos
A

2
=

√
p(p− a)

bc
, tan

A

2
=

√
(p− b)(p− c)
p(p− a)

,

cotA =
b2 + c2 − a2

4S
, cot

A

2
=
b+ c− a

2r
.
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Theme 4. Concurrency and collinearity.

In 4ABC consider points D ∈ BC,E ∈ CA,F ∈ AB. Let L be another point on BC.

• (Ceva) AD,BE,CF are concurrent if and only if

DB

DC
· EA
EB
· FC
FA

= −1.

• (Menelaus) L,E, F are collinear if and only if

LB

LC
· EA
EB
· FC
FA

= 1.

A

B CD

E

F

L

Combining the two theorems also shows that

DB

DC
:
LB

LC
= −1.

In other words, if AD,BE,CF are concurrent and L,E, F are collinear then (DLBC) = −1 =

(LDBC).

Theme 5. Oriented angles.

Oriented angles are considered in mod π and have the following properties:

• (AB,CD) ≡ (AB,DC) ≡ (BA,CD).

• a ‖ b if and only if (a, b) ≡ 0.

• a⊥b if and only if (a, b) ≡ π
2
.

• (a, b) ≡ −(b, a).

• (a, b) ≡ (a, c) + (c, b).
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• A,B,C,D are cyclic if and only if (AB,AD) ≡ (CB,CD).

• AT is tangent to (ABC) if and only if (AT,AB) ≡ (CA,CB).

Theme 6. Cartesian coordinates.

Besides textbook formulas on vectors and line equations, we introduce the expressions of

several useful geometric constructs in the context of Cartesian coordinates.

Given 4ABC with centroid G, incenter I, orthocenter H, circumcenter O and excenter J

opposite to A, we have:

• a
−→
IA+ b

−→
IB + c

−→
IC =

−→
0 , so

I

(
axA + bxB + cxC

a+ b+ c
,
ayA + byB + cyC

a+ b+ c

)
.

•
−→
GA+

−−→
GB +

−→
GC =

−→
0 , so

G

(
xA + xB + xC

3
,
yA + yB + yC

3

)
.

•
−−→
AH ·

−−→
BC = 0 and

−−→
BH ·

−→
AC = 0, so

xH(xC − xB) + yH(yC − yB) = xA(xC − xB) + yA(yC − yB),

xH(xC − xA) + yH(yC − yA) = xB(xC − xA) + yB(yC − yA).

• OA2 = OB2 = OC2, so

− 2xOxA + x2A − 2yOyA + y2A

=− 2xOxB + x2B − 2yOyB + y2B

=− 2xOxC + x2C − 2yOyC + y2C .

• (
−→
AJ,
−→
AB) = (

−→
AJ,
−→
AC) and (

−→
BJ,
−−→
BC) = (

−→
BJ,
−→
AB), so

−→
AJ ·

−→
AB

c
=

−→
AJ ·

−→
AC

b
,

−→
BJ ·

−−→
BC

a
=

−→
BJ ·

−→
AB

c
,

which yields

J

(
−axA + bxB + cxC
−a+ b+ c

,
−ayA + byB + cyC
−a+ b+ c

)
.

3 Example problems
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Problem 2

Consider 4ABC with incircle (I) touching BC at D. Let DE be a diameter of (I). The

excircle to vertex A touches BC at L. Prove that A,E, L are collinear.

Proof. We know from the definition of L that CL = BD = a+c−b
2

. To prove that A,E, L are

collinear, let L′ be the intersection of AE and BC. It remains to show that CL′ = CL, so L′ ≡ L.

To make use of DE⊥BC let’s create an altitude AH. In this case, 4AHL has DE ‖ AH - since

we already know DH,DE and AH, Thales would give us CL′, as desired.

A

B CD

I

E

L’ = L

H1

J

K

H

Figure 2: Prove that A,E, L are collinear.

Let L′ be the intersection of AE and BC. Draw an altitude AH of 4ABC . WLOG assume

AB ≤ AC, so H lies between B and D.

Let BL′ = x. As DE ‖ AH we have

DL′

HL′
=
ED

AH
=

2r

AH
=
a

p
=

2a

a+ b+ c
,

which leads to
x−BD
x−BH

=
DL′

HL′
=

2a

a+ b+ c
.

Having

BH =
a2 + c2 − b2

2a
, BD =

a+ c− b
2

17



then gives us

x =
−2a ·BH + (a+ b+ c) ·BD

b+ c− a
=
b+ a− c

2
,

so

CL′ = a− x =
a+ c− b

2
= CL.

In other words, L′ ≡ L and therefore A,E, L are collinear.

Remark 3. This example serves as a strong lemma for many Olympiad problems. Let’s take a

look at one of them next.

Problem 3: USAMO 2001

The incircle (I) of 4ABC touches CA and CB at E1 and D1 respectively. Consider

E2 ∈ CA and D2 ∈ CB such that CE2 = AE1 and CD2 = BD1. AD2 intersects BE2 at

P . Let Q be the intersection of (I) and AD2 that is closer to A. Prove that AQ = D2P .

Proof. Construct an altitude AH of4ABC . As BD2 = CD1 = a+b−c
2

, D1Q is in fact a diameter

of (I), so D1Q ‖ AH, from which we can calculate AQ.

To make use of the intersecion P , we can apply Menelaus to the transversal line BPE2 of

4CAD2, which would give us PD2.

A

B C

I

E1

D1

E2

D2

P

Q

H

Figure 3: Prove that AQ = DP2.

Construct an altitude AH of 4ABC . According to Problem 2, D1Q is the diameter of (I),

so AH ‖ D1Q. This would imply that

QD2

AD2

=
QD1

AH
⇒ AD2 −QD2

AD2

=
AH −QD1

AH
.
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In other words,

AQ

AD2

=
AH −QD1

AH
=

2S
a
− 2S

p

2S
a

=
p− a
p

=
b+ c− a
b+ c+ a

. (7)

According to Menelaus, since BPE2 is a transversal line of 4CAD2,

PD2

PA
· BC
BD2

· E2A

E2C
= 1

PD2

PA
· 2a

a+ b− c
· a+ b− c
b+ c− a

= 1

PD2

PA
=
b+ c− a

2a
PD2

AD2

=
b+ c− a

b+ c− a+ 2a
=
b+ c− a
b+ c+ a

. (8)

From (7) and (8) we have AQ = D2P .

Remark 4. Many more applications of the lemma introduced in Problem 2 can be found in [1].

For now we will move on to a different application of Menelaus’ theorem.

Problem 4: USAMO 2008

In an acute, scalene triangle 4ABC, let M,N,P be the midpoints of BC,CA,AB re-

spectively. The perpendicular bisectors of AB and AC intersect ray AM at D and E

respectively. BD intersects CE at F . Prove that APFN is a cyclic quadrilateral.

A

B CM

N
P

D

E

F
O

Figure 4: Prove that APFN is a cylic quadrilateral.
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Proof. To make use of the intersection F , we can apply Menelaus to the transversal line DEM

or FEC. Note that using DEM would involve the ratio MB
MC

= 1, since M is the midpoint of

BC; this would make the calculations simpler.

It’s easy to see that DA = DB and FA = FC. Let O be the circumcenter of 4ABC, then O

lies on both EN and DP .

4BFC has transversal line DEM so by Menelaus:

1 =
DF

DB
· EC
EF
· MB

MC
=
DF

DB
· EC
EF

,

so
DF

EF
=
DB

EC
=
AD

AE
.

Hence FA is the external bisector at F of 4DEF . Observe that ∠APO = ∠ANO = 90◦ so

APON is cyclic. To show that APFN is also cyclic, we will prove that ∠AFO = 90◦ as well,

or, in other words, FO is the internal bisector at F of 4DEF .

Indeed, 4ADB has DA = DB and median DP so DP is also the angular bisector of ∠ADB. In

other words, DO is the external bisector at D of 4DEF . Similarly, EO is the external bisector

at F of 4DEF . Hence O is the excenter relative to F of 4DEF . It then follows that FO is

the internal bisector at F of 4DEF .

Problem 5: VMO 2006, Board A

Let ABCD be a convex quadrilateral. Consider a moving point M on AB such that M 6= A

and M 6= B. Let N 6= M be the other intersection of (MAC) and (MBD). Prove that N

is always on a fixed circle and MN always goes through a fixed point.

Proof. Let I be the intersection of AC and BD, then

(CI,CN) ≡ (CA,CN) ≡ (MA,MN)

≡ (MB,MN) ≡ (DB,DN)

≡ (DI,DN).

So C, I,D,N are cyclic or, in other words, N is always on the fixed circle (CDI).

Let t be the line that goes through I and is parallel to AB. t intersects MN at K.

Observe (MA,MN) ≡ (KI,KN) because AM ‖ KI, while (MA,MN) ≡ (CI,CN) as well

because A,M,C,N are cyclic. Hence (KI,KN) ≡ (CI,CN) so C, I,K,N are cyclic. It follows

that K is the other intersection of t and (CDI) besides I.
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A

B

C
D

M

N

I

K

Figure 5: Prove that APFN is a cylic quadrilateral.

As both t and (CDI) are fixed, K is a fixed point, and this is the point that MN always goes

through.

Remark 5. This problem is an example of when oriented angles work best. Due to the posi-

tioning of M , it’s very hard to prove that C, I,D,N are cyclic with normal angles; both cases

of ∠ICN = ∠IDN or ∠ICN = 180◦−∠IDN can happen under different circumstances. With

oriented angle, we can simply express this condition as (CI,CN) ≡ (DI,DN).

Problem 6: Vietnam TST 2014

Prove that:

(a) In 4ABC with altitude AD, consider a point P on AD. PB intersects AC at E and

PC intersects AB at F . If AEDF is a cyclic quadrilateral, prove that

PA

PD
= (tanB + tanC) · cot

A

2
.

(b) Consider 4ABC with orthocenter H. Let P be a moving point on AH. The line

perpendicular to AC at C intersects BP at M . The line perpendicular to AB at B

intersects CP at N . Let K be the projection of A on MN . Prove that ∠BKC+∠MAN

is constant.

Proof. We first state, without proof, a common application of the harmonic series:
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Lemma 2. Consider 4ABC with altitude AD and a point P on AD. BP intersects AC at E

and CP intersects AB at F . Then DA is the angular bisector of ∠DHF .

Using this lemma, we see that ∠AEF = ∠ADF = ∠ADE = ∠AFE, so 4AEF is isosceles

at A. Now consider two cases:

A

B CD

P

E

F

Figure 6: Prove that PA
PD

= (tanB + tanC) · cot A
2
.

(a) • IfAB = AC thenAD is the angular bisector ofA. It then follows thatDF⊥AB,DE⊥AC.

Hence

EC =
DC2

AC
=
a2

4b
, EA = AC − EC =

4b2 − a2

4b
.

Applying Menelaus to the transversal line EPB of 4ADC yields

PA

PD
=
EA

EC
· BC
BD

=
4b2 − a2

2a2
.

