
Neural Networks 21 (2008) 642–653

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

fruitfully
nerators
hythmic
rst cover
a special
systems
ots. The

ng of the
odes of
the pros
research

eserved.
2008 Special Issue

Central pattern generators for locomotion control in animals and robots:
A review
Auke Jan Ijspeert
School of Computer and Communication Sciences, EPFL - Ecole Polytechnique Fédérale de Lausanne, Station 14, 1015 Lausanne, Switzerland

a r t i c l e i n f o

Article history:
Received 24 March 2007
Received in revised form
7 March 2008
Accepted 7 March 2008

Keywords:
Central pattern generators
Locomotion
Robots
Computational models
Dynamical systems
Neural networks
Systems of coupled oscillators

a b s t r a c t

The problem of controlling locomotion is an area in which neuroscience and robotics can
interact. In this article, I will review research carried out on locomotor central pattern ge
(CPGs), i.e. neural circuits capable of producing coordinated patterns of high-dimensional r
output signals while receiving only simple, low-dimensional, input signals. The review will fi
neurobiological observations concerning locomotor CPGs and their numerical modelling, with
focus on vertebrates. It will then cover how CPG models implemented as neural networks or
of coupled oscillators can be used in robotics for controlling the locomotion of articulated rob
review also presents how robots can be used as scientific tools to obtain a better understandi
functioning of biological CPGs. Finally, various methods for designing CPGs to control specific m
locomotion will be briefly reviewed. In this process, I will discuss different types of CPGmodels,
and cons of using CPGswith robots, and the pros and cons of using robots as scientific tools. Open
topics both in biology and in robotics will also be discussed.

© 2008 Elsevier Ltd. All rights r
1. Introduction

The ability to efficiently move in complex environments is a
key property of animals. It is central to their survival, i.e. to avoid
predators, to look for food, and to findmates for reproduction. This
capital property of animals means that many aspects of animal’s
morphologies and central nervous systems have been shaped
by constraints related to locomotor skills. Similarly, providing
good locomotor skills to robots is of primary importance in order
to design robots that can carry out useful tasks in a variety
of environments. This relevance of locomotion both for biology
and for robotics has led to multiple interesting interactions
between the two fields. The interactions have mainly been in one
direction, with robotics taking inspiration from biology in terms of
morphologies, modes of locomotion, and/or control mechanisms.
In particular, many robot structures are directly inspired by animal
morphologies, from snake robots, quadruped robots, to humanoid
robots. Increasingly, robotics is now providing something back to
biology, with robots being used as scientific tools to test biological
hypotheses.

The focus of this article is on control aspects, in particular
rhythm generation by central pattern generators. Central pattern
generators (CPGs) are neural circuits found in both invertebrate
and vertebrate animals that can produce rhythmic patterns of
neural activity without receiving rhythmic inputs. The term
E-mail address: Auke.Ijspeert@epfl.ch.

0893-6080/$ – see front matter© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2008.03.014
central indicates that sensory feedback (from the peripheral
nervous system) is not needed for generating the rhythms. CPGs
underlie many fundamental rhythmic activities such as chewing,
breathing, and digesting. They are also fundamental building
blocks for the locomotor neural circuits both in invertebrate
and vertebrate animals. As will be discussed in this article,
they present several interesting properties including distributed
control, the ability to deal with redundancies, fast control loops,
and allowing modulation of locomotion by simple control signals.
These properties, when transferred tomathematical models, make
CPGs interesting building blocks for locomotion controllers in
robots.

