Introduction
We begin with an analysis of a simple geometry problem, proposed by Dr. Trinh Le, deputy delegate of the Vietnam IMO team.
In $\abc$ consider a point $D$ on segment $BC$. Let $I$ and $J$ be the midpoints of $DB$ and $DC$ respectively. The perpendicular bisectors of $DB$ and $DC$ intersect $AB$ at $M$ and $AC$ at $N$ respectively. Let $O$ be the circumcenter of $\triangle ABC$. Prove that $AMON$ is a cyclic quadrilateral.
The following six solutions were devised by six students from the Ho Chi Minh City VMO team. Let us first take a look at their approaches and analyze the pros and cons of each.
Proof 1
Let $T$ be the midpoint of $BC$. Consider the Cartesian coordinate system $Txy$ where $T$ is the origin, $Tx$ is $BC$ and $Ty$ is the perpendicular bisector of $BC$.
Denote the following coordinate points: $B(-1,0), C(1,0), D(d, 0)$ and $A(a,b)$.
Let $U$ and $V$ be the midpoints of $AB$ and $AC$ respectively, and let $K$ be the projection of $O$ on $MN$. Furthermore, for any line $l$, denote $\vec{n_l}$ as its normal vector.
We can then compute the followings:
- $ (AB): y=\dfrac{b(x+1)}{a+1}, \quad (AC): y=\dfrac{b(x-1)}{a-1}.$
- $U \lf \dfrac{a-1}{2}, \dfrac{b}{2} \ri, \ V \lf \dfrac{a+1}{2}, \dfrac{b}{2} \ri, M \lf \dfrac{d-1}{2}, \dfrac{b(d+1)}{2(a+1)} \ri , \ N \lf \dfrac{d+1}{2}, \dfrac{b(d-1)}{2(a-1)} \ri.$
- $x_O = x_T=0,\ \vto{OU} \parallel \vto{n_{AB}} \Rightarrow O \lf 0; \dfrac{a^2+b^2-1}{2ab} \ri.$
- $(MN): \dfrac{b(a-d)}{a^2-1} \lf x -\dfrac{d-1}{2} \ri + y - \dfrac{b(d+1)}{2(a+1)}=0.$
- $\vto{OK} \parallel \vto{n_{MN}} \Rightarrow \dfrac{x_K}{y_K - \frac{a^2+b^2-1}{2b}}=\dfrac{b(a-d)}{a^2-1}.$
Observe that $y_U = y_v = \frac{b}{2}$, so it turns out the line $UV$ is $(UV): y = \frac{b}{2}$. Furthermore, the point $K$ is uniquely determined from (4) and (5), and we notice that $\lf x_K = \frac{d-a}{2}, y_K = \frac{b}{2} \ri$ satisfies both. Hence $K \lf \frac{d-a}{2}, \frac{b}{2} \ri$ and therefore $K \in UV$. By the converse
Simson's theorem $AMON$ is cyclic. $\qedsymbol$
Proof 2
Let $N' \ne A$ be the intersection point of $(AMO)$ and $AC$. We prove $AN'=AN$, which would imply $N' \equiv N$. Denote $DB = x$, then
$$
\begin{equation}
BM=\frac{x}{2\cos B}, \ AM=c-\dfrac{x}{2\cos B}, \ AN=b-\dfrac{a-x}{2\cos C}. \label{am-an}
\end{equation}
$$
Since $AMON'$ is a cyclic quadrilateral, by
Ptolemy's theorem:
$$
\begin{equation}
AO \cdot MN' =AM \cdot ON' + AN' \cdot OM. \label{ptolemy}
\end{equation}
$$
Further observe that $\angle{OMN'} = \angle{OAC}=90^0-B$ and $\angle{ON'M} =\angle{OAB}=90^0-C.$ Hence, in $\triangle OMN'$, applying the sine Rule, we have
$$\dfrac{ON'}{OM}=\dfrac{\cos B}{\cos C}.$$
Multiplying both sides of $(\ref{ptolemy})$ by $\frac{\cos C}{OM}$ we have
$$(AO\cos C) \cdot \frac{MN'}{OM} = (AM \cos C) \cdot \frac{ON'}{OM} + AN'\cos C.$$
which yields
$$\begin{align*}
AN'\cos C
& = (AO \cos C) \cdot \frac{\sin \angle MON'}{\sin \angle ON'M} - (AM \cos C) \cdot \frac{\cos B}{cos C} \\
& = \lf \frac{a}{2\sin A} \cdot \cos C \cdot \frac{\sin A}{\cos C} \ri - \lf c - \frac{x}{2\cos B} \ri \cos B \\
& = \frac{a + x}{2} - c\cos B.
\end{align*}$$
From $(\ref{am-an})$ we also have
$$ AN \cos C=b \cos C - \dfrac{a-x}{2},$$
hence $AN' = AN$ would be equivalent to
$$\frac{a + x}{2} - c\cos B = b \cos C - \dfrac{a-x}{2},$$
which can be rewritten as $a = b\cos C + c\cos B$,
which is true. Thus $AN' = AN$ and therefore $N' \equiv N$. $\qedsymbol$
Proof 3
$(AMN)$ intersects the diameter $AK$ of $(ABC)$ at $O' \ne A$. We will prove that $AK=2AO'$, which implies $O' \equiv O$.
Observe that $\triangle O'MN \sim \triangle KBC$ so
$$ \dfrac{OM}{KB}=\dfrac{MN}{BC}=\dfrac{O'N}{KC}=k, $$
which means that
$$\begin{equation}
MN=kBC,\ O'M=kKB, \ O'N=kKC. \label{mn}
\end{equation}$$
Applying Ptolemy's theorem to cyclic quadrilaterals $AMO'N$ and $ABKC$ we have
$$\begin{align}
AO' \cdot MN & = AM \cdot O'N + AN \cdot O'M. \label{amo'n} \\
AK \cdot BC & = AB \cdot KC + AC \cdot KB. \label{ak}
\end{align}$$
Dividing both sides of (\ref{amo'n}) by $k$ we have
$$\begin{equation}
AO \cdot BC = AM \cdot KC + AN \cdot KB. \label{ao}
\end{equation}$$
From Solution 2, with $DB = x$, we also have
$$AM=c-\dfrac{x}{2\cos B}, AN =b-\dfrac{a-x}{2\cos C}.$$
Further note that that $KB=2R\cos C$ and $KC=2R\cos B$. Looking at (\ref{ak}) and (\ref{ao}), to show $AK=2AO'$ we need to prove that
$$AB \cdot KC + AC \cdot KB = 2(AM \cdot KC + AN \cdot KB),$$
which is equivalent to
$$c\cos B + b\cos C= 2\cos B \lf c-\dfrac{x}{2\cos B} \ri+ 2\cos C \lf b-\dfrac{a-x}{2\cos C} \ri,$$
which reduces to $a=b\cos C + c\cos B$, which is true. Hence $O \equiv O' \in (AMN)$ and therefore $AMON$ is cyclic. $\qedsymbol$
Proof 4
Let $U,V$ be the midpoints of $AB,AC$ respectively and $R,S$ be the projections of $U,V$ onto $BC$ respectively.
It is easy to see that $IR=JS$. Indeed, on axis $BC$, denote the direction of $\vto{BC}$ as the positive direction. We then have
$$\begin{align*}
& \ds{IR}=\ds{BR}-\ds{BI}=BU \cos (BR, BU) - \dfrac{x}{2} = \dfrac{c\cos B - x}{2}, \\
& \ds{JS}=\ds{CS}-\ds{CJ}=CV\cos (CS, CA) + \dfrac{a-x}{2}=\dfrac{-b\cos C +a-x}{2}.
\end{align*}$$
Since $a=b\cos C + c\cos B$, $\ds{IR}=\ds{JS}$ so $IR=JS$.
Applying
Thales's theorem for $UR \parallel MI$ and $VS \parallel NJ$ we have
$$\dfrac{MU}{IR}=\dfrac{BU}{BR}=\dfrac{1}{\cos B}, \ \dfrac{NV}{SJ}=\dfrac{CN}{CJ}=\dfrac{1}{\cos C}.$$
Hence $$\dfrac{MU}{NV}=\dfrac{IR}{JS} \cdot \dfrac{\cos C}{\cos B}=\dfrac{\cos C}{\cos B} =\dfrac{OU}{OV}.$$
Observe that $\triangle OMU$ and $\triangle ONV$ are directionally similar. Let $f$ be the spiral similarity with center $O$, angle $(OU,OV)$ and ratio $k=\frac{OU}{OV}$, then $f(U)=V, f(M)=N$.
Hence $(MO,MU) \equiv (NO,NV) \ \pmod{\pi}$, so $AMON$ is a cyclic quadrilateral. $\qedsymbol$
Proof 5
Let $E$ be the reflection of $D$ across $MN$. We then have
$$\angle{MEN}=\angle{MDN}=180^0-\angle{MDB}-\angle{NDC}=180^0-B-C=A.$$
Hence, $AENM$ is a cyclic quadrilateral, which implies $\angle{AME}=\angle{ANE}$. Note that $ME = MD = MB$ and $NE = ND = NC$, so $\triangle MBE$ and $\triangle NCE$ are isosceles. In other words, $\angle{AME} = 2\angle{MBE}$ and $\angle{ANE} = 2\angle{NCE}$. Therefore $\angle{MBE}=\angle{NCE}$, so $AECB$ is cylic and $E \in (ABC)$.
Observe that $OM$ and $ON$ are the perpendicular bisectors of $EB$ and $EC$ respectively. Let $X=OM \cap BE, \ Y = ON \cap CE$, then $EXOY$ is a cyclic quadrilateral.
Hence $$\angle{MON}=180^0-\angle{XEY}=180^0-A,$$
which means $AMON$ is cyclic. $\qedsymbol$
Proof 6
Let $E \ne D$ be the other intersection point of $(DMN)$ and $BC$.
We have $\angle{EMN}=\angle{EDN}=C, \ A = \angle{MDN}=\angle{MEN}$ so $\triangle EMN \sim \triangle ACB$.
Let $O'$ be the orthocenter of $\triangle EMN$. We observe that $BMO'E, AMO'N, CNO'E$ are cyclic quadrilaterals, hence
$$\angle{O'BE}=\angle{O'ME}=\angle{O'NE}=\angle{O'CE},$$
so $O'C = O'B$. Similarly we have $O'A = O'B \ (=O'C)$ and thus $o'$ is the orthocenter of $\triangle ABC$. In other words, $O' \equiv O$.
We also have $\angle{MON}=180^0-\angle{MDN}=180^0-A$, which means $AMON$ is cyclic.