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Abstract

We study fairness in sequential decision making en-
vironments, where at each time step a learning al-
gorithm receives data corresponding to a new in-
dividual (e.g. a new job application) and must
make an irrevocable decision about him/her (e.g.
whether to hire the applicant) based on observa-
tions made so far. In order to prevent cases of
disparate treatment, our time-dependent notion of
fairness requires algorithmic decisions to be con-
sistent: if two individuals are similar in the feature
space and arrive during the same time epoch, the al-
gorithm must assign them to similar outcomes. We
propose a general framework for post-processing
predictions made by a black-box learning model,
that guarantees the resulting sequence of outcomes
is consistent. We show theoretically that imposing
consistency will not significantly slow down learn-
ing. Our experiments on two real-world data sets
illustrate and confirm this finding in practice.

1 Introduction

With the rise of big data, the use of algorithmic decision
making systems has become widespread in a broad range
of social domains—examples include employment [Miller,
2015], credit lending [Petrasic et al., 2017], and criminal
justice [Barry-Jester et al., 2015]. Algorithmic decisions
made in this fashion directly impact people’s lives and may
potentially affect certain individuals or social groups nega-
tively [Podesta et al., 2014]. In recent years, numerous stud-
ies (see e.g. [Sweeney, 2013; Barocas and Selbst, 2016]) and
media articles [Mann and O’Neil, 2016; Angwin et al., 2016;
Levin, 2016] have illustrated and cautioned against algo-
rithmic unfairness. This has led to an active area of re-
search into quantifying and guaranteeing fairness for ma-
chine learning [Kamishima et al., 2012; Dwork et al., 2012;
Kleinberg et al., 2016; Hardt ef al., 2016]. Most existing no-
tions of algorithmic fairness, such as demographic parity or
equality of opportunity, seek to prevent a particular form of
discrimination, known as disparate impact in legal texts—
disparate impact refers to practices that collectively allocate a
more favorable outcome to one socially salient group com-
pared to another. Moreover, the vast majority of existing

studies address fairness considerations for supervised batch
learning—where the entire training data is available ahead of
time, and the same predictive model is applied to every new
instance—and little attention has been given to online settings
in which the learner receives individuals’ data over time, and
makes irrevocable decisions about them in a sequential fash-
ion. In practice—e.g. when it comes to credit lending and
employment decisions—the latter is often the case.

In this work, we consider an online setting where at each
time step the learner receives data corresponding to a new in-
dividual, and assigns an irrevocable outcome/label to him/her.
The learner then observes the true label for that individual,
and incorporates the recent observation into decision making
for future rounds. In contrast to previous work, our goal here
is to prevent cases of disparate treatment—disparate treat-
ment refers to unequal treatment of similarly situated individ-
uals due to their protected characteristics (e.g. race or sex).
Our notion of fairness requires algorithmic decisions to be
consistent over time. That is, if two individuals are similar in
the feature space and arrive during the same time epoch, the
algorithm must assign them to similar outcomes. Our defini-
tion of fairness can be thought of as a time-dependent variant
of [Dwork et al., 2012].

Our formulation of disparate impact is motivated by the
following observation: in the United States legal system, the
most common method for establishing a case of disparate
treatment is to present circumstantial evidence that one has
been treated unfavorably compared to similarly situated in-
dividuals (see the Civil Rights Act of 1964, Title VII, Equal
Employment Opportunities). More specifically in the context
of employment decisions such as hiring, promotion, or salary,
a qualified individual who belongs to a protected class can
establish a prima facie case of disparate treatment by prov-
ing that the employer treated more favorably similarly sit-
uated individuals who do not share the protected character-
istic. For example, “the employer rejected their job appli-
cation, but continued to solicit applicants with equal qualifi-
cations” (the wage project, http://www.wageproject.org/files/
pdispimp.php). We remark that thus far the fair-ML com-
munity has largely interpreted disparate treatment as the ex-
plicit incorporation of a protected characteristic as input to
the learning algorithm (see e.g. [Lipton et al., 2017]). While
the explicit use of a sensitive feature can clearly be seen as a
direct evidence of disparate treatment, such evidence is very



easy to avoid—by removing the sensitive feature from train-
ing data—and is rarely available in real-world scenarios. In
this work, our focus is on a more nuanced, but more common
method of showing disparate treatment, that is, by providing
indirect/circumstantial evidence that one has been treated un-
favorably compared to similarly situated individuals.