The article is structured as follows. I will first make a brief
review of neurobiological findings concerning locomotor CPGs
(Section 2), and present some of the mathematical models of
biological CPGs that have been developed (Section 3). I will
then review different CPG models developed for robotics and
how they are being used for locomotion control (Section 4). In
Section 5, I will focus onmethodologies to design CPGmodels for a
particular task. Finally, Section 6will discuss a list of open research
topics. When relevant, some notions will be illustrated with
results from collaborators and myself. The review is not meant
to be exhaustive, and interesting related reviews exist on the
organization of animal locomotor systems (Bizzi, Tresch, Saltiel, &
d’Avella, 2000; Dickinson et al., 2000; Grillner, 2006; Loeb, 2001),
and themodelling of animal locomotion (Full & Koditscheck, 1999;
Holmes, Full, Koditschek, & Guckenheimer, 2006). Also interesting
collections of articles on biologically inspired robot locomotion can
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2 Stimulations are typically pulses of electric current. The level of stimulation
can be changed by changing either the frequency of the pulses or their current.
Increasing one or the other has usually the same effect.

3 Note that CPGs can also accommodate more complex control signals, e.g. for
the control of balance and visually-guided feet placement. This will be discussed
be found in Ayers, Davis, and Rudolph (2002), Beer, Chiel, Quinn,
and Ritzmann (1998), Beer, Ritzmann, and McKenna (1993) and
Kimura, Tsuchiya, Ishiguro, and Witte (2005).

2. Neurobiology of CPGs

Central pattern generators (CPGs) are neural networks capable
of producing coordinated patterns of rhythmic activity without
any rhythmic inputs from sensory feedback or from higher control
centers. As reviewed in Delcomyn (1980), they underlie many
rhythmic behaviors both in invertebrate and vertebrate animals. At
the beginning of the last century, two different explanations were
proposed for the creation of the rhythms underlying locomotion,
see the discussion by Brown (1911). One explanation defended
by C.S. Sherrington was that rhythms are the result of a chain
of reflexes in which sensory feedback plays an important role
in triggering switches between different parts of a locomotor
cycle. The other explanation proposed by T.G. Brown was that
rhythms were generated centrally, i.e. by neural networks that
do not require input from the periphery (e.g. sensory neurons)
for generating cyclic behavior. T.G. Brown for instance proposed
a conceptual model called the half-center model in which two
populations of neurons that are mutually coupled with inhibitory
connections and that possess a fatigue mechanism produce
alternating rhythmic activity (Brown, 1914).

There is now very clear evidence that rhythms are generated
centrally without requiring sensory information. For instance, one
can extract and isolate from the body the spinal cord of the
lamprey (a primitive fish), and it will produce patterns of activity,
called fictive locomotion, that are very similar to intact locomotion
whenactivatedby simple electrical or chemical stimulation (Cohen
& Wallen, 1980; Grillner, 1985). Similar fictive locomotion has
been reported in salamander (Delvolvé, Branchereau, Dubuc, &
Cabelguen, 1999) and frog embryos (Soffe & Roberts, 1982).
More generally CPGs have now been reported in many other
animals, see Stein, Grillner, Selverston, and Stuart (1997) for a
good review.

Similar experiments have also shown that CPGs are distributed
networks made of multiple coupled oscillatory centers. Lamprey
spinal cords have approx 100 segments, and small sections of the
spinal cord (e.g. 1–2 segments) are capable of producing rhythmic
activity. The same has been observed in salamanders (Delvolvé
et al., 1999). This is in agreement with Grillner’s proposition
that CPGs are organized as coupled unit-burst elements with at
least one unit per articulation (i.e. per degree of freedom) in
the body (Grillner, 1985). Cheng et al. (1998) report experiments
where these units can be divided even further with independent
oscillatory centers for flexor and extensor muscles.1