Note that ∠B = ∠C = 90◦ − ∠A
2

, so we also have

(tanB + tanC) · cot
A

2
= 2 cot2

A

2
=

(b+ c− a)2

2r2
=

(2b− a)2

r2
,

Using algebraic manipulations and noting that 4ABC has b = c, r = S
p
, we see that

(2b− a)2

r2
= (2b− a)2 · p

2

S2

= (2b− a)2 · p2

p(p− a)(p− b)(p− c)

= (2b− a)2 · 4(2b+ a)2

a2(2b+ a)(2b− a)

=
4b2 − a2

2a2
.

Hence PA
PD

= (tanB + tanC) cot A
2
.
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• If AB 6= AC then DB 6= DC. Applying Lemma 2, we see that DA is the angular

bisector of ∠EDF . Furthermore, AFDE is cyclic, so AE = AF = x.

We now see that

DB =
a2 + c2 − b2

2a
, DC =

a2 + b2 − c2

2a
,AD =

2S

a
, cot

A

2
=
b+ c− a

2r
,

which implies

(tanB + tanC) · cot
A

2
= AD

(
1

DB
+

1

DC

)
· cot

A

2

=
2S

a

(
2a

a2 + c2 − b2
+

2a

a2 + b2 − c2

)
· b+ c− a

2r

=
2a2(b+ c− a)(b+ c+ a)

(a2 + c2 − b2)(a2 + b2 − c2)
. (9)

As AD,BE,CF are collinear, according to Ceva,

1
¯

=
DB

DC
· EC
EA
· FA
FB

=
DB

DC
· x

c− x
· b− x

x
.

which yields

x =
b ·DB − c ·DC
DB −DC

, b− x =
DC(c− b)
DB −DC

.

Applying Menelaus to the transversal line EPB of 4ADC:

PA

PD
=
EA

EC
· BC
BD

=
x

b− x
· a

BD
=
b ·DB − c ·DC
DC(c− b)

· a

DB
. (10)

Substituting DB = a2+c2−b2
2a

and DC = a2+b2−c2
2a

into (10) and simplifying the expres-

sion, we get

PA

PD
=

2a2(b+ c− a)(b+ c+ a)

(a2 + c2 − b2)(a2 + b2 − c2)
= (tanB + tanC) · cot

A

2
. (11)

(b) Let I be the intersection of NB and MC, then I lies on (O).

Note that AKBN and AKCM are cyclic, so

∠NAM + ∠BKC = ∠KBI + ∠KCI + ∠BKC = 360◦ − ∠BIC,

which is constant.
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Problem 7: VMO 2008

Consider 4ABC with median AD and a line d perpendicular to AD. Let M be a mobile

point on d and let E,F be the midpoints of MB,MC respectively. The line passing through

E and perpendicular to d intersects AB at P . The line passing through F and perpendicular

to d intersects AC at Q. Let d′ be the line passing through M and perpendicular to PQ.

Prove that d′ always goes through a fixed point.

Proof. Since this problem only concerns perpendicular and parallel lines, a natural solution

would be to consider it the context of a two-dimensional coordinate Oxy. To simplify subsequent

calculations we will pick D as the origin.

A

B C
D

d

M

E

F

P

Q

d′

H

K

H′ K′

Fixed

Figure 7: Prove that d′ always goes through a fixed point.

Consider the Cartesian coordinates Dxy with origin D and Dy ≡ DA. As Dx⊥Dy and

d⊥DA, we have Dx ‖ d.

Now consider the following point coordinates: A(0, a), B(b, c), C(−b,−c), where a, b 6= 0. We

can then calculate
−→
AB = (b, c− a),

−→
AC = (−b,−c− a),

which yields

(AB) : (a− c)x+ by − ab = 0,

(AC) : (a+ c)x− by + ab = 0.
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Note that d is fixed and d ‖ Dx so yM is fixed. Let yM = h, then

E

(
b+ xM

2
,
h+ c

2

)
, F

(
xM − b

2
,
h− c

2

)
.

Let d1, d2 be the lines passing through E,F respectively and perpendicular to d. It follows that

(d1) : x =
xM + b

2
, (d2) : x =

xM − b
2

,

so

P = d1 ∩ AB =

(
xM + b

2
, a− (a− c)(xM + b)

2b

)
,

Q = d2 ∩ AC =

(
xM − b

2
, a+

(a+ c)(xM − b)
2b

)
.

As a result,
−→
PQ =

(
−b, axM − bc

b

)
. We can now calculate

(d′) : −b(x− xM) +
axM − bc

b
· (y − h) = 0,

which can be rewritten as

b2
(
x− bc

a

)
− (axM − bc)

(
y − h+

b2

a

)
= 0.

Hence d′ always passes through a fixed point with coordinates
(
bc
a
, h− b2

a

)
.

Remark 6. This was a very difficult problem in VMO 2008, with 81.2% participants getting

a 0/7 score on it. A number of purely geometrical solutions to this problem can be viewed

here. The fixed point in question is the intersection of HH ′ and KK ′, where H,K are the

projections of B,C on d respectively and H ′, K ′ are the reflections of H about AB and K about

AC respectively. An analytical solution, in our case, turns out to be much simpler.

4 Practice Exercises

Exercise 1 (China Girls MO 2002). An acute 4ABC has three heights AD,BE and CF

respectively. Prove that the perimeter of triangle DEF is not over half of the perimeter of

triangle ABC.