Armed with this broader understanding of disparate treat-
ment, an employer may wish to prevent its decision making
algorithm from treating similarly-situated individuals differ-
ently. This motivates the definition of fairness we propose
in this work: While the eventual goal of the learner is to
find a hypothesis with low prediction error, the labels it as-
signs to individuals along the way must be consistent with
one another. It is easy to see that requiring consistency to
hold over the entire span of decision making severely restricts
the learner’s ability to incorporate new information into its
predictive model. Therefore, we require consistency to hold
among recent observations only. Our key contribution is pre-
senting a general framework for post-processing predictions
made by a black-box learning model, so that the resulting se-
quence of outcomes is consistent. Our theoretical analysis
shows that imposing consistency does not significantly slow
down learning. Our experiments on two real-world data sets
further illustrate and confirm this finding in practice.

1.1 Related Work

Existing notions of algorithmic (un)fairness can be divided
into two main categories: individual fairness and group fair-
ness. Most existing studies of algorithmic (un)fairness fo-
cus on statistical or group notions. Statistical parity [Klein-
berg et al., 2016; Dwork et al., 2012; Corbett-Davies et al.,
2017], disparate impact [Zafar et al., 2017; Feldman et al.,
20151, equality of opportunity [Hardt et al., 2016], and cal-
ibration [Kleinberg et al., 2016] are important formulations
belonging to this category. Statistical notions of fairness suf-
fer from several drawbacks—perhaps most importantly they
fail to guarantee fairness at the individual level; see [Berk et
al., 2017] for detailed examples.

The notion of individual fairness was first proposed by
Dwork et al. [2012] for classification in batch learning en-
vironments. The notion requires that two individuals who
are similar with respect to the task at hand, receive simi-
lar probability distributions over class labels. Our definition
of fairness can be thought of as a time-dependent variant of
[Dwork er al., 2012]. For regression tasks, our notion of con-
sistency replaces their statistical distance between distribu-
tions with the difference between actual regression labels—
we argue that individuals are mainly concerned with their re-
alized outcomes, not the probability distribution from which
those outcome are sampled. Unfortunately, this requirement
can render learning impossible when it comes to classifica-
tion tasks. Guaranteeing consistency among label distribu-
tions, however, can still be done readily by our algorithm (see
Section 4).

Existing mechanisms to guarantee fairness for learn-
ing algorithms can be divided into three categories: pre-
processing (see e.g. [Pedreschi et al., 2008]), in-processing
(see e.g. [Dwork et al, 2012]), and post-processing (see
e.g. [Hardt er al., 2016]). Our algorithm belongs to the third

category: it does not interfere with the inner workings of the
learning procedure; rather treats it as a black-box and adjusts
the algorithmic predictions so as to maintain consistency.

A number of recent studies have initiated the study of
fairness for online learning [Joseph et al., 2016; 2017; Jab-
bari et al., 2017]. Joseph et al. [2016] study fairness in the
multi-armed bandit setting, where arms correspond to so-
cially salient groups (e.g. racial groups) and pulling an arm
corresponds to choosing an individual from that group (e.g.
to allocate a loan to). Simply put, an algorithm is considered
fair when it never prefers one arm to another if the chosen
arm has lower expected reward than the unchosen one. This
probabilistic definition of fairness does not make any compar-
ison between algorithmic decisions made over time. Jabbari
et al. [2017] study fairness in reinforcement learning. Their
definition of fairness is similar to that proposed by Joseph et
al. [2016]: a fair algorithm must never prefer one action to an-
other if the long-term discounted reward of the latter is higher.
In both of these models, guaranteeing fairness may impose a
high (and in worst-case exponential) cost on learning.

Our learning framework is closely related to PAC learning
and (stochastic) online learning. In particular, similar to the
PAC framework, our goal is to bound the number of sam-
ples a learning algorithm needs to observe before reaching a
certain level of accuracy with high probability. But unlike
PAC learning and similar to online learning, our framework
is time-dependent: instances arrive sequentially, and the algo-
rithm has to make decisions on the go, and before seeing all
training instances. In contrast to previous work on (stochas-
tic) online learning, we don’t focus on regret minimization;
rather we aim at achieving a sufficient level of accuracy while
fulfilling certain constraints (in particular, consistency) on the
labels generated over time.

2 Model and Preliminaries

We start by introducing our Sequential Decision Making
framework. We focus our presentation on regression tasks,
but as we will discuss later in Section 4, our work can accom-
modate classification, as well.

Ateachroundt = 0,1, 2, - - -, the learner A4 receives a new
context x; € X, and makes a prediction g; € YV = [0, 1]. The
learner then observes the true label y; for x;. There exists
an underlying distribution D on X x ) such that for every
t =0,1,2,---, (x¢,y;) is an i.i.d. sample from D. The
goal of the learner is to eventually find a hypothesis h € H
to label instances, such that h has bounded error with high
probability. Unlike the traditional PAC learning framework,
the learner may face additional constraints on the sequence of
labels it produces along the way.

In this work, our focus is on constraints imposed by fair-
ness considerations. At a high level, we would like the al-
gorithm to assign to every new instance x; a label ¥, that is
not too far away from labels assigned to similar contexts in
recent history. More precisely, we assume the existence of a
distance metric d among contexts in X'

d: X x X —[0,00)

Note that a metric satisfies non-negativity, symmetry, identity
of indiscernibles, and most importantly for the purposes of



this work, the triangle inequality:
VXi, X5, XK € X 1 d(xi,%x5) + d(x5,%x%) > d(Xi,Xx).
We define consistency with respect to d, and as follows:

Definition 1 (Relative and Pairwise Fairness) Two labeled
contexts (X;,7;), (X5,7;) € X x Y are called ~y-relatively
fair if:

|7: — 75| < d(x4,%x5) +7 (D

where v € [0,1] is a constant. A set S of labeled contexts is
called ~y-pairwise fair if (1) holds for any (x;,9;), (X;,7;) €
S.

Ideally, we would like A to always produce pairwise fair la-
bels; that is, for any time step 7' we would like {(x¢, %) }7—q
to be ~y-pairwise fair. However, to avoid perpetuating mis-
takes A might make early on, we can only require this to
hold among recent observations (see Example 1). Formally,
we define our notion of time-consistency as follows:

Definition 2 (Consistency) Given constants v > 0 and K €
N, a sequence {(x:,91)}i2o of labeled contexts is called
(v, K)-consistent if for any t = 0,1,---, the set S; =

{(xi, 72) Vi K is y-pairwise fair:

Equivalently the sequence is (v, K)-consistent, if for any
t,S € NU {O} with |t - S| S K7 (Xtagt)v (Xs;gs) are -
relatively fair.

Definition 3 (Consistent Sequential (CS) Learnability)
A hypothesis class H is (v, K)-CS learnable if there exists
an algorithm A operating in the sequential decision making

Sframework such that for any €,0 € (0,1) and any distribution
D)

o A produces labels %o, 1,52, - that are (v, K)-

consistent.

o After observing N' (v, K, €, ) instances along with their
true labels, with probability at least (1 — &) A can find
and thereafter follow a hypothesis h* € ‘H such that

) < :
Lp(h*) < ;IL%;I-%LD(]Z) +e

where L is the loss function.

The function N (v, K, €, 8) specifies the sample complexity
of CS-learning.

Our definition of CS-learnability requires A to eventu-
ally commit to a hypothesis h* € 7H; that is, for t >
N (v, K,€,0), j» = h*(x;). Given this requirement, in order
for A’s sequence of labels to remain consistent throughout,
we need to make the following assumption:

Assumption 1 Every h € H is n-fair with 0 < n < ~:
Vxi,x; € X ¢ |h(x;) — h(x;)] < d(x;,%x;5) + 1.

To simplify the statement of our results, throughout we as-
sume 1 = 0, but as we discuss in Section 4, our theory readily
extends to 0 < n < 7.

How strong is Assumption 1?  First, note that for any given
hypothesis class # and distance metric d, Assumption 1 holds
if 7 is taken to be sufficiently large—for instance, it trivially
holds for 7 > maxy, x h(x) regardless of the distance metric
d. Second, for a particular choice of ), one can apply Dwork
et al.’s pairwise constraints ahead of time in order to restrict
‘H to n-fair hypotheses only. In Section 5, we empirically
illustrate the impact of enforcing these pairwise constraints
on accuracy. Lastly, in Section 5, we show empirically that
our proposed algorithm performs well even if Assumption 1
is violated.

We end this section with two remarks. First, as mentioned
earlier for CS-learnability to be possible, K has to be finite.
The following example illustrates the impossibility of CS-
learning when K = oc.

Example 1 Let H consists of two hypotheses only: hg which
always predicts 0 and h, that always predicts 1. Consider the
realizable setting, and suppose D is a degenerate distribution
with all its mass on a particular context x € X, so that for all
t=0,1,---,x; = x. Let K = oo and v < 1. Any algorithm
has to make a mistake in predicting 1o with probability at
least 0.5 (e.g. yo = 1, but the algorithm predicts yjo = 0).
After observing the true label for xq even though the algo-
rithm can accurately predict the true label for all upcoming
instances (due to the realizability assumption and D being de-
generate), for all t > 1, the y-relative fairness between ¥y, Y
forces it to make a prediction with error at least (1 — ~y) for
Xt Jr — Po < d(X¢,%0) + v = 7. Therefore for § < 0.5 and
€ < 1 —, the CS-learnablity conditions cannot be satisfied.

Second, we note that a CS-learning algorithm can indefi-
nitely continue generating (-, K')-consistent labels, without
ever getting stuck a situation where no consistent label exists
for the new context.

Proposition 1 Suppose S = {(x;, gji)}fial is ~y-pairwise
fair. Then for any X € X there exists a non-empty interval

I of length at least vy, such that any Yy € I is a y-relatively
fair label for x i with respect to S.

Proof In order for 4x to be v-relatively fair with respect to
y; 1 =0,---, K — 1) it must be the case that
Uk €[ —d(xK,%i) =7, ¥ +d(xk, %) +7] ()

Call the above interval I;,. If I = ﬂf:l I; # 0, then any

Uk € ﬂf;l I; is a ~y-relatively fair label with respect to ev-
ery element of .S. Therefore, the statement of the proposition
is equivalent to I # () and |I| > . To prove this holds, we
apply the following lemma:'

Lemma 1 Consider m intervals 11,15, - -- , I, where I; =
(l;, w;). Suppose that forany 1 < i < j <m, |[I; N I;| > ¢,
where ¢ > 0 is a constant. Then

° m?;l Il = [maxi li, mini ’U,l'].

o [NiZ Lil > ¢

Note that forany 0 < ¢,j < K —1, |I; N I;| > . Suppose
not, and there exists 0 < 4, j < K —1such that |I; N [;| < 7.

!"The proof is straightforward and is omitted due to space con-
straints.



That means either §; — d(xx,x;) > ¥; + d(xx,%;) + v or
¥; —d(xk,x;) > §; +d(xx,%;) +y. Consider the first case
(the analysis for the second case is identical). We have that
Yi — d(xk, %) > §j + d(xK, %) +

= U —y; > dxg,x;) +d(xKg,X;) + 7

= ¥i—y; > dxi, %)+ 3)
where the last line follows from the triangle inequality. But
(3) is in contradiction with ~y-relative fairness of s, ;. There-
fore for any 0 < 4,j < K — 1, |I; N I;| > -y. Now applying
Lemma 1, we obtain that ﬂfi}l I; # () and | ﬂzK:;l I;| > ~.
This finishes the proof.

3 Algorithm

In this Section, we propose a general CS-learning algorithm,
called Consistently Follow The Leader (CFTL). Our algo-
rithm is compatible with any PAC-learnable hypothesis class,
and requires only blackbox access to the corresponding learn-
ing algorithm. We show that the CS-sample complexity of
CFTL has polynomial dependency on K and %, and further-
more, this dependency is tight.

Let H be a PAC-learnable hypothesis class with sample
complexity specified by N (e, d). CFTL requires black-box
access to the PAC learning algorithm for H, denoted by
PAC#. PACy, receives a training data set of size N(e, §) and
outputs a hypothesis h € H whose loss is bounded by e with
probability at least (1 — J).

At a high level, CFTL works as follows: at each round 7, it
feeds the data observed up to T" to PAC% and obtains a predic-
tive model h. Given a new instance X7, it utilizes h to make
a prediction about the corresponding label of xp. This pre-
dicted label will not necessarily be consistent with the labels
CFTL has previously generated (note that even though we as-
sume all hypotheses in H are consistent, the predictive model,
h, changes over time, so labels predicted over time need not
be consistent). Among the set of all (v, K)-consistent labels
for x (which according to Proposition 1 is a non-empty inter-
val), CFTL picks the one closest to h(xr) as §r.

Next, we show that it takes CFTL at most N (e, 5)4—% steps

to be able to follow a hypothesis h* whose error is bounded
by e with probability at least 1 — . Note that while CFTL can
find such hypothesis sooner—after exactly N (e, d) steps—it
cannot immediately start generating labels according to h*
due to the (v, K')-consistency constraints.

Theorem 1 Suppose the sample complexity of PAC learning
a hypothesis class H is specified by N (¢, 0). Then the sample
complexity of CS-learning for H is at most N (€, 5) + % Fur-
thermore, there exist examples for which this bound is tight.

Proof First, consider the case for K = 1. According to
Proposition 1, CFTL always produces (v, K')-consistent la-
bels. Also given the sample complexity of PAC learning
for class H we know that at time N (e, d) the algorithm
has enough samples to find a hypothesis A* whose error is
bounded by € with probability at least 1 — §. For t > N (e, ),
define the potential function p; as the difference between the
output label (i.e. §;) and predicted label (i.e. h*(x;)) for x;:

e = U — b (x)|-

Algorithm 1: CFTL
input: K v,¢,0
S=10. // Training data set
h < hy. // Pick an arbitrary hg € H.
for7=0,1,2,--- do

Receive a new context xp € X.

[+ maX¢e{T—K,- , T—1} Yt — d(XT7 Xt) - 7.

u = minge(r_g,.. 713 Y + d(X7,%X¢) + 7.

Let I = [I,u]. // I is the set of all

consistent labels for xr
if h(x7) € I then

| yr = h(xr).
else if y7 < [ then
| yr =1
else
| yr =u
end

Observe yr for xy and S + S U {(xr,yr)}.
if T < N (e, 0) then

‘ h < PACy4(S)
end

end

Obviously p; > 0 for all ¢ > A (e, d). Note that if at time
step t, p = 0, then CFTL can follow h* thereafter. This is
because h* is fair, and by generating all future labels via h*,
CFTL remains (-, 1)-consistent. If not and p; > 0, then we
claim py41 — py > y—that is, the potential function shrinks
by a margin of at least v every round. Assuming this claim
holds, it is immediate that it takes CFTL at most % additional
instances (starting from ¢ = N(¢, d) + 1) to be able to follow
h*, finishing the proof for K = 1.

It only remains to establish the above claim for cases where
p¢ > 0. Suppose without loss of generality that §; > h*(x;)
(the analysis for the case of ; < h*(x;) is analogous). Three
cases are possible for h*(x441):

o N*(X¢41) € [Jr — d(xe, Xet1) =, Y +d(Xe, Xe11) +7]-

This means p; ;1 = 0.

o h*(X¢11) > Gt + d(x¢, X¢41) + 7. Re-write this as
R (Xe41) — G > d(Xe, Xe41) +
= h*(Xt+1) — h*(Xt) > d(Xt,Xt+1) + v

where the last line follows because g > h*(x;). This
is a contradiction with the fact that A* is O-fair. So this
case is impossible.

o h*(x¢41) < Ut — d(x¢, X¢41) — - In this case, we have
that g1 = ¥ — d(x¢,X¢41) — 7. i pr — pry1 <y (or
equivalently p;+1 > p: — ), we have that

Yea1 — W (Xeq1) > G — h¥ (%) — -
Plugging in §¢11 = §: — d(X¢, X¢41) — 7 we have
Y — d(xe,Xe41) =7 — h*(Xeq1) > G0 — B*(x¢) —
or equivalently

h* (Xt) — I’L* (Xt+1) > d(Xt,Xt+1) (4)



But (4) is a contradiction with the fact that A* is O-fair.
So it must be the case that p, 1 < p; — . This finishes
the proof.

Next, consider the case for i > 1. Define the potential
function ¢; as follows: ¢ = maxe—; k... + Ps. We claim
that g; decreases by a margin of at least v every K rounds.
Assumir}(g this claim holds, it is immediate that it takes CFTL
atmost = additional instances (starting from ¢ = N (e, §)+1)
to be able to follow h*.

It only remains to prove the above claim. CFTL chooses
Y41 so that it is y-relatively fair with respect to previous K
labels. So according to Proposition 1, we know this means
one of the following is the case:

® pri1=0;

e thereexistsi € {t,--- ,t—K+1} such that h*(x¢41) >

Ui + d(Xe11,%i) + 7

e or there exists j € {t,---,t — K + 1} such that

P* (x¢41) < §j — d(Xe41,%5) — -
For the latter two cases, following the argument we presented
above for K = 1, we obtain that there exists i € {¢,--- ,t —
K+ 1}suchthatpryy <p;—v < ¢ — 7. SO qry1 < ¢t
Repeating this for the next K contexts, we have that ¢, x <
a — .

The following example shows the bound is tight: Consider
the setting in Example 1. Any algorithm can be made to mis-
takenly predict yg (e.g. yo = 1, but the algorithm predicts
Yo = 0) with probability at least 0.5. It is easy to see that
in this case the algorithm is subsequently forced to predict
yp = y for the first K instances (t = 1,--- , K), §; = 2v
for the second K instances (t = K + 1,--- ,2K), and so on,
until predicting the true label is consistent with the previous
K decisions. Therefore, it takes any algorithm % additional
steps before it can follow h*. [ |

4 Extensions and Discussion

In this Section, we discuss some of the extensions and limita-
tions of our analysis.

Adjusting K and v over time Our analysis allows for K
and v to be adjusted over time. In particular, it is pos-
sible to make the sequence of generated labels gradually
more and more consistent as follows: Suppose at time 7' >
N(v,K,¢€,8), we wish to increase K to K’ > K and de-
crease 7y to v’ < . For the analysis to remain valid all we
need is that the last K’ predictions are v/-fair. This can be
satisfied by predicting the same label for x4, -+ , X7 K.
Continue with CFTL(y', K| ¢, 0) thereafter.

Alternative methods for label prediction Our analysis is
independent of how labels are predicted in the first NV (e, )
rounds. We chose to make prediction at each time step us-
ing the hypothesis that best models the data observed so far,
but any alternative label prediction method (e.g. standard on-
line learning algorithms) can replace this without affecting
the analysis for ¢ > N'(e,d). Also, instead of updating the
hypothesis every round, one may choose to update it peri-
odically with lower frequency (e.g. once every 100 new in-
stances).

Analysis for 0 < nn < v The only part of the analysis that
makes use of Assumption 1 with n = 0 is equation 4. If
0 < 1 < v a similar argument shows that the potential func-
tion p; decreases by a margin of at least (y—7) in each round,
making the sample complexity N (e, d) + % Note, how-
ever, that this bound is uninformative if n = v. If n > ~, H
is not (v, K)-CS-learnable, and there remains always a gap
between the accuracy of CFTL and h*. As we will see in
Section 5, in practice this gap is fairly small.

Classification Our analysis relies on the label set ) be-
ing a compact interval—as is the case in regression—but
the argument readily extends to binary classification as fol-
lows: As opposed to working directly with the actual labels
y; € Y = {0,1}, let z; specify the probability of x; being
positive. Note that z; € Z = [0, 1], so by replacing y;’s with
z;’s, the compactness is restored and the rest of the analysis
goes through without any modification. Note, however, that
similar to [Dwork e al., 2012] this only guarantees (-, K)-
consistency among probability distributions over labels, and
not among realized labels themselves.

To extend our work to multi-class classification, we pro-
pose two approaches. Suppose |V| = M. Let z; € A()) rep-
resent a probability distribution that specifies the probability
with which x; belongs to each of the M classes in ). The first
approach assigns a utility to each distribution and compares
them indirectly via their corresponding utilities; whereas the
second approach directly compares two distributions using a
distance metric defined over A()).

o Utility-based approach: Let u : A(Y) — R be a contin-
uous utility function that quantifies the degree of social
desirability of each distribution (e.g. u(z) = Zfil Zol
where u, is the utility of outcome o € ) and z, is its
probability under distribution z). Modify the definition
of relative fairness as follows:

lu(Z:) — u(z)] < d(xi,%x;5) +

And define the potential function as follows: p, =
|u(h*(x¢)) — u(Z:)|. The rest of the analysis closely fol-
lows the one presented in Section 3 and is omitted due
to space constraint.

e Distance metric between distributions: Let D be a dis-
tance metric defined over the space of probability distri-
butions on Y (e.g. D could be the L,,-norm). One can
modify the definition of relative fairness (Equation 1) as
follows:

D(2:,%) < d(xi,%;) +7
and subsequently change the definition of the potential
function to p, = D(h*(x:),2:). The complete analy-
sis of this approach requires further elaboration, and is
beyond the scope of this work.

5 Experiments

The theory presented in Sections 3, 4 is only applicable to
cases where Assumption 1 holds and 7 < «. In this Section,
we first illustrate the effect of guaranteeing Assumption 1 on
accuracy loss (measured in terms of Mean Squared Error).
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Figure 1: Regression on the Crime and Communities data set.

Second, for a setting in which the assumption is violated and
n > ~, we empirically evaluate the performance of our al-
gorithm in terms of accuracy loss, and compare it with the
unconstrained baseline.

Datasets We ran lasso regression on the normalized Crime
and Communities data set [Dheeru and Karra Taniskidou,
2017]. The data consists of 1994 observations each made
up of 122 predictive features, and it contains socio-economic,
law enforcement, and crime data from the 1995 FBI UCR.
Community type (e.g. urban vs. rural), average family in-
come, and the per capita number of police officers in the
community are a few examples of the variables included in
the dataset. The target variable is the “Per Capita Violent
Crimes”. The data has been normalized so that for both the
target variable and all the explanatory variables the range is
between 0 and 1. We replaced all missing values with O.
We also ran logistic regression on a classification data set—
the Adult Income data set [Dheeru and Karra Taniskidou,
2017]—and observed very similar trends.

Accuracy loss when Assumption 1 is enforced. In order
to guarantee Assumption 1 for a particular value of 7, we
optimized for accuracy subject to pairwise constraints of the
form:

Vivj: |g1_g]| SCXd(Xian)+na (5)
where c is a normalization parameter that adjusts the range of
the distance between any two instances. Figure 2 shows the
impact of ¢ and 7 on the percentage of increase in accuracy
loss. As expected, smaller values of ¢ and 7 result in greater
loss.

Accuracy loss when Assumption 1 does not hold. Next,
we empirically evaluate the performance of our algorithm
when Assumption 1 is violated, and compare its loss with
an unconstrained baseline that works as follows: At time T’
it outputs hp(x7) where hy = PACH({(xt,y:)}1mg). We
tested the baseline and CFTL both on a regression and a clas-
sification data set. For the regression task, we ran LASSO
with regularization coefficients A = 0.01. X\ was chosen by
performing a 10-fold cross validation on the entire data set.
We then used the same value of X at all time steps.

Figure 1 illustrates the performance of CFTL on the Crime
and Communities data set. We observe that for a fixed value
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Figure 2: Percentage of increase in MSE as the result of imposing
pairwise constraints for different values of ¢ and 7.

of v (i.e. v = 0.5), CFTL’s performance degrades as K in-
creases (see Figure 1a). Similarly, for a fixed value of K (i.e.
K = 10), CFTL’s performance degrades as 1/7 increases
(see Figure 1b). The rate of decay in accuracy is much faster
for 1/~ as opposed to K (see Figure 1c). As expected, the
baseline coincides with CFTL when K = 0 and when 7 is
sufficiently large (given the range of labels in this data set,
v = 1 suffices for this to be the case for any K). Impor-
tantly, for the particular sequence of instances, the baseline is
not (v, 1)-consistent unless v > 0.8. In summary, our simu-
lations indicate that the performance of CFTL is comparable
with that of the baseline even when v > 7, and consistency
does not considerably slow down learning.

6 Conclusion

In this work, we presented a natural model of fairness-aware
sequential decision making. We showed that imposing time-
dependant consistency constraints on the sequence of pre-
dicted labels does not significantly affect the speed of learn-
ing. Interesting directions for future work include, but are not
limited to:

e Alternative definitions of consistency: In order for
learning to be possible, any viable definition of time-
consistency has to limit the impact of decisions made in
distant past on future ones. We fulfilled this by taking K
to be finite. Other, more complicated modeling choices
(e.g. introducing a discount factor) are imaginable.



e Alternative definitions of fairness: Our focus in this
work was on preventing cases of disparate treatment
through “treating most recent similarly-situated individ-
uals similarly”. We leave the study of bounding other
notions of individual fairness (e.g. algorithmic inequal-
ity [Speicher et al., 2018]) among most recent observa-
tions as an open direction for future work.
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