While sensory feedback is not needed for generating the
rhythms, it plays a very important role in shaping the rhythmic pat-
terns. This is fundamental for keeping CPGs and body movements
coordinated. Several experiments demonstrate the important in-
fluence of sensory feedback on CPG activity. Mechanically moving
the tail of the lamprey will for instance induce CPG activity that
is frequency-locked with the frequency of the mechanical move-
ments, and this over a quite large frequency range (McClellan &
Jang, 1993; Viana Di Prisco,Wallén, & Grillner, 1990;Williams, Sig-
vardt, Kopell, Ermentrout, & Rempler, 1990). Similarly, a mechan-
ically driven treadmill can induce a normally looking walking gait
1 Note that, when there is extensive inter-oscillator coupling, the distinction of
one oscillatory center from another is not always clear. The lamprey swimming
CPG has for instance been modelled as a continuum (Wadden, Hellgren, Lansner,
& Grillner, 1997) rather than distinct oscillatory centers that are coupled together.
in a decerebrated cat (Rossignol, 2000), and even induce gait tran-
sitions to trot and gallopwhen the treadmill is accelerated (unpub-
lished work by Graham Brown, as described in Armstrong (1988)).
These experiments showa tight coupling betweenCPGand sensory
feedback. This coupling is also visible in the fact that many reflexes
are phase-dependent, i.e. they have different effects depending on
the timingwithin a locomotor cycle (Pearson, 1995; Pearson&Gor-
don, 2000; Rossignol, Dubuc, & Gossard, 2006). This is due to the
fact that CPGs and reflex pathways often share interneurons (Pear-
son, 1995). See Rossignol et al. (2006) for an in-depth review of the
interaction of CPGs and sensory feedback mechanisms.

Interestingly, simple signals are usually sufficient to induce ac-
tivity in CPGs, as shown by the fictive locomotion experiments
mentioned above. In many vertebrate animals, electrical stimula-
tion of a specific region in the brain stem called Mesencephalic Lo-
comotor Region (MLR) will induce locomotor behavior (Grillner,
Georgopoulos, & Jordan, 1997). The MLR is an important locomo-
tor region that has descending pathways to the spinal cord via the
reticular formations. Typically low-level stimulation2 leads to slow
(low frequency) movements, and high-level stimulation to faster
(higher frequency) movements. The level of stimulation can there-
fore modulate the speed of locomotion. Interestingly, MLR stimu-
lation also induces automatic gait transition: in a decerebrated cat,
increasing the stimulation leads to switches from walk to trot to
gallop (Shik, Severin, & Orlovsky, 1966); in a decerebrated sala-
mander increasing the stimulation leads to a switch from walk
to swimming (Cabelguen, Bourcier-Lucas, & Dubuc, 2003). Simi-
lar gait transitions have been reported in other vertebrates (Grill-
ner et al., 1997). This demonstrates that CPGs are sophisticated
circuits that can generate complex locomotor behaviors and even
switch between very different gaits while receiving only simple in-
put signals.3 From a control point of view, CPGs therefore imple-
ment some kind of internal model that ‘‘knows’’ which command
signals need to be rhythmically produced to obtain a given speed
of locomotion.

In the lamprey, the direction of locomotion can, similarly to
velocity, be modulated by simple variations of the stimulation
applied to the MLR. Applying an asymmetric stimulation between
the left and right MLRs leads to turning (Sirota, Viana Di Prisco, &
Dubuc, 2000). This is in agreement with recordings in the reticular
region during intact swimming in lampreywhich shows significant
higher activity of reticular neurons on one side, when the lamprey
bends to the same side (Deliagina, Zelenin, Fagerstedt, Grillner, &
Orlovsky, 2000).

To summarize, the (vertebrate) locomotor system is organized
such that the spinal CPGs are responsible for producing the basic
rhythmic patterns, and that higher-level centers (themotor cortex,
cerebellum, and basal ganglia) are responsible for modulating
these patterns according to environmental conditions. Such a
distributed organization presents several interesting features: (i)
It reduces time delays in the motor control loop (rhythms are
coordinated with mechanical movements using short feedback
loops through the spinal cord). (ii) It dramatically reduces the
dimensionality of the descending control signals. Indeed the
control signals in general do not need to specify muscle activity4
further in Section 6.
4 Mammals typically have more than 200 skeletal muscles, each composed on

average of around one million muscle fibers, which would therefore require a huge
number of different control pathways. Note that direct, e.g. cortico-spinal, pathways
exist from the motor cortex to spinal motoneurons but only in some species for
controlling some specific groups of muscles, for instance handmuscles in primates.
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but only modulate CPG activity. (iii) It therefore significantly
reduces the necessary bandwidth between the higher-level centers
and the spinal cord.5

3. Neurobiological models of CPGs

In this section, I will review different types of mathematical
models that have been developed to study biological CPGs, as well
as the types of animal locomotion that have been modelled.

3.1. Different levels

Depending on the phenomena under study, CPG models have
been designed at several levels of abstraction from detailed
biophysical models, to connectionist models, to abstract systems
of coupled oscillators. In some cases, the CPG models have been
coupled to biomechanical simulation of a body, in which case they
are called neuromechanical models.

Detailed biophysical models are constructed based on the
Hodgkin–Huxley type of neuron models. That is, neuron models
that compute how ion pumps and ion channels influence
membrane potentials and the generation of action potentials.
Examples of such CPG models include Hellgren, Grillner, and
Lansner (1992) and Traven et al. (1993). Most biophysical models
investigate the problem of rhythmogenesis, i.e. generation of
rhythmic activity, in small neural circuits (Traven et al., 1993).
In some cases, the pacemaker properties of single neurons are
investigated. While most models concentrate on the detailed
dynamics of small circuits, some models address the dynamics
of larger populations of neurons, for instance the generation of
travellingwaves in the complete lamprey swimmingCPG (Hellgren
et al., 1992; Wadden et al., 1997).

Connectionist models use simplified neuron models such as
leaky-integrator neurons or integrate-and-fire neurons (Buchanan,
1992; Ekeberg, 1993; Williams, 1992a, 1992b). The focus of
these models is on how rhythmic activity is generated by
network properties (e.g. half-center networks), and how different
oscillatory neural circuits get synchronized via interneuron
connections (e.g. for intra- or inter-limb coordination).

Oscillator models are based on mathematical models of cou-
pled nonlinear oscillators to study population dynamics (Cohen,
Holmes, & Rand, 1982; Collins & Richmond, 1994; Ijspeert, Crespi,
Ryczko, & Cabelguen, 2007; Kopell, Ermentrout, & Williams, 1991;
Matsuoka, 1987; Schoner, Jiang, & Kelso, 1990). In this case, an os-
cillator represents the activity of a complete oscillatory center (in-
stead of a single neuron or a small circuit). The purpose of these
models is not to explain rhythmogenesis (oscillatory mechanisms
are assumed to exist) but to study how inter-oscillator couplings
and differences of intrinsic frequencies affect the synchronization
and the phase lags within a population of oscillatory centers. The
motivation for this type of modelling comes from the fact that
the dynamics of populations of oscillatory centers depend mainly
on the type and topology of couplings rather than on the local
mechanisms of rhythm generation, something that is well estab-
lished in dynamical systems theory (Golubitsky & Stewart, 2002;
Kuramoto, 2003).6 See for instance the study by Collins and Rich-
mond (1994) which obtains the same gait transitions in a given
5 To illustrate the importance and general role played by spinal cord, G.E. Loeb
proposes the nice analogy to a marionette puppet, in which the puppeteer (the
brain) has to control the puppet, a highly-redundant system, byusing a limited set of
strings (the descending commands sent to the spinal cord circuits), see Loeb (2001).

6 This importance of the topology also means that, for robotic applications, there
is not much to gain from using too complicated oscillators as building blocks of a
CPG model. See a discussion in Buchli, Righetti, and Ijspeert (2006).
network topology with three different types of oscillators (van der
Pol, Stein, and FitzHugh–Nagumo). Other extensively used oscil-
lators include phase oscillators (Buchli & Ijspeert, 2004a; Cohen
et al., 1982; Kopell et al., 1991; Schoner et al., 1990) and Matsuoka
oscillators (Kimura, Akiyama, & Sakurama, 1999; Matsuoka, 1985;
Taga, Yamaguchi, & Shimizu, 1991). Most of the oscillators have a
fixed waveform for a given frequency, but in Righetti and Ijspeert
(2006a) we developed a simple oscillator model that allows one to
independently adjust the durations of the ascending and descend-
ing phases in the cycle (this is useful to independently adjust swing
and stance phases, for instance). In some cases, closed-form solu-
tions or specific regimes (e.g. phase-locked regimes) can be analyt-
ically derived (Cohen et al., 1982; Kopell, 1995), but most systems
are solved using numerical integration.

Several neuromechanical models have been developed (Eke-
berg, 1993; Ijspeert, 2001; Ijspeert, Crespi, & Cabelguen, 2005;
Ijspeert, Hallam, & Willshaw, 1999; Taga et al., 1991; Williams,
1991). The addition of a biomechanical model of the body (and its
interaction with the environment) offers the possibility to study
the effect of sensory feedback on the CPG activity. Important phe-
nomena such as mechanical entrainment can thus be studied. The
pros and cons of using a biomechanical model versus a real robot
will be discussed in Section 4.2.

3.2. Different animal models

Models of CPGs have mainly been made of insects and lower
vertebrates. The vertebrate animal that has been most modelled is
the lamprey, a primitive eel-like fish. It has been modelled with all
the several types of models described above: biophysical (Ekeberg
et al., 1991; Grillner, Wallén, & Brodin, 1991; Hellgren et al., 1992;
Traven et al., 1993;Wadden et al., 1997), connectionist (Buchanan,
1992; Ekeberg, 1993; Ijspeert et al., 1999; Jung, Kiemel, & Cohen,
1996;Williams, 1992a, 1992b; Zhaoping, Lewis, & Scarpetta, 2004),
system of coupled oscillators (Cohen et al., 1982; Kopell et al.,
1991; Nishii, Uno, & Suzuki, 1994; Seo & Slotine, 2007; Sigvardt
& Williams, 1996; Williams et al., 1990), and neuromechanical
simulation (Ekeberg, 1993; Ijspeert et al., 1999; Williams, 1991).
In the next section, we will also review work on CPG models in
lamprey-like robots. These CPG models have been instrumental
in validating conceptual models of the lamprey CPG, and in
suggesting new experiments. In particular, the models have
helped in clarifying different possible mechanisms which could
explain the travelling waves of body undulations, i.e. the fact that
segmental oscillatory networks in the lamprey oscillate with a
positive phase lag between neighbor segments from head to tail,
and that the phase lag between head and tail is usually maintained
at a 100% of cycle duration even if the cycle duration is changed.
Three possible mechanisms have been proposed: asymmetric
coupling, different intrinsic frequencies along the spinal cord, and
time delays due to axonal and synaptic conduction. The models
have provided good evidence that the most likely explanation
is asymmetric coupling, see Grillner et al. (1995), Sigvardt and
Williams (1996) andWilliams et al. (1990) for discussions. Another
fish whose CPG has been modelled includes zebra fish (Kuo &
Eliasmith, 2004).

The salamander, an amphibian capable of swimming and
walking, offers an interesting link between research on the
lamprey and research on tetrapods. Different models related to
salamander locomotion have been developed (Bem, Cabelguen,
Ekeberg, & Grillner, 2003; Ermentrout & Kopell, 1994; Ijspeert,
2001; Ijspeert et al., 2005, 2007; Seo & Slotine, 2007). Our
latest model (Ijspeert et al., 2007) explores how a lamprey-like
swimming circuit can be extended to control both swimming
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Fig. 1. Salamander CPG model tested with a amphibious salamander-like robot
(Ijspeert et al., 2007). The model is composed of 20 amplitude-controlled phase
oscillators. The oscillators receive a drive d signal representing the descending
stimulation from the Mesencephalic Locomotor Region (MLR) in the brain stem.
The outputs of the CPG are desired joint angle positions ϕi that are used by a
Proportional-Derivative (PD) feedback controller (Vi are the voltages applied to the
motors and ϕ̃i are the actual joint angles measured from incremental encoders). For
details see the text and (Ijspeert et al., 2007).

and walking, and provides potential mechanisms explaining the
automatic transition from walking to swimming by modulating
the electrical stimulation of the MLR (Figs. 1 and 2). The central
idea behind the model is that salamander bi-modal locomotion
can be explained by adding limb oscillatory centers with lower
intrinsic frequencies and lower saturation frequencies to a lamprey
swimming circuit. The model provides a potential explanation
of (i) how the body undulations switch between standing waves
during walking and travelling waves during swimming, (ii) why
salamanderswalk at low frequencies and swimat high frequencies,
and (iii) why there is a rapid increase of frequencies as soon at
the animal switches to swimming. Another amphibian that has
been modelled is the frog embryo (Roberts & Tunstall, 1990; Wolf
& Roberts, 1995). More generally other animals whose locomotor
CPGs have been numerically modelled include the leech (Lockery
& Sejnowski, 1993), the cockroach (Ghigliazza & Holmes, 2004;
Ritzmann, Quinn, & Fischer, 2004) and the cat (Ekeberg & Pearson,
2005; Ito, Yuasa, Luo, Ito, & Yanagihara, 1998; Kaske, Winberg, &
Cöster, 2003; Pribe, Grossberg, & Cohen, 1997; Rybak, Shevtsova,
Lafreniere-Roula, & McCrea, 2006; Rybak, Stecina, Shevtsova, &
McCrea, 2006; Yakovenko, McCrea, Stecina, & Prochazka, 2005).
Other related models are models that focus on quadruped gait
transitions at a more abstract level (Buchli & Ijspeert, 2004a;
Buono, 2001; Buono & Golubitsky, 2001; Canavier et al., 1997;
Collins & Richmond, 1994; Golubitsky, Stewart, Buono, & Collins,
1999; Kaske et al., 2003; Pribe et al., 1997; Schoner et al., 1990;
Schoner & Kelso, 1988).

For all these studies, the numerical models have proven to be
very useful tools to test hypotheses concerning the functioning of
CPGs. Since rhythm generation and locomotion are intrinsically
dynamical phenomena, numerical simulations allow one to test
whether a conceptual model of a locomotor circuit can actually
reproduce recorded animal locomotor patterns, and to explore
what needs to be modified in case the match to biological
data is poor. Numerical models are also useful to suggest new
experiments and predict their outcomes. Examples of experiments
whose outcomes were predicted by a model include (1) the
effect of mechanically moving the tail of the lamprey on the CPG
rhythms (Williams et al., 1990), (2) the effect of manipulating
Fig. 2. Gait transition from walking to swimming with the salamander CPG
model (Ijspeert et al., 2007). (A) output signals from the left body CPG oscillators
(oscillators on the right side are exactly in anti-phase). The numbering corresponds
to that of Fig. 1. Units are in radians (scale bar on the top right). The red
lines illustrate the transition from standing waves (with synchrony in the trunk,
synchrony in the tail, and an anti-phase relation between the two) to travelling
waves. (B) output signals from the left limb CPG oscillators. Ipsilateral fore and
hindlimbs are in anti-phase. (C) Instantaneous frequencies measured as in cycles/s.
(D) Linear increase of the drive signal applied to all oscillators. The horizontal red
lines correspond to the lower and upper oscillation thresholds for limb and body
oscillators in arbitrary drive units. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.).

intrinsic frequencies of the lamprey CPG by baths of different
concentrations (Sigvardt & Williams, 1996), and (3) the effect of
transecting inter-CPG couplings on the oscillation frequencies of
body and limb CPGs in the salamander (Ijspeert et al., 2007).

4. CPGs in robotics

In this section, I will now review how CPG models have been
used to control the locomotion of robots. The first part of this
sectionwill be devoted to CPGmodels as a new control technology,
while the second part will focus on how robots can be used as
scientific tools for testing hypotheses on biological CPGs, and the
pros and cons of such an approach.

4.1. CPGs for robot locomotion

As illustrated by Fig. 3, CPG models are increasingly used in
the robotics community. The types of CPG models implemented
in robots include connectionist models (Arena, 2000; Lu, Ma, Li,
& Wang, 2005), vector maps (Okada, Tatani, & Nakamura, 2002),
and systems of coupled oscillators (Crespi & Ijspeert, 2006; Ijspeert
et al., 2007; Kimura et al., 1999; Williamson, 1998). In some
rare cases spiking neural network models have been used (Lewis,
Tenore, & Etienne-Cummings, 2005). Virtually all implementations
involve sets of coupled differential equations that are numerically
integrated (on a microcontroller or a processor). Probably the only
exceptions are CPGs that are directly realized in hardware, i.e. on a
chip (DeWeerth, Patel, Simoni, Schimmel, & Calabrese, 1997; Lewis
et al., 2005; Nakada, Asai, & Amemiya, 2003; Simoni & DeWeerth,
2007) or with analog electronics (Still & Tilden, 1998). Also to
some extent related to CPG research are quasi-periodic motions
generated by chaotic maps (Kuniyoshi & Suzuki, 2004).

Models of CPGs have been used to control a variety of different
types of robots and different modes of locomotion. For instance
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7 Note however, that too smooth/slow changes might not be adequate when
rapid responses are required, e.g. for producing a corrective step to keep balance
after a perturbation. Such fast movements require reflex-like responses that act in
addition to the CPGs.
Fig. 3. Number of articles per year whose abstract contains the terms ‘‘robot’’ and
‘‘central pattern generator ORCPG’’ in the IEEE Explore database, from1990 to 2006.

CPG models have been used with hexapod and octopod robots
inspired by insect locomotion (Arena, Fortuna, Frasca, & Sicurella,
2004; Inagaki, Yuasa, & Arai, 2003; Inagaki, Yuasa, Suzuki, & Arai,
2006; Klaassen, Linnemann, Spenneberg, & Kirchner, 2002). See
also Delcomyn (1999) for a summary of aspects of locomotor
control in insects that are useful for controlling hexapod robots.
Related work in simulation was realized by Randall Beer and his
colleagues in the early 1990s (Beer, Chiel, Quinn, Espenshied, &
Larsson, 1992; Beer & Gallagher, 1992). The work of Holk Cruse
on the Stick insect is also relevant here to show that reflexive
controllers (i.e. based on reflexes without CPGs) can also lead to
robust insect locomotion (Cruse et al., 1995).

CPGs have also been used for controlling swimming robots.
Examples include anguilliform swimming of lamprey/eel robots
(Arena, 2001; Crespi & Ijspeert, 2008; Ijspeert & Crespi, 2007;
Stefanini, Orlandi, Menciassi, Ravier, Spina, & Grillner, 2006;
Wilbur, Vorus, Cao, & Currie, 2002). Anguilliform swimming
implies that forward motion is obtained by a travelling undulation
of the elongated body from head to tail. The CPG models are
usually inspired by the lamprey swimming circuit (see also the
next section), and have been implemented using finite-state
machines (Wilbur et al., 2002), cellular networks (Arena, 2001),
and systemsof coupled oscillators (Ijspeert &Crespi, 2007). Related
to lamprey/eel robots, terrestrial snake robots have also been
driven by CPG models (Conradt & Varshavskaya, 2003; Ijspeert &
Crespi, 2007; Inoue, Ