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Glossary

Abbreviations

MO Abbrev. for Mathematical Olympiad, the highest-level math contest for
high school students in a region - for example, VMO (Vietnam), USAMO
(America), IMO (International).

TST Abbrev. for Team Selection Test, a test given to top performers in a na-
tional olympiad to select the nation’s representative team for an international
olympiad.

Mathematical notions

a,b,c,r, R | Unless otherwise specified, in AABC, a,b,c denote the lengths of segments
BC,CA, AB respectively. p is its semiperimeter, i.e., p = %(a +b+c¢). rand
R denote its inradius and circumradius respectively.

SAxyz Denote the area of AXY Z.

(XY Z) For any three non-collinear points X, Y, Z, denote the circumcircle of AXY Z.

(I;7) and | Denote the circle with center I and radius r. When it is clear from the context

(1) that there is only one circle with center I, the parameter r can be omitted.

AB The algebraic length of segment AB. If 1@ points in the positive direction,
AB = |zﬁ|, otherwise, AB = —|E|

(ABCD) For any four collinear points (A, B, C, D), denote the cross-ratio

(ABCD) = j:g : g:g
When (ABCD) = —1, A and B are harmonic conjugates of each other with
respect to C' and D.
(AB,CD) | The oriented angle starting at AB and ending at C'D.




1 Introduction

We begin with an analysis of a simple geometry problem, proposed by Dr. Trinh Le, deputy
delegate of the Vietnam IMO team.

Problem 0

In AABC consider a point D on segment BC'. Let [ and J be the midpoints of DB and
DC respectively. The perpendicular bisectors of DB and DC' intersect AB at M and AC
at N respectively. Let O be the circumcenter of AABC . Prove that AMON is a cyclic

quadrilateral.

M

Figure 1: Prove that AMON is a cyclic quadrilateral.

The following six solutions were devised by six students from the Ho Chi Minh City VMO

team. Let us first take a look at their approaches and analyze the pros and cons of each.



Proof 1

. [ ] COm [ ] .
B (-1,0) Y D (d,0) T (0,0) v C (1.0)

Let T be the midpoint of BC'. Consider the Cartesian coordinate system Txy where T
is the origin, Tx is BC and Ty is the perpendicular bisector of BC.
Denote the following coordinate points: B(—1,0),C(1,0), D(d,0) and A(a,b).
Let U and V be the midpoints of AB and AC' respectively, and let K be the projection of
O on M N. Furthermore, for any line [, denote n; as its normal vector.

We can then compute the followings:

b(z+1) b(x —1)
1. (AB):y = ———= AC) 1y = )
(AB):y=——7" (AC):y=———
5 U a—l’é v a+17§ M d—l)b(d+1) N d+17b(d—1) '
2 2 2 2 2 "2(a+1) 2 '2(a-1)
2 2_1
3. ZEO:.Z'T:(LO_(}HTUB):}O(O,%)

4 1) Me=d) (z_d_1) PGS

a?—1 2 2(a+1)
— y Tx b(a — d)
5. OK ” NyN = e — praT 21
26

Observe that yy = y, = %, so it turns out the line UV is (UV) 1 y = g Furthermore, the
point K is uniquely determined from (4) and (5), and we notice that (zx = 5%,y = 2)
satisfies both. Hence K (%, g) and therefore K € UV. By the converse Simson’s theorem

AMON is cyclic. (QED)


https://en.wikipedia.org/wiki/Simson_line

Proof 2

Let N’ # A be the intersection point of (AMO) and AC. We prove AN’ = AN, which
would imply N’ = N. Denote DB = x, then

M=c— AN =b . (1)

B C
@ @
Since AMON’ is a cyclic quadrilateral, by Ptolemy’s theorem:
AO-MN'= AM -ON'+ AN'-OM. (2)

Further observe that ZOMN' = ZOAC = 90° — B and ZON'M = ZOAB = 90° — C.
Hence, in AOM N’, applying the sine Rule, we have

ON'  cosB
OM  cosC’
Multiplying both sides of (2) by CSLMC we have
MN ON’ ,
(AO cos C) - OM — (AM cosC) - i + AN’ cos C.
which yields
sin ZMON' cos B
AN’ = (A S (AM )
cos C' = (AO cos C) S JONM ( cos C) p—e
a sin A x
— : : Y - B
(2sinA cosC COSC) <c 2COSB> o8
_ —g T ccos B.


https://en.wikipedia.org/wiki/Ptolemy%27s_theorem

From (1) we also have
a—x

)

AN cosC =bcosC —

hence AN’ = AN would be equivalent to

a—+x a—x
—ccosB=bcosC —

Y

which can be rewritten as a = bcosC + ccos B, which is true. Thus AN’ = AN and
therefore N’ = N. (QED)

Proof 3

(AMN) intersects the diameter AK of (ABC) at O" # A. We will prove that AK =
2A0’, which implies O’ = O.
Observe that AO'MN ~ AKBC' so

OM MN ON
KB BC KC

k,

which means that

MN = kBC, O'M = kKB, O'N = kKC. (3)



Applying Ptolemy’s theorem to cyclic quadrilaterals AMO'N and ABKC' we have

AO'-MN = AM -O'N + AN - O'M. (4)
AK -BC = AB-KC + AC - KB. (5)

Dividing both sides of (4) by k we have
AO-BC =AM - KC+ AN - KB. (6)
From Solution 2, with DB = x, we also have

x a—x
AM =c— AN =b — .
T Ycos B’ 2cos C'

Further note that that KB = 2RcosC and KC = 2R cos B. Looking at (5) and (6), to
show AK = 2A0" we need to prove that

AB-KC+AC-KB =2(AM-KC + AN - KB),

which is equivalent to

x a—2x
B —2cos B (¢ - )+2 -
ccos B+ bcosC cos Ble—o——= +2cosC (b 2COSC’) :

which reduces to a = bcos C'+c cos B, which is true. Hence O = O’ € (AM N) and therefore
AMON is cyclic. (QED)



Proof 4

a@

Let U,V be the midpoints of AB, AC respectively and R, S be the projections of U,V
onto BC' respectively. It is easy to see that IR = JS. Indeed, on axis BC, denote the
direction of ﬁ as the positive direction. We then have

. B—
JR:BR—BJ:BUqu&Bnygzﬁﬁg—ﬁ,
—r  —bcosC+a—x

2 2

75 =CS — CJ = CV cos(CS, CA) + 2

Since a = bcosC +ccos B, IR=JS so IR = J8S.
Applying Thales’s theorem for UR || M1 and V'S || NJ we have

MU BU 1 NV _CN 1
IR BR cosB SJ CJ cosC’

Hence
MU B IR cosC B cosC B ou

NV~ JS cosB cosB OV’
Observe that AOMU and AONYV are directionally similar. Let f be the spiral similarity

with center O, angle (OU,OV) and ratio k = 9%, then f(U) =V, f(M) = N.

Hence (MO, MU) = (NO,NV) (mod 7), so AMON is a cyclic quadrilateral. (QED)

10
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Proof 5

Let E be the reflection of D across M N. We then have
/MEN = /MDN =180° — ZMDB — ZNDC =180° — B — C = A.

Hence, AENDM 1is a cyclic quadrilateral, which implies ZAMFE = ZANE. Note that
ME = MD = MB and NE = ND = NC, so AMBFE and ANCE are isosceles. In
other words, ZAMFE =2/MBFE and ZANE = 2/NCFE. Therefore /MBE = Z/NCE, so
AECB is cylic and E € (ABC).

Observe that OM and ON are the perpendicular bisectors of EB and EC respectively. Let
X=0OMNBE, Y =0NNCE, then EXOY is a cyclic quadrilateral.

Hence

/MON =180 — ZXEY = 180° — A,

which means AMON is cyclic. (QED)

11



Proof 6

Let E # D be the other intersection point of (DM N) and BC'
We have /EMN = Z/ZEDN =C, A= /ZMDN = /ZMEN so AEMN ~ NACB.
Let O' be the orthocenter of AEMN. We observe that BMO'E,AMO'N,CNO'E are

cyclic quadrilaterals, hence
/0O'BE = /O'MFE = /O'NE = Z/0'CE,

so O'C' = O'B. Sinilarly we have O'A = O'B (= O'C) and thus ¢’ is the orthocenter of
ANABC . In other words, O’ = O.
We also have ZMON = 180° — ZM DN = 180° — A, which means AMON is cyclic.

Remark 1. We can observe the relation among the six solutions given above. While all solutions
involve the additional construction of some geometric objects (new point, new line, or new circle),

the more sophisticated this construction is, the simpler the subsequent proof becomes.

e Solution 1 is the most simple approach: by considering the problem in the context of
Cartesian coordinates. It is then straightforward to calculate the coordinates of every
point. The proof does apply a small twist, however, by invoking Simson’s theorem to turn
the problem of cyclicity into that of collinearity, thereby avoiding equations of circles which

are usually fairly complicated.

e Solution 2 and 3 “reverse” the problem by constructing the point N’ # A as the intersection

of AC and (AMO). The motivation here is that, instead of having to deduce cyclicity,

12



we assume cyclicity is already given. What remains is to show that both N’ and N
share a common unique property, which in turn implies that N’ is indeed N. This is
a recommended approach when one has not figured out how to effectively use all of the

information provided by the problem.

e Solution 4 builds upon the realization that all properties of M and N depend only on the
location of D on BC), i.e., the length of the segment DB. Hence we try to convert all
computations to those involving only the segments on BC'. Thanks to this approach, there

are much less algebraic work to do.

e Solution 5 and 6 are two purely geometric solutions that one needs rich experience in
geometry to come up with. In particular, the idea of solution 5 is that since ZM DN = A,
we create a reflection of D in order to obtain a cyclic quadrilateral. In solution 6, we use

the following lemma:

Lemma 1. Given AABC with three points X,Y,Z on BC,CA, AB respectively such that
AXY Z ~ NABC'. It follows that the orthocenter of AXY Z is also the circumcenter of
ANABC.

While solutions such as 5 and 6 are always desirable, it can be difficult to identify the
underlying geometrical insights that in turn lead to such concise solutions, especially for students
not strong in geometry'. The goal of this article, then, is to provide a systematic approach
to tackling geometry problems using the tools from algebra and calculus. We will show how
algebraic techniques along the line of Solution 1 and 2 can be utilized to solve a variety of

Olympiad-level problems.
Remark 2. The given problem is in fact one in a series of similar geometric properties.

Problem 1

Let O, I and H be the circumcenter, incenter and orthocenter of AABC respectively. Con-
sider three points D € BC, M € CA, N € AB.

e Prove that if BD = BM and CD = CN then I € (AMN).
e Prove that if MD = M B and ND = NC then O € (AMN).

e Prove that if DM = DB and DN = DC then H € (AMN).

lincluding us, the authors.
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2 Background

We first highlight a number of theorems and solutions that are highly applicable. Note that
there are a number of textbook formulas - Pythagorean’s Theorem, Thales” theorem, Law of

sines and Law of cosines - that are not introduced but also relevant here.

Theme 1. Useful equatilies.
e (Ptolemy) If ABCD is a cyclic quadrilateral then

AC-BD =AB-CD + BC - AD.

e (Stewart) For any collinear points A, B, C' and arbitrary point M,

MA?.BC + MB?-CA+ MC?-AB=—-AB-BC -CA.

e (Carnot) For any four arbitrary points A, B, C, D,

AD1BC < AB* — AC? = DB? — DC”.

e (Heron) The area of AABC with side lengths a,b and ¢ and semiperimeter p = ‘lgﬂ is

Snasc = \/pp—a)(p—b)(p—c).
Theme 2. Triangle lengths.

Given AABC (AB < AC) with altitude AD and bisector AF. Let E be the tangent point
of AABC ’s incircle and BC. We then see that

BD:a2+C2_bZ, BE:a~|—c—b7 BF— ¢
2a 2 b+c

which in turn yields
(b—c)(b+c—a)
2a '

DE =BE - BD =

Furthermore, from Stewart’s theorem, we have

AD — VAB - AC— DB DC - 2Vbeplp—a) _ 2bc | A

b+c T b+c 2

Theme 3. Trigonometric expressions.

In any AABC', we have

cosé: plp—a) tané:\/w

2 be 2 p(p — a)
b2 2 2 A b _
COt A — uj COt — = ﬁ
4S5 2 2r

14
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Theme 4. Concurrency and collinearity.

In AABC consider points D € BC,E € CA,F € AB. Let L be another point on BC'

e (Ceva) AD, BE,CF are concurrent if and only if

DB EA F(J__1
DC EB FA

o (Menelaus) L, B, F are collinear if and only if

1
\
|
1
1
|
1
1
|
1
\
H E
1
[} ,_,v.
1 o
1\ Pl
- -
[} - -
(] -~ e
- s
)- L
I Pt e
- 1 -’
- 1\ '’
&= Pid
______ &
~~~~~~~
- g bl SOUNN
" Pt S P
g g +. T Sseal
- id vy TSSeall )
I e- B - ‘D TTTeeeall C
oain (R O e

Combining the two theorems also shows that
z : Z =—1.
DC LC
In other words, if AD, BE, C'F are concurrent and L, E, F' are collinear then (DLBC) = —1
(LDBC).

Theme 5. Oriented angles.

Oriented angles are considered in mod 7 and have the following properties:

e (AB,CD)=(AB,DC) = (BA,CD).
e a | bif and only if (a,b) = 0.

e albif and only if (a,b) = 7.

e (a,b) =—(b,a).

e (a,b) = (a,c)+ (¢, b).

15
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e A B,C,D are cyclic if and only if (AB, AD) = (CB,CD,).
e AT is tangent to (ABC) if and only if (AT, AB) = (CA,CB).
Theme 6. Cartesian coordinates.

Besides textbook formulas on vectors and line equations, we introduce the expressions of
several useful geometric constructs in the context of Cartesian coordinates.
Given AABC with centroid G, incenter I, orthocenter H, circumcenter O and excenter .J

opposite to A, we have:

° aﬁ4+b[v§—|—c]v8:6>, SO

7 axs+ bxg + crec aya + by + cyc
a+b+c ' a+b+c '

. Cﬁél—k@—i-@:ﬁ),so

G($A+$B+$C yA+yB+?JC)

3 ’ 3

E-B?:Oandgﬁ-m:&so

rp(xe —2p) +yu (Yo —ys) = xalrc — ) + ya(ye — yn),

zu(xe —xa) +yu(ye —ya) = 2p(vc — xa) + ys(yc — ya).

OA%? =0B? = 0C?, so

—2xox4 + x2A — 2Yoya + yi
= —2x0xp + 1% — 2Yoys + Y

= — 2z0x0 + 7% — 2yoyc + Vi

(AJ, AB) = (AJ, AC) and (BJ, BC) = (BJ, AB), so
AJ.-AB _AJ.-AC BJ.BC _BJ.AB

c b a c

which yields

7 —axs+brg + cre —aya + bys + cyc
—a+b+c ’ —a+b+c ’

3 Example problems

16



Problem 2

Consider AABC' with incircle (I) touching BC' at D. Let DE be a diameter of (). The

excircle to vertex A touches BC' at L. Prove that A, E/, L are collinear.

Proof. We know from the definition of L that CL = BD = %C_b To prove that A, E, L are
collinear, let L be the intersection of AE and BC'. It remains to show that CL' = CL,so L' = L.
To make use of DEL BC' let’s create an altitude AH. In this case, AAHL has DE || AH - since
we already know DH, DE and AH, Thales would give us C'L’, as desired.

Figure 2: Prove that A, F, L are collinear.

Let L' be the intersection of AE and BC'. Draw an altitude AH of AABC . WLOG assume
AB < AC, so H lies between B and D.
Let BL' = x. As DE || AH we have
DL" ED  2r a 2a

HL' AH AH p atb+c

which leads to

:z:—BD_DL’_ 2a
r—BH HL a+b+c¢
Havin
° a’ + 2 — b? at+c—0>
BH=——+—— BD=——
2a 2

17



then gives us

—2a-BH + (a+b+c¢)-BD b+a—c
xr = =

b+c—a 2
SO
—b
CL’:a—x:%:C’L.
In other words, L' = L and therefore A, F, L are collinear. O]

Remark 3. This example serves as a strong lemma for many Olympiad problems. Let’s take a

look at one of them next.

Problem 3: USAMO 2001

The incircle (I) of AABC touches CA and C'B at F; and D; respectively. Consider
E, € CA and Dy € CB such that CEy = AE, and CDy, = BD,. AD, intersects BE5 at
P. Let @ be the intersection of (I) and ADy that is closer to A. Prove that AQ = Dy P.

Proof. Construct an altitude AH of AABC . As BDy = CD; = %b_c, D@ is in fact a diameter
of (I), so D1Q || AH, from which we can calculate AQ.
To make use of the intersecion P, we can apply Menelaus to the transversal line BPFEy of

AC AD,, which would give us PD.

A

Figure 3: Prove that AQ = DP,.

Construct an altitude AH of AABC . According to Problem 2, D@ is the diameter of (I),
so AH || D1Q. This would imply that

QDy _ QD1 _ AD,—QD, _ AH - QD
AD, AH ADy AH '

18
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In other words,

AQ AH-QDy, % -% p—a b+c—a

AD,  AH %®  p  btc+a

According to Menelaus, since BPFE5 is a transversal line of ACADs,

PDQ‘BC_E2A_1
PA BD, E,C
PDQ‘ 2a .a+b—c:1
PA a+b—c b+c—a
PDg_b+C—a

PA 2a

PD, b+c—a  bt+c—a

ADy b4+c—a+2a b+c+a

From (7) and (8) we have AQ = D, P. O

Remark 4. Many more applications of the lemma introduced in Problem 2 can be found in [1].

For now we will move on to a different application of Menelaus’ theorem.

Problem 4: USAMO 2008

In an acute, scalene triangle AABC, let M, N, P be the midpoints of BC,CA, AB re-
spectively. The perpendicular bisectors of AB and AC intersect ray AM at D and E
respectively. BD intersects C'E at F. Prove that APF N is a cyclic quadrilateral.

Figure 4: Prove that APF' N is a cylic quadrilateral.

19
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Proof. To make use of the intersection F', we can apply Menelaus to the transversal line DEM
or FEC'. Note that using DEM would involve the ratio %—(Bj = 1, since M is the midpoint of
BC'; this would make the calculations simpler.

It’s easy to see that DA = DB and FA = FC. Let O be the circumcenter of AABC, then O
lies on both N and DP.

ABF(C has transversal line DEM so by Menelaus:

_ DF EC MB _DF EC

Y'=D5B EF MC DB EF

SO
DF DB AD
EF  EC AE’
Hence F'A is the external bisector at F' of ADEF. Observe that ZAPO = ZANO = 90° so
APON is cyclic. To show that APFN is also cyclic, we will prove that ZAFO = 90° as well,

or, in other words, F'O is the internal bisector at F' of ADEF.

Indeed, AADB has DA = DB and median DP so DP is also the angular bisector of ZADB. In
other words, DO is the external bisector at D of ADFEF'. Similarly, FO is the external bisector
at F' of ADEF. Hence O is the excenter relative to F' of ADEF. It then follows that F'O is
the internal bisector at F' of ADFEF. O

Problem 5: VMO 2006, Board A

Let ABC'D be a convex quadrilateral. Consider a moving point M on AB such that M # A
and M # B. Let N # M be the other intersection of (M AC) and (M BD). Prove that N

is always on a fixed circle and M N always goes through a fixed point.

Proof. Let I be the intersection of AC' and BD, then

(CI,CN)=(CA,CN)=(MA,MN)
— (MB, MN) = (DB, DN)
— (DI, DN).

So C,1I,D, N are cyclic or, in other words, N is always on the fixed circle (CDI).

Let t be the line that goes through I and is parallel to AB. t intersects M N at K.

Observe (MA, MN) = (KI, KN) because AM | KI, while (MA, MN) = (CI,CN) as well
because A, M, C, N are cyclic. Hence (KI, KN) = (CI,CN) so C,I,K, N are cyclic. It follows
that K is the other intersection of ¢ and (C'DI) besides I.

20
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Figure 5: Prove that APF N is a cylic quadrilateral.

As both t and (C'DI) are fixed, K is a fixed point, and this is the point that M N always goes
through. []

Remark 5. This problem is an example of when oriented angles work best. Due to the posi-
tioning of M, it’s very hard to prove that C,I, D, N are cyclic with normal angles; both cases
of ZICN = ZIDN or ZICN = 180° — ZIDN can happen under different circumstances. With
oriented angle, we can simply express this condition as (CI,CN) = (DI, DN).

Problem 6: Vietnam TST 2014

Prove that:

(a) In AABC with altitude AD, consider a point P on AD. PB intersects AC' at F and
PC intersects AB at F. If AEDF is a cyclic quadrilateral, prove that

PA

A
5D = (tan B + tan C) - cot 3

(b) Consider AABC with orthocenter H. Let P be a moving point on AH. The line
perpendicular to AC at C' intersects BP at M. The line perpendicular to AB at B
intersects CP at N. Let K be the projection of A on M N. Prove that /BKC+/MAN

1S constant.

Proof. We first state, without proof, a common application of the harmonic series:

21
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Lemma 2. Consider ANABC' with altitude AD and a point P on AD. BP intersects AC' at
and C'P intersects AB at F'. Then DA is the angular bisector of ZDHF'.

Using this lemma, we see that ZAEF = ZADF = ZADFE = ZAFFE, so AAEF is isosceles

at A. Now consider two cases:

Figure 6: Prove that £4 = (tan B + tan C) - cot 4.

(a) e If AB = AC then AD is the angular bisector of A. It then follows that DF LAB, DE L AC.

Hence
ljg = Z—Z, EA=AC - EC = 41’24;@2
Applying Menelaus to the transversal line EPB of AADC' yields
PA EA.BC A - a?
PD EC BD 202
Note that /B = ZC = 90° — %, so we also have
A (b+c—a)? (2b—a)?

A
(tan B + tan C) - cot 3= 2 cot? 5= 53 =

EC =

S

Using algebraic manipulations and noting that AABC has b = ¢, r = 2, We see that

<2b - (l>2 2 p2
r2 <2b ) . S2
p2

p(p—a)(p—b)(p —¢)
4(20 + a)?
a?(2b+ a)(2b — a)

= (20 —a)*-

= (2b—a)*-

40 — a?
2a2

Hence £4 = (tan B + tan C) cot 4.
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o If AB # AC then DB # DC. Applying Lemma 2, we see that DA is the angular
bisector of ZEDF'. Furthermore, AFDFE is cyclic, so AE = AF = x.

We now see that

DB:a2+C2_b2,DC:a2+b2_C2 2_5 A:b+c—a

2a 2a a 2r

which implies

A 1 1 A
(tan B+ tanC) - cot — = AD (ﬁ+D_C> - cot —

2 2
_25 2a n 2a b+c—a
a \a2+2-1 a2+bh—2 2r

2a2(b+c—a)(b+c+a)

R P (©)

As AD, BE,CF are collinear, according to Ceva,

DB EC FA DB x b-ux

L= D0C EA FB~DC ¢z =
which yields
_b-DB—c-DC _ DC(c—b)
"=~ DpB-DC ' "T DB-DC

Applying Menelaus to the transversal line EPB of AADC"

PA EA BC & a b-DB—c-DC a
PD EC BD b-—x BD  DC(c—b) DB’

(10)
Substituting DB = W and DC = % into (10) and simplifying the expres-

sion, we get

PA 2@2(b—|—0—a)(b—|—c—|—a) A
- = B cot 2 1
PD  (a?+4 2 —b2)(a%+ b2 — 2) (tan B + tan C) - cot 5 (11)

(b) Let I be the intersection of NB and M C, then [ lies on (O).
Note that AKBN and AKCM are cyclic, so

LNAM + /BKC = ZKBI + /KCI + ZBKC = 360° — ZBIC,

which is constant.
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Problem 7: VMO 2008

Consider AABC' with median AD and a line d perpendicular to AD. Let M be a mobile
point on d and let E/, F' be the midpoints of M B, M C respectively. The line passing through
E and perpendicular to d intersects AB at P. The line passing through F' and perpendicular
to d intersects AC at ). Let d’' be the line passing through M and perpendicular to PQ.

Prove that d’ always goes through a fixed point.

Proof. Since this problem only concerns perpendicular and parallel lines, a natural solution
would be to consider it the context of a two-dimensional coordinate Oxy. To simplify subsequent

calculations we will pick D as the origin.

Figure 7: Prove that d’ always goes through a fixed point.

Consider the Cartesian coordinates Dzy with origin D and Dy = DA. As Dx1 Dy and
dL DA, we have Dz | d.
Now consider the following point coordinates: A(0,a), B(b, c),C(—b, —c), where a,b # 0. We
can then calculate
AB = (b,c —a), AC = (—=b, —c —a),

which yields

(AB) : (a — ¢)x + by —ab =0,

(AC) : (a+c)x —by+ab=0.
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Note that d is fixed and d || Dz so yyy is fixed. Let yy = h, then

E b+$M’h+C ,F IM—b’h—C '
2 2 2 2

Let dy, ds be the lines passing through E, F' respectively and perpendicular to d. 1t follows that