Exercise 2 (Italy TST 2000). Let ABC be an isosceles right triangle and M be the midpoint

of its hypotenuse AB. Points D and E are taken on the legs AC and BC respectively such that

AD = 2DC and BE = 2EC. Lines AE and DM intersect at F . Show that FC bisects ∠DFE.

Exercise 3 (Mixtinilear Incircle). Consider 4ABC with circumcircle (O). A circle ω touches

(O) and also touches AB,AC at D,E respectively. Let J be the incenter of 4ABC . Prove that

D, J,E are collinear.
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Exercise 4 (USA TST 2004). Let ABC be a triangle. Choose a point D in its interior. Let ω1

be a circle passing through B and D and ω2 be a circle passing through C and D so that the other

point of intersection of the two circles lies on AD. Let ω1 and ω2 intersect side BC at E and

F , respectively. Denote by X the intersection of DF , AB and Y the intersection of DE,AC.

Show that XY ‖ BC.

Exercise 5 (Ho Chi Minh City Regional Team Selection 2012). 4ABC has circumcircle (O)

and heights AM,BN . Let D be a point on the arc B̂C that does not contain A (D 6= B,D 6= C).

DA intersects BN at Q; DB intersects AM at P . Let I be the midpoint of PQ. Prove that

M,N, I are collinear.

Exercise 6 (IMO 2013). Let the excircle of 4ABC opposite the vertex A be tangent to the

side BC at the point A1. Define the points B1 on CA and C1 on AB analogously, using the

excircles opposite B and C, respectively. Suppose that the circumcentre of (A1B1C1) lies on the

circumcircle (ABC). Prove that 4ABC is right-angled.

Exercise 7 (IMO Shortlist 2005). Let 4ABC be an acute-angled triangle with AB 6= AC. Let

H be the orthocenter of 4ABC, and let M be the midpoint of the side BC. Let D be a point

on the side AB and E a point on the side AC such that AE = AD and the points D, H, E

are on the same line. Prove that the line HM is perpendicular to the common chord of the

circumscribed circles of triangle 4ABC and triangle 4ADE.

Exercise 8 (IMO Shortlist 2011). Let ABC be a triangle with incentre I and circumcircle ω.

Let D and E be the second intersection points of ω with AI and BI, respectively. The chord

DE meets AC at a point F , and BC at a point G. Let P be the intersection point of the line

through F parallel to AD and the line through G parallel to BE. Suppose that the tangents to ω

at A and B meet at a point K. Prove that the three lines AE,BD and KP are either parallel

or concurrent.

Exercise 9 (All-Russian MO 2009). Let be given a parallelogram ABCD and two points A1, C1

on its sides AB, BC, respectively. Lines AC1 and CA1 meet at P . Assume that the circumcircles

of triangles AA1P and CC1P intersect at the second point Q inside triangle ACD. Prove that

∠PDA = ∠QBA.

Exercise 10 (Balkan MO 2007). Let ABCD a convex quadrilateral with AB = BC = CD, with

AC not equal to BD and E be the intersection point of it’s diagonals. Prove that AE = DE if

and only if ∠BAD + ∠ADC = 120.
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Exercise 11 (China TST 2008). Let ABC be a triangle, let AB > AC. Its incircle touches side

BC at point E. Point D is the second intersection of the incircle with segment AE (different

from E). Point F (different from E) is taken on segment AE such that CE = CF . The ray

CF meets BD at point G. Show that CF = FG.

Exercise 12 (Balkan MO 2013). In 4ABC, the excircle ωa opposite A touches AB at P and

AC at Q, while the excircle ωb opposite B touches BA at M and BC at N . Let K be the

projection of C onto MN and let L be the projection of C onto PQ. Show that the quadrilateral

MKLP is cyclic.

Exercise 13 (IMO Shortlist 2005 *). Given 4ABC satisfying AC+BC = 3 ·AB. The incircle

of 4ABC has center I and touches the sides BC and CA at the points D and E, respectively.

Let K and L be the reflections of the points D and E with respect to I. Prove that the points A,

B, K, L lie on one circle.

5 Solution to Practice Exercises

Solution to Exercise 1: China Girls MO 2002

An acute triangle ABC has three heights AD,BE and CF respectively. Prove that the

perimeter of triangle DEF is not over half of the perimeter of triangle ABC.

A

B CD

E

F

H

Figure 8: Prove that DE + EF + FD ≤ 1
2
(AB +BC + CA).
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Proof. From 4AEF ∼ 4ABC ∼ 4DBF ∼ 4DEC we get

EF = BC · cosA = a · cosA

DE = AB · cosC = c · cosC

FD = AC · cosC = b · cosB

We need to prove that

EF +DE + FD ≤ 1

2
(AB +BC + CA),

which is equivalent to

a · cosA+ b · cosB + c · cosC ≤ 1

2
(a+ b+ c)

⇔
∑

a · b
2 + c2 − a2

2bc
≤ 1

2
(a+ b+ c)

⇔
∑

a2(b2 + c2 − a2) ≤ abc(a+ b+ c)

⇔ 2(a2b2 + b2c2 + c2a2) ≤ a4 + b4 + c4 + abc(a+ b+ c).

According to Schur’s Inequality, we have

a4 + b4 + c4 + abc(a+ b+ c) ≥
∑

(a3b+ ab3).

while based on AM-GM we have∑
(a3b+ ab3) ≥

∑
2
√
a3b · ab3 = 2

∑
a2b2.

Hence 2(a2b2 + b2c2 + c2a2) ≤ a4 + b4 + c4 + abc(a+ b+ c).

Solution to Exercise 2: Italy TST 2000

Let ABC be an isosceles right triangle and M be the midpoint of its hypotenuse AB.

Points D and E are taken on the legs AC and BC respectively such that AD = 2DC and

BE = 2EC. Lines AE and DM intersect at F . Show that FC bisects ∠DFE.

Proof. Let AC = BC = x we have

AM =
x
√

2

2
, AD = BE =

2x

3
, CD = CE =

x

3
, DE2 =

2x2

9
,

which yields

ME2 = MB2 +BE2 − 2MB ·BE · cos
π

4
=

5x2

18
.

Hence AM2 − AD2 = ME2 −DE2. According to Carnot’s Theorem, AE⊥DM .

Hence DCEF is cyclic, and we also have CD = CE, so ∠DFC = ∠DEC = ∠CDE = ∠CEF .

In other words, FE bisects ∠DFE.
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A

C
B

D

E

M

F

Figure 9: Prove that FC bisects ∠DFE.

Solution to Exercise 3: Mixtilinear Incircle

Consider 4ABC with circumcircle (O). A circle ω touches (O) and also touches AB,AC

at D,E respectively. Let J be the incenter of 4ABC . Prove that D, J,E are collinear.

Proof. Denote I as the center of ω and let ID = IE = x, we have

IA =
x

sin A
2

, JA =
r

sin A
2

, OI = R− x, OJ =
√
R2 − 2Rr.

According to Stewart’s Theorem,

OA2 · IJ +OI2 · JA = OJ2 · AI + IA · AJ · JI,

which is equivalent to

R2(x− r) + (R− x)2r = (R2 − 2Rr)x+
rx(x− r)

sin2 A
2

,

which implies that sin2 A
2

= x−r
x

, so

IJ · IA = (AI − AJ) · AI = AI2 − AI · AJ

=
1

sin2 A
2

(x2 − rx) =
x

x− r
· (x2 − rx)

= x2 = IE2.

Hence JE⊥AI. By similar arguments, JD⊥AI. Thus D, J,E are collinear.
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A

B C

O

J

I

E

D

F

Figure 10: Prove that E,D, F are collinear.

Solution to Exercise 4: USA TST 2004

Let ABC be a triangle. Choose a point D in its interior. Let ω1 be a circle passing through

B and D and ω2 be a circle passing through C and D so that the other point of intersection

of the two circles lies on AD. Let ω1 and ω2 intersect side BC at E and F , respectively.

Denote by X the intersection of DF , AB and Y the intersection of DE,AC. Show that

XY ‖ BC.

Proof. Let S be the intersection of AD and BC and R be the other intersection of ω1 and ω2

besides D, then R lies on AD.

Applying Menelaus to a transversal line XDF 4ABS and line ACS of 4EDY we have

AX

XB
=
AD

SD
· SF
BF

and
AY

CY
=
AD

SD
· SE
CE

.
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A

B

C

D

R

S EF

XY

Figure 11: Prove that XY ‖ BC.

To prove that XY ‖ BC we need AX
BX

= AY
CY

, or, in other words, SF
BF

= SE
CE

.

Observe that SF · SC = SR · SD = SE · SB, so

SF · CE = SF (SE − SC) and SE ·BF = SE(SF − SB).

We note that 4SDC ∼ 4SFR and 4SDB ∼ 4SER so

SF · SC = SD · SR = SE · SB,

which in turn means SF · CE = SE ·BF . Thus XY ‖ BC.

31



Solution to Exercise 5: Ho Chi Minh City Regional Team Selection 2012

4ABC has circumcircle (O) and heights AM,BN . Let D be a point on the arc B̂C that

does not contain A (D 6= B,D 6= C). DA intersects BN at Q; DB intersects AM at P .

Let I be the midpoint of PQ. Prove that M,N, I are collinear.

A

B CM

N

D

Q

P

I

H

Figure 12: Prove that M,N, I are collinear.

Proof. Let ∠CAD = ∠CDB = x. Consider the following ratios:

NQ

NH
=
SANQ
SANH

=
AN · AQ · sinx

AN · AH · sin∠HAC
=

AQ sinx

AH cosC
, (12)

MP

MH
=
SBMP

SBMH

=
BM ·BP · sin ĤBC

BM.BH. sinx
=

BP sinx

BH cosC
. (13)

Observe that ∠AQH + ∠BPH = 180◦, so DPHQ is cyclic. Therefore

sin∠AHQ
sin∠AQH

=
sin∠BHP
sin∠BPH

.
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It then follows that AQ
AH

= BP
BH

, and, according to (12) and (13), NQ
NH

= MP
MH

.

Now consider three points M, I,N and 4HPQ, we see that

IP

IQ
· NQ
NH

· MH

MP
=
NQ

NH
· MH

MP
= 1,

According to the converse Menelaus’ theorem, M,N, I are collinear.

Solution to Exercise 6: IMO 2013

Let the excircle of 4ABC opposite the vertex A be tangent to the side BC at the point

A1. Define the points B1 on CA and C1 on AB analogously, using the excircles opposite

B and C, respectively. Suppose that the circumcentre of (A1B1C1) lies on the circumcircle

(ABC). Prove that 4ABC is right-angled.

Proof. We will extend the problem and prove both directions: 4ABC is right-angled if and only

if the circumcentre of (A1B1C1) lies on the circumcircle of 4ABC.

• If 4ABC is right-angled, WLOG assume ∠BAC = 90◦. Let O be the midpoint of BC

and M be the midpoint of the arc B̂C that contains A in the circumcircle (ABC). As

MC = MB, CB1 = BC1 and ∠MCB1 = ∠MBC1,

we get4MCB1 = 4MBC1 and therefore MB1 = MC1. We now show that MA1 = MC1.

Note that

BA1 =
a+ b− c

2
, OM =

a

2
, OA1 =

c− b
2

,MA2
1 =

a2 + (b− c)2

4
.

Let H be the projection of M on AB. 4MBC is a right isosceles triangle so MB = MC =

a√
2
. By Carnot’s Theorem,

MB2 −MA2 = BH2 − AH2 = (BH + AH)(BH − AH),

which would give us MA:

a2

2
−MA2 = c(c−

√
2 ·MA)

b2 + c2

2
−MA2 = c2 −

√
2 · c ·MA

MA =

√
2

2
(c− b).
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Figure 13: Prove that 4ABC is right-angled.

Applying the law of cosine on 4MAC1:

MC2
1 = MA2 + AC2

1 − 2 ·MA · AC1 · cos 45◦

=
(b− c)2

2
+

(a+ c− b)2

4
− 2 ·

√
2

2
· a+ c− b

2
· c− b√

2

=
a2 + (b− c)2

4
.

Hence MA2
1 = MC2

1 , so MA1 = MC1 = MB1, which means M is the circumcenter of

(A1B1C1).

• If the circumcenter of (A1B1C1) lies on the circumcircle (ABC), WLOG assume

M , the circumcenter of (A1B1C1), lies on the arc B̂C that contains A of (ABC).
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We then have MB1 = MC1, and also note that from the property of excircle, BC1 = CB1.

It follows that 4MB1C = 4MC1B, so MB = MC, or, in other words, M is the midpoint

of arc B̂C.

Let H and K be the projections of M on AB and AC respectively. As AB > AC, note

that H lies inside the segment AB and K lies outside the segment AC. It’s easy to see

that 4MHB = 4MKC, so MH = MK and therefore AH = AK. In other words,

AB − AM · sin
(

180◦ − A
2

)
= AC + AM · sin

(
180◦ − A

2

)
,

AB − AC = 2AM cos
A

2
,

sinC − sinB = 2 sin

(
C −B

2

)
cos

A

2
,

which means tan A
2

= 1 and therefore ∠BAC = 90◦. Thus, 4ABC is right-angled.

Solution to Exercise 7: IMO Shortlist 2005

Let 4ABC be an acute-angled triangle with AB 6= AC. Let H be the orthocenter of

4ABC, and let M be the midpoint of the side BC. Let D be a point on the side AB and

E a point on the side AC such that AE = AD and the points D, H, E are on the same

line. Prove that the line HM is perpendicular to the common chord of the circumscribed

circles of triangle 4ABC and triangle 4ADE.

Proof. Let O and O′ be the center of the circumcircles (ABC) and (ADE) respectively. Let I

and P be the midpoints of AH and the arc B̂C not containing A of (ABC) respectively. AP

intersects HM at N and (ADE) at N ′. We will show that N ≡ N ′.

Draw the diameter AA′ of (ABC). As BHCA′ is a parallelogram, H,M,A′ are collinear and

OM is the midsegment of 4AHA′. Now observe that

AH = 2OM = 2R cosA and MP = OP −OM = R(1− cosA).

Furthermore, since AH ‖MP ,

AN

AP
=

AH

AH +MP
=

2 cosA

1 + cosA
. (14)

Note that

sin∠AHD = sin

(
B +

A

2

)
, sin∠ADE = cos

A

2
.
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B

M

K
I

O

O′

P

N’ = N

A′

Figure 14: Prove that HM⊥AK.

Applying the sine rule in 4ADH we get

AD =
1

cos A
2

· AH sin

(
B +

A

2

)
. (15)

As 4ADE is isosceles and AP is the angular bisector of A, AN ′ is the diameter of (ADE).

Hence AD = AN ′ cos A
2
. Combining this with (15) we get

AN ′ =
1

cos2 A
2

· AH sin

(
B +

A

2

)
=

4R cosA

1 + cosA
· sin

(
B +

A

2

)
. (16)

On the other hand,

AP = 2R sin∠ABP = 2R sin

(
B +

A

2

)
,

so (14) yields

AN =
2 cosA

1 + cosA
· AP =

4R cosA

1 + cosA
· sin

(
B +

A

2

)
.

Combining this with (16) we get AN = AN ′; in other words, N ≡ N ′. Hence H,N,A′ are

collinear. Also, O,O′, I ′ are collinear and lie on the midsegment of 4AHA′.

As a result, HM ‖ OI, while we also have OI⊥AN , so HM⊥AN .

Remark 7. A similar problem has appreared in Vietnam TST 2006: Consider 4ABC with

orthocenter H. The exterior angular bisector of ∠BHC intersects AB and AC at D and E
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respectively. The angular bisector of ∠BAC interesects (ADE) at K 6= A. Prove that HK goes

through the midpoint of BC.

Solution to Exercise 8: IMO Shortlist 2011

Let ABC be a triangle with incentre I and circumcircle ω. Let D and E be the second

intersection points of ω with AI and BI, respectively. The chord DE meets AC at a point

F , and BC at a point G. Let P be the intersection point of the line through F parallel

to AD and the line through G parallel to BE. Suppose that the tangents to ω at A and

B meet at a point K. Prove that the three lines AE,BD and KP are either parallel or

concurrent.

A

B

C

I

D

E

F

G

P

K

H

L

Figure 15: Prove that AE,BD and KP are either parallel or concurrent.

Proof. As ∠IAF = ∠DAC = ∠BAD = ∠DEB = ∠FEI, we see that AIFE is cyclic. Sim-

ilarly, BDGI is cyclic. Denote ω1 as the circle passing through A, I, F, E and ω2 as the circle

passing through B,D,G, I.

If ω1 touches ω2 then denote d as the two circles’ common tangent line. Otherwise, let L be the

other intersection point of ω1 and ω2 besides I and denote d as the line IL.
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d intersects (ABL) and (FGL) at K ′, P ′ 6= L respectively. Note that

(AB,BK ′) ≡ (AL,LK ′) ≡ (AL,LI) ≡ (AE,EI) ≡ (AE,EB) ≡ (AB,AB).

Therefore BK ′ ≡ BK. Similarly, AK ′ ≡ AK. It follows that K ≡ K ′. On the other hand,

(P ′F, FG) ≡ (P ′L,LG) ≡ (IL, LG) ≡ (ID,DG) ≡ (AD,DE) ≡ (PF, FG).

Hence P ′F ≡ PF and similarly P ′G ≡ PG. As a result, P ′ ≡ P . Thus d passes through K

and P . Finally, as KP,AE,BD are [...] of ω1 and ω2, ω and ω1, ω and ω2 respectively, they are

either parallel or concurrent.

Solution to Exercise 9: All-Russian MO 2009

Consider a parallelogram ABCD and two points A1, C1 on its sides AB, BC, respectively.

Lines AC1 and CA1 meet at P . Assume that the circumcircles of triangles AA1P and CC1P

intersect at the second point Q inside triangle ACD. Prove that ∠PDA = ∠QBA.

A
B

D
C

A1

C1

P

Q

E

Figure 16: Prove that ∠PDA = ∠QBA.

Proof. Let E be the intersection of AD and CP , then

sin∠ABP
sin∠CBQ

=
AA1

CC1

,
sin∠ADP
sin∠CDP

· EP
PC

=
CD

ED
.

In addition,
EP

PC
=

EA

CC1

,
AD

ED
= 1− EA

ED
= 1− AA1

CD
=
CD − AA1

CD
,
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so

ED =
CD · AD
CD − AA1

=
CD · AD
AB − AA1

=
CD · AD
BA1

⇒ sin∠ADP
sin∠CDP

=
EA

CC1

· CD
CD·AD
BA1

=
EA

BC
· BA1

CC1

⇒ sin∠ADP
sin∠CDP

=
AA1

BA1

· BA1

CC1

=
AA1

CC1

=
sin∠ABQ
sin∠CBQ

. (17)

Let ∠ABC = ∠ADC = α and consider

f : (0, π)→ R, f(x) =
sin(α− x)

sinx
.

Note that f is a decreasing function on (0, π), and from (17) we see that f(∠PDA) = f(∠QBA),

so ∠PDA = ∠QBA.

Solution to Exercise 10: Balkan MO 2007

Let ABCD a convex quadrilateral with AB = BC = CD, with AC not equal to BD

and E be the intersection point of it’s diagonals. Prove that AE = DE if and only if

∠BAD + ∠ADC = 120.

A

B C

D

E

M

Figure 17: Prove that AE = DE if and only if ∠BAD + ∠ADC = 120.

Proof. We will prove both directions:
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• If AE = ED, then 4EAD is isoceles at E so ∠EAD = ∠EDA = β. Applying the sine

rule in 4ABD and 4ACD we get

AB

sin β
=

AD

sin∠ABD
,
CD

sin β
=

AD

sin∠ACD
.

Also, AB = CD so sin∠ABD = sin∠ACD, or ∠ABD + ∠ACD = 180◦.

Let ∠ACD = x and denote M as the intersection of AB and CD. We now have

∠MBD = ∠BAD + ∠BDC = ∠BAC + 2β,

which implies x− 2β = ∠BAC = ∠CBA. By similar arguments,

∠CDB = 180◦ − x− 2β.

On the other hand, ∠BEA = ∠EBC+∠BCE, so ∠DBC = 4β−x. Combining this with

∠CBD = ∠CDB, we get the equation

180◦ − x− 2β = 4β − x,

which yields x = 30◦, from which it’s easy to deduce that ∠BAD + ∠ADC = 120.

• If ∠BAD + ∠ADC = 120◦, let ∠EAD = α and ∠EDA = β. It follows that α+ β = 60◦.

Applying the sine rule in 4ABD and 4ACD we get

sinα

sin β
=

sin∠ACD
sin∠ABD

.

Let ∠CDB = ∠CBD = x, we can calculate

∠ACD = 180◦ − α− β − x = 120◦ − x.

Now note that ∠AEB = ∠EBC + ∠ECB, so

α + β − x = ∠ACB = ∠CAB,

which implies

∠ABD = 180◦ − 2α− 2β + x = 60◦ + x.

Finally, we see that
sinα

sin β
=

sin∠ACD
sin∠ABD

=
60◦ + x

120◦ − x
= 1,

which means sinα = sin β, so α = β. Consequently, AE = DE.
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Solution to Exercise 11: China TST 2008

Let ABC be a triangle, let AB > AC. Its incircle touches side BC at point E. Point

D is the second intersection of the incircle with segment AE (different from E). Point F

(different from E) is taken on segment AE such that CE = CF . The ray CF meets BD

at point G. Show that CF = FG.

A

B CE

F

D

G

M H

T

I

Figure 18: Prove that CF = FG.

Proof. Let I be the incenter of 4ABC and M be the midpoint of BC. Construct the heights

AH of 4ABC and CT of 4CEF .