Ta + 0 Ty — b
(dy) : z = M2 L (do) = M2 :
w b (a—c)(aw +b)
Ty + a—c)\xy +
P = AB = —
i ( g ¢ % )

Q= dy N AC = (xM—b +<a+c><xM—b>)_

5 ¢ 2%

—b
As a result, ]@ = (—b, MMTC> We can now calculate

axy — be

(d'):—b(:c—:cM)—irT-(y—h):O,

which can be rewritten as

2
b <x—%)—(axM—bc) <y—h+b—> =0.
a a

Hence d' always passes through a fixed point with coordinates (%C, h — E). O

Remark 6. This was a very difficult problem in VMO 2008, with 81.2% participants getting
a 0/7 score on it. A number of purely geometrical solutions to this problem can be viewed
here. The fixed point in question is the intersection of HH' and KK’ where H, K are the
projections of B, C' on d respectively and H', K are the reflections of H about AB and K about

AC respectively. An analytical solution, in our case, turns out to be much simpler.

4 Practice Exercises

Exercise 1 (China Girls MO 2002). An acute AABC has three heights AD, BE and CF
respectively. Prove that the perimeter of triangle DEF is not over half of the perimeter of
triangle ABC.

Exercise 2 (Italy TST 2000). Let ABC be an isosceles right triangle and M be the midpoint
of its hypotenuse AB. Points D and E are taken on the legs AC' and BC' respectively such that
AD =2DC and BE =2EC. Lines AE and DM intersect at F. Show that FC bisects /DFFE.

Exercise 3 (Mixtinilear Incircle). Consider AABC' with circumcircle (O). A circle w touches
(O) and also touches AB, AC' at D, E respectively. Let J be the incenter of NABC' . Prove that

D, J, E are collinear.
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Exercise 4 (USA TST 2004). Let ABC' be a triangle. Choose a point D in its interior. Let w;
be a circle passing through B and D and wy be a circle passing through C' and D so that the other
point of intersection of the two circles lies on AD. Let wy and wsy intersect side BC' at E and
F, respectively. Denote by X the intersection of DF, AB and Y the intersection of DE, AC.
Show that XY || BC.

Exercise 5 (1o Chi Minh City Regional Team Selection 2012). AABC' has circumcircle (O)
and heights AM, BN. Let D be a point on the arc BC' that does not contain A (D +# B,D #+C).
DA intersects BN at QQ; DB intersects AM at P. Let I be the midpoint of PQ. Prove that
M, N, I are collinear.

Exercise 6 (IMO 2013). Let the excircle of AABC' opposite the verter A be tangent to the
side BC' at the point Ay. Define the points By on CA and Cy on AB analogously, using the

excircles opposite B and C, respectively. Suppose that the circumcentre of (A1 B1Ch) lies on the
circumcircle (ABC'). Prove that ANABC' is right-angled.

Exercise 7 (IMO Shortlist 2005). Let AABC' be an acute-angled triangle with AB # AC. Let
H be the orthocenter of NABC, and let M be the midpoint of the side BC'. Let D be a point
on the side AB and E a point on the side AC such that AE = AD and the points D, H, E
are on the same line. Prove that the line HM s perpendicular to the common chord of the

circumscribed circles of triangle NABC and triangle NADE.

Exercise 8 (IMO Shortlist 2011). Let ABC' be a triangle with incentre I and circumcircle w.
Let D and E be the second intersection points of w with AI and BI, respectively. The chord
DE meets AC' at a point F', and BC' at a point G. Let P be the intersection point of the line
through F parallel to AD and the line through G parallel to BE. Suppose that the tangents to w
at A and B meet at a point K. Prove that the three lines AE, BD and KP are either parallel

or concurrent.

Exercise 9 (All-Russian MO 2009). Let be given a parallelogram ABC'D and two points Ay, Cy
on its sides AB, BC, respectively. Lines ACy and C' Ay meet at P. Assume that the circumcircles
of triangles AALP and CC1P intersect at the second point Q) inside triangle AC'D. Prove that
/PDA = /ZQBA.

Exercise 10 (Balkan MO 2007). Let ABCD a convex quadrilateral with AB = BC = CD, with
AC not equal to BD and E be the intersection point of it’s diagonals. Prove that AE = DE if
and only if ZBAD + ZADC = 120.
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Exercise 11 (China TST 2008). Let ABC' be a triangle, let AB > AC'. Its incircle touches side
BC at point E. Point D s the second intersection of the incircle with segment AE (different
from E). Point F (different from E) is taken on segment AE such that CE = CF. The ray
CF meets BD at point G. Show that CF = FG.

Exercise 12 (Balkan MO 2013). In AABC, the excircle w, opposite A touches AB at P and
AC at @), while the excircle wy, opposite B touches BA at M and BC at N. Let K be the
projection of C onto M N and let L be the projection of C' onto PQ. Show that the quadrilateral
MKLP is cyclic.

Exercise 13 (IMO Shortlist 2005 *). Given AABC' satisfying AC + BC = 3- AB. The incircle
of AABC has center I and touches the sides BC' and C'A at the points D and E, respectively.
Let K and L be the reflections of the points D and E with respect to I. Prove that the points A,

B, K, L lie on one circle.

5 Solution to Practice Exercises

Solution to Exercise 1: China Girls MO 2002

An acute triangle ABC' has three heights AD, BE and C'F respectively. Prove that the
perimeter of triangle DEF' is not over half of the perimeter of triangle ABC.

T @
T e
~

Figure 8: Prove that DE + EF + FD < :(AB + BC + CA).
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Proof. From AAEF ~ AABC ~ ADBF ~ ADEC we get

EF =BC-cosA=a-cosA
DE = AB -cosC =c¢-cosC
FD=AC-cosC =b-cos B
We need to prove that
EF+DE+FD < 1(AB+BC+CA)

which is equivalent to

1
a-cosA+b-cosB+c-cosC§§( +b+c¢)
b2 - 1
& E +C « 2(a+b+c)

<:>Z b2+c a?) < abc(a + b+ c)
2(a®b? + b*c? + ?a?) < a* +b* + ¢t + abe(a + b+ c).
According to Schur’s Inequality, we have
at+ vt +ct +abe(a+b+c) > Z(a% + ab®).
while based on AM-GM we have
Z(a% + ab®) > Z 2V/a3b - ab® = 2 Z a’b?.

Hence 2(a?b* + b*c® + c*a?) < a* +b* + ¢* + abe(a + b+ ¢).

Solution to Exercise 2: Italy TST 2000

Let ABC be an isosceles right triangle and M be the midpoint of its hypotenuse AB.
Points D and E are taken on the legs AC' and BC respectively such that AD = 2DC and

BE =2FC. Lines AFE and DM intersect at F. Show that F'C bisects ZDFFE.

Proof. Let AC = BC' = x we have

2 272
AM = 2= f L AD=BE="2 CD=CE="2DR?=""
3’ 3 9
which yields
2 2 2 T 5a?
MFE* = MB*+ BFE —2MB~BE-COSZ:§.

Hence AM? — AD? = ME? — DE?. According to Carnot’s Theorem, AELDM.

Hence DCEF is cyclic, and we also have CD = CFE, so /DFC = /DEC = /CDE = Z/CFEF.

In other words, F'E bisects Z/DFFE.
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Figure 9: Prove that F'C bisects ZDFE.

Solution to Exercise 3: Mixtilinear Incircle

Consider AABC with circumcircle (O). A circle w touches (O) and also touches AB, AC
at D, F respectively. Let J be the incenter of AABC . Prove that D, J, E are collinear.

Proof. Denote I as the center of w and let ID = I F = z, we have

X

. JA=—— Ol =R-z, OJ = VR’ —2Rr.
SIHE SIHE

IA =
According to Stewart’s Theorem,
OA? - IJ+O0OI* - JA=0J*- A +1A-AJ - JI,

which is equivalent to

re(x —r)
sin? %

R*(x —7r)+ (R —x)’r = (R* — 2Rr)x +

2 A r—r
2

which implies that sin” 5 = ==, so

IJ-TA= (Al —AJ)- Al = AI*> — Al - AJ

1
= .2A(x2—7’m): T (2% —rx)
Slni

r—7rT

=122 =JE>

Hence JE 1 AI. By similar arguments, JD 1 AI. Thus D, J, E are collinear.
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Figure 10: Prove that E, D, F' are collinear.

Solution to Exercise 4: USA TST 2004

Let ABC be a triangle. Choose a point D in its interior. Let w; be a circle passing through
B and D and wy be a circle passing through C' and D so that the other point of intersection
of the two circles lies on AD. Let w; and wy intersect side BC' at E and F', respectively.
Denote by X the intersection of DF', AB and Y the intersection of DE, AC'. Show that
XY || BC.

Proof. Let S be the intersection of AD and BC' and R be the other intersection of w; and ws
besides D, then R lies on AD.
Applying Menelaus to a transversal line XDF AABS and line AC'S of AEDY we have

AX _AD SF AV 4D SE

XB SD BF cy SD CE
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Figure 11: Prove that XY || BC.

To prove that XY || BC' we need % = %, or, in other words, 2L = 5E

Observe that SF - SC = SR-SD = SE - SB, so

SF.CFE = SF(SE — 5C) and SE - BF = SE(SF — 5B).

We note that ASDC ~ ASFR and ASDB ~ ASER so

SF-SC=SD-SR=_SE-SB,

which in turn means SF - CE = SE - BF. Thus XY | BC.
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Solution to Exercise 5: Ho Chi Minh City Regional Team Selection 2012

AABC has circumcircle (O) and heights AM, BN. Let D be a point on the arc BC' that

does not contain A (D # B, D # C). DA intersects BN at Q); DB intersects AM at P.
Let I be the midpoint of P(). Prove that M, N, I are collinear.

Figure 12: Prove that M, N, I are collinear.

Proof. Let ZCAD = ZCDB = x. Consider the following ratios:

NQ _ SanNg _ AN - AQ -sinx _ AQsin x (12)
NH  Sing AN -AH-sin/ZHAC  AHcosC’
Aﬂjzt%MpziBMVBP-mnﬁgazzBPﬁnx‘ 13
MH  Spur BM.BH.sinx BH cosC

Observe that ZAQH + ZBPH = 180°, so DPHQ is cyclic. Therefore

sinZAHQ  sin/BHP
sin L/AQH  sin Z/ZBPH’
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It then follows that j—g = B and, according to (12) and (13), % = ME

Now consider three points M, I, N and AHP(Q, we see that
IP NQ MH NQ MH

. . = . =1
IQ NH MP NH MP

?

According to the converse Menelaus’ theorem, M, N, I are collinear. O

Solution to Exercise 6: IMO 2013

Let the excircle of AABC opposite the vertex A be tangent to the side BC' at the point
Aj. Define the points B; on C'A and C; on AB analogously, using the excircles opposite

B and C, respectively. Suppose that the circumcentre of (A; B;C}) lies on the circumcircle

(ABC). Prove that AABC' is right-angled.

Proof. We will extend the problem and prove both directions: AABC' is right-angled if and only
if the circumcentre of (A1 B1CY) lies on the circumcircle of AABC.

o If AABC is right-angled, WLOG assume Z/BAC = 90°. Let O be the midpoint of BC'
and M be the midpoint of the arc BC that contains A in the circumcircle (ABC). As

MC=MB, CB; = BC, and ZMCB, = ZM B(C},

we get AMCB; = AM BC and therefore M B; = M (4. We now show that M A, = MC.
Note that

BAlz%b_c, OM —

_ 2 _ 2
C0A, =< b’MA%:W'

a
2 2

Let H be the projection of M on AB. AM BC'is a right isosceles triangle so M B = MC =
\%. By Carnot’s Theorem,

MB?* - MA? = BH® — AH? = (BH + AH)(BH — AH),
which would give us M A:

2
%—MA2:c(c—\/§-MA)

b2+ 2
2

—MA2:c2—\/§'c~MA

MA = ?(c— ).
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Figure 13: Prove that AABC is right-angled.

Applying the law of cosine on AM AC;:

MC} = MA? + AC} —2- MA - AC) - cos 45°
(b—1c)*  (a+c—D)? 5 V2 at+c—b c—b

T2 4 ) 2 NG
_a?+(b—c)?
— . _
Hence MA? = MC? so MA, = MC, = MBy, which means M is the circumcenter of

(AlBlCl).

e If the circumcenter of (A;B,C}) lies on the circumcircle (ABC), WLOG assume
M, the circumcenter of (A;B,C), lies on the arc BC that contains A of (ABC).
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We then have M B; = M}, and also note that from the property of excircle, BC, = CB;.
It follows that AMB,C = AMC1B, so MB = MC, or, in other words, M is the midpoint
of arc BC.

Let H and K be the projections of M on AB and AC respectively. As AB > AC, note
that H lies inside the segment AB and K lies outside the segment AC. It’s easy to see
that AMHB = AMKC, so MH = MK and therefore AH = AK. In other words,

AB — AM - sin (%) = AC + AM - sin (%) ,
A
AB — AC = 2AM cos 3
— B A
sinC' —sin B = 2sin (C )cos 2

which means tané = 1 and therefore ZBAC = 90°. Thus, AABC is right-angled.

Solution to Exercise 7: IMO Shortlist 2005

Let AABC be an acute-angled triangle with AB # AC. Let H be the orthocenter of
ANABC, and let M be the midpoint of the side BC'. Let D be a point on the side AB and
E a point on the side AC' such that AF = AD and the points D, H, E are on the same
line. Prove that the line HM is perpendicular to the common chord of the circumscribed

circles of triangle AABC' and triangle AADE.

Proof. Let O and O’ be the center of the circumcircles (ABC) and (ADE) respectively. Let I
and P be the midpoints of AH and the arc BC not containing A of (ABC') respectively. AP
intersects HM at N and (ADE) at N'. We will show that N = N'.

Draw the diameter AA" of (ABC). As BHCA' is a parallelogram, H, M, A" are collinear and
OM is the midsegment of AAHA’. Now observe that

AH =20M =2Rcos A and MP =OP — OM = R(1 — cos A).

Furthermore, since AH || M P,

AN_ AH B 2cos A
AP  AH+ MP 1+cosA’

Note that
: . A . A
sin /AHD =sin | B + 3 ) sin /ADFE = cos 7
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Figure 14: Prove that HM 1L AK.

Applying the sine rule in AADH we get

AD = 1A-AHsin(B—|—§). (15)

COS D)

As AADE is isosceles and AP is the angular bisector of A, AN’ is the diameter of (ADFE).
Hence AD = AN’ cos 4. Combining this with (15) we get

1 A 4R cos A A
AN' = -AHsin (B+ — ) =———-sin( B+ — ). 16
cos? 4 s1n( * 2) 1+cosA s1n( * 2> (16)

On the other hand,
A
AP =2Rsin ZABP = 2Rsin (B + 5) ,

so (14) yields

AN =
2

Combining this with (16) we get AN = AN’; in other words, N = N’. Hence H, N, A’ are

2cos A 4R cos A A
—  AP=———sin(B+—= ).
1+ cosA 1+cosA Sm( * )

collinear. Also, O,0’, I’ are collinear and lie on the midsegment of AAHA'.
As a result, HM || OI, while we also have OI LAN, so HM L AN. O

Remark 7. A similar problem has appreared in Vietnam TST 2006: Consider ANABC' with
orthocenter H. The exterior angular bisector of ZBHC intersects AB and AC at D and E
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respectively. The angular bisector of ZBAC interesects (ADE) at K # A. Prove that HK goes
through the midpoint of BC'.

Solution to Exercise 8: IMO Shortlist 2011

Let ABC' be a triangle with incentre I and circumcircle w. Let D and E be the second
intersection points of w with Al and BI, respectively. The chord DE meets AC' at a point
F, and BC at a point G. Let P be the intersection point of the line through F' parallel
to AD and the line through G parallel to BE. Suppose that the tangents to w at A and
B meet at a point K. Prove that the three lines AE, BD and KP are either parallel or

concurrent.

Figure 15: Prove that AE, BD and K P are either parallel or concurrent.

Proof. As /IAF = /DAC = /BAD = /DEB = /FFEI, we see that AIFE is cyclic. Sim-
ilarly, BDGI is cyclic. Denote w; as the circle passing through A, I, F, E and wy as the circle
passing through B, D, G, I.

If wy touches wy then denote d as the two circles’ common tangent line. Otherwise, let L be the

other intersection point of w; and wy besides I and denote d as the line IL.
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d intersects (ABL) and (FGL) at K', P' # L respectively. Note that
(AB,BK') = (AL, LK") = (AL, LI) = (AE, EI) = (AE, EB) = (AB, AB).
Therefore BK' = BK. Similarly, AK’ = AK. It follows that K = K’. On the other hand,
(P'F,FG)=(P'L,LG) = (IL,LG) = (ID,DG) = (AD, DE) = (PF, FG).

Hence P'F = PF and similarly PG = PG. As a result, P/ = P. Thus d passes through K
and P. Finally, as KP, AE, BD are [...] of w; and ws, w and wy, w and wy respectively, they are

either parallel or concurrent. O

Solution to Exercise 9: All-Russian MO 2009

Consider a parallelogram ABCD and two points Ay, C} on its sides AB, BC, respectively.
Lines ACY and C'A; meet at P. Assume that the circumcircles of triangles AA; P and CC, P
intersect at the second point () inside triangle AC'D. Prove that /PDA = ZQBA.

Figure 16: Prove that /PDA = ZQBA.

Proof. Let E be the intersection of AD and C'P, then

sin ZABP B AA, sin/ZADP EP _CD
sin/CBQ CC,’ sin/CDP PC ED’

In addition,
EP EA AD EA_l AAy  CD - AA
PC CC, ED ED CcD cDh
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SO

_ CD-AD  CD-AD CD-AD
 CD—AA, AB-— AA,  BA,
sinZADP EA CD EA BA,

~ sin/CDP _ CC, COAD ~— BC ' COC,

ED

BA;
N sim/ADP  AA; BA; AA;  sin ZABQ (17)
sin/CDP BA, CC, CC, sinZCBQ’

Let ZABC = ZADC = « and consider

F(0,7) SR, f(z) = M@=

sinx

Note that f is a decreasing function on (0, 7), and from (17) we see that f(ZPDA) = f(ZQBA),

so /ZPDA = /QBA. O

Solution to Exercise 10: Balkan MO 2007

Let ABCD a convex quadrilateral with AB = BC = CD, with AC not equal to BD

and E be the intersection point of it’s diagonals. Prove that AE = DFE if and only if
£LBAD + ZADC = 120.

Figure 17: Prove that AE = DFE if and only if ZBAD + ZADC = 120.

Proof. We will prove both directions:
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o If AE = ED, then AFEAD is isoceles at E so /ZEAD = Z/EDA = 3. Applying the sine
rule in AABD and AACD we get

AB AD  CD _ AD
sinff sinZABD’ sinf  sin ZACD'

Also, AB=CD sosin ZABD = sin ZACD, or ZABD + ZACD = 180°.
Let ZACD = z and denote M as the intersection of AB and CD. We now have

ZMBD = /BAD + /BDC = ZBAC + 27,
which implies © — 26 = Z/BAC = ZC'BA. By similar arguments,
/CDB = 180° — z — 2.

On the other hand, /BFA = /ZEBC+ /BCE, so ZDBC = 43 — xz. Combining this with
ZCBD = ZCDB, we get the equation

180° — oz — 28 =46 — =,
which yields z = 30°, from which it’s easy to deduce that Z/BAD + ZADC = 120.

o If /BAD + ZADC = 120°, let LZEAD =« and ZEDA = 5. It follows that a4+ 8 = 60°.
Applying the sine rule in AABD and AACD we get

sinaw sin LACD

sin3  sinZABD'

Let ZCDB = ZCBD = x, we can calculate
LACD =180° —a— f —x =120° — .
Now note that ZAEB = /EBC + ZECB, so
a+p—x=/LACB = ZCAB,

which implies
ZABD =180° — 2o — 20 + x = 60° + .
Finally, we see that
sina sin ZACD  60° +x
sinf  sinZABD  120° —x
which means sin o = sin 5, so a = 3. Consequently, AF = DE.

=1,
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Solution to Exercise 11: China TST 2008

Let ABC' be a triangle, let AB > AC. Its incircle touches side BC at point E. Point

D is the second intersection of the incircle with segment AFE (different from F). Point F
(different from FE) is taken on segment AFE such that CE = CF. The ray C'F meets BD

at point G. Show that CF = F@G.

Figure 18: Prove that CF = FG.

Proof. Let I be the incenter of AABC and M be the midpoint of BC. Construct the heights

AH of NABC and CT of ACEF.

To prove that CF = FG, we will show that MF || BD or, equivalently, 221 = £E. Note that

EB EB ateb gt —b

EM BE-BM “—-%  c—}

On the other hand,

AE? = AH?>+ HE? =

a? 2 2a

4SiBC+(a+b—c_a2—l—b2—02)2

(a+b+c)b+c—a)lc+a—b)a+b—c) N (c—b)2(b+c—a)2.

4a? 4a?
(I) touches AB at K, then

AD - AE — AK? — (m—_‘I)Q

2
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As ED-EA = AE? — AD - AE, from (18) and (19) we get

2 )2 )2 _ 2
ED-EA:4S+(C b)’(b+c—a) _(b—l—c a)

a? 4a? 2

457 (b+c—a)*(c—b—a)(c—b+a)
7 T 2

a da

(a+b—c)b+c—a)(c+a—10)

- - . (20)

As ATHC is cyclic,

EF-FA=2F]-FA=2-FH-EC

. A+ -0 a+c—>b\ a+b—c
N 2a 2 2

_ (c—b)(b+62—aa)(a+b—c)‘ (21)

From (20) and (21), we get
EF c—b EM

ED atc—b EB’
which yields CF = F@G. O

Solution to Exercise 12: Balkan MO 2013

In AABC, the excircle w, opposite A touches AB at P and AC at @), while the excircle wy
opposite B touches BA at M and BC' at N. Let K be the projection of C' onto M N and
let L be the projection of C' onto P(@). Show that the quadrilateral M K LP is cyclic.

Proof. Let I, I. be the excenters opposite B and C'in AABC respectively. Let w, be the excircle
opposite to C. w, touches BC' at T'. S is the intersection of M N and PQ.

Let X,Y be the projections of M on P(Q and P on M N respectively. AX intersects PY at H.
HC(C intersects M N at S; and PQ at Ss.

Observe that

b+c—a ‘ B a+c—0> A

Z (CL=-"""""cos=.
5 cos2,C’ 5 (3082

On the other hand, HA- HX = HP - HY so

CK =

YH MH sing
XH PH sind’

In addition,

n A_b+c—a . B_c+a—b
N9 T Tarn 0 MY T Toarr,

which yields

B A
(a—l—c—b)-tang:(b+c—a)-tan§,
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Figure 19: Prove that M K LP is cyclic.

which implies that
CK (b+c—a)-cosZ B sin £ _YH

CL (a+c—b)cosd  sing XH’
Now, as CK || YH and CL || XH,

$C _CK _CL _ 5C
SiH YH XH S,H’

so S1 = 55 and therefore H,C, S are collinear.

As ZSKL =90° — ZCKL and Z/SYX =90° — ZHY X, /SKL = ZHYX,so KL || XY. It
follows that /Y XP = ZKLP, while we also have /Y XP = 180° — ZPMY. Thus Z/ZKLP =
180° — ZPMY and so M PLK is cyclic. O
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Solution to Exercise 13: IMO Shortlist 2005

Given AABC satisfying AB+ BC' = 3C'A. The incircle of AABC has center I and touches
the sides AB and BC' at the points D and E, respectively. Let K and L be the reflections
of the points D and E with respect to I. Prove that the points A, C, K, L lie on one circle.

Figure 20: Prove that A, C, K, L lie on one circle.

Proof. We have c+a = 3b. Note that if b = ¢ then a = 2b = b+ ¢, which contradicts the triangle
inequality. Hence b # ¢, and WLOG assume b < c.
AL intersects BC' at F. Assume the positive direction is that of vector @ , then

EF:CF—CE:—BE—CE:a+§_b—a+g_czc—b,

so EF = |EF| = c—b. Now ALFE and ACLE have

LE 2r LE 4r
tanZLFC'— ﬁ = m, tanZLCE = CE = a—|—c—b7
SO
tan ZLFC + tan ZLCE

tan LALC = tan(ZLFC + ZLOB) = e e T o E

- <c2—rb+ a+41:—c) : (1_ (c—b)(SaTib—c)>

B 2r(a+c—0)
(c=b)(a+b—c)—8r%
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As a + ¢ = 3b, we can compute the inradius r of AABC' from

2 S _-ap=bp-c _(G+c—ala+tdb=c)

p? p 8
It then follows that
2r(a+c—10)
tan ZALC' =
o c—batb—c)— (b+c—a)atb—c)
2r(a+c—b) 2br

T (atb—c)a—2b) (2b—c)(b—c)

By similar arguments,

2br
tan ZAKC = :
an ARG = o =)
From a + ¢ = 3b it is easy to see that (2b — ¢)(b — ¢) = (2b — a)(b — a). Thus tan LZALC =
tan ZAKC'. In other words, ZALC = ZAKC, so ALKC' is cyclic. m
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