To prove that CF = FG, we will show that MF ‖ BD or, equivalently, EM
EB

= EF
ED

. Note that

EM

EB
=
BE −BM

EB
=

a+c−b
2
− a

2
a+c−b

2

=
c− b

a+ c− b
.

On the other hand,

AE2 = AH2 +HE2 =
4S2

ABC

a2
+

(
a+ b− c

2
− a2 + b2 − c2

2a

)2

=
(a+ b+ c)(b+ c− a)(c+ a− b)(a+ b− c)

4a2
+

(c− b)2(b+ c− a)2

4a2
. (18)

(I) touches AB at K, then

AD · AE = AK2 =

(
b+ c− a

2

)2

. (19)
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As ED · EA = AE2 − AD · AE, from (18) and (19) we get

ED · EA =
4S2

a2
+

(c− b)2(b+ c− a)2

4a2
−
(
b+ c− a

2

)2

=
4S2

a2
+

(b+ c− a)2(c− b− a)(c− b+ a)

4a2

=
(a+ b− c)(b+ c− a)(c+ a− b)

2a
. (20)

As ATHC is cyclic,

EF · EA = 2EI · EA = 2 · EH · EC

= 2 ·
(
a2 + c2 − b2

2a
− a+ c− b

2

)
· a+ b− c

2

=
(c− b)(b+ c− a)(a+ b− c)

2a
. (21)

From (20) and (21), we get
EF

ED
=

c− b
a+ c− b

=
EM

EB
,

which yields CF = FG.

Solution to Exercise 12: Balkan MO 2013

In 4ABC, the excircle ωa opposite A touches AB at P and AC at Q, while the excircle ωb

opposite B touches BA at M and BC at N . Let K be the projection of C onto MN and

let L be the projection of C onto PQ. Show that the quadrilateral MKLP is cyclic.

Proof. Let Ib, Ic be the excenters opposite B and C in4ABC respectively. Let ωc be the excircle

opposite to C. ωc touches BC at T . S is the intersection of MN and PQ.

Let X, Y be the projections of M on PQ and P on MN respectively. AX intersects PY at H.

HC intersects MN at S1 and PQ at S2.

Observe that

CK =
b+ c− a

2
· cos

B

2
, CL =

a+ c− b
2

· cos
A

2
.

On the other hand, HA ·HX = HP ·HY so

Y H

XH
=
MH

PH
=

sin B
2

sin A
2

.

In addition,

tan
A

2
=
b+ c− a

2TIc
, tan

B

2
=
c+ a− b

2TIc
,

which yields

(a+ c− b) · tan
B

2
= (b+ c− a) · tan

A

2
,
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M
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H

Figure 19: Prove that MKLP is cyclic.

which implies that
CK

CL
=

(b+ c− a) · cos B
2

(a+ c− b) cos A
2

=
sin B

2

sin A
2

=
Y H

XH
.

Now, as CK ‖ Y H and CL ‖ XH,

S1C

S1H
=
CK

YH
=

CL

XH
=
S2C

S2H
,

so S1 ≡ S2 and therefore H,C, S are collinear.

As ∠SKL = 900 − ∠CKL and ∠SY X = 900 − ∠HYX, ∠SKL = ∠HYX, so KL ‖ XY . It

follows that ∠Y XP = ∠KLP , while we also have ∠Y XP = 180◦ − ∠PMY . Thus ∠KLP =

180◦ − ∠PMY and so MPLK is cyclic.
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Solution to Exercise 13: IMO Shortlist 2005

Given 4ABC satisfying AB+BC = 3CA. The incircle of 4ABC has center I and touches

the sides AB and BC at the points D and E, respectively. Let K and L be the reflections

of the points D and E with respect to I. Prove that the points A, C, K, L lie on one circle.

C B

A

I

E

D

K

L

F

Figure 20: Prove that A,C,K,L lie on one circle.

Proof. We have c+a = 3b. Note that if b = c then a = 2b = b+ c, which contradicts the triangle

inequality. Hence b 6= c, and WLOG assume b < c.

AL intersects BC at F . Assume the positive direction is that of vector
−−→
BC, then

EF = CF − CE = −BE − CE =
a+ c− b

2
− a+ b− c

2
= c− b,

so EF = |EF | = c− b. Now 4LFE and 4CLE have

tan∠LFC =
LE

EF
=

2r

c− b
, tan∠LCE =

LE

CE
=

4r

a+ c− b
,

so

tan∠ALC = tan(∠LFC + ∠LCE) =
tan∠LFC + tan∠LCE

1− tan∠LFC · tan∠LCE

=

(
2r

c− b
+

4r

a+ b− c

)
:

(
1− 8r2

(c− b)(a+ b− c)

)
=

2r(a+ c− b)
(c− b)(a+ b− c)− 8r2

.
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As a+ c = 3b, we can compute the inradius r of 4ABC from

r2 =
S2

p2
=

(p− a)(p− b)(p− c)
p

=
(b+ c− a)(a+ b− c)

8
.

It then follows that

tan∠ALC =
2r(a+ c− b)

(c− b)(a+ b− c)− (b+ c− a)(a+ b− c)

=
2r(a+ c− b)

(a+ b− c)(a− 2b)
=

2br

(2b− c)(b− c)
.

By similar arguments,

tan∠AKC =
2br

(2b− a)(b− a)
.

From a + c = 3b it is easy to see that (2b − c)(b − c) = (2b − a)(b − a). Thus tan∠ALC =

tan∠AKC. In other words, ∠ALC = ∠AKC, so ALKC is cyclic.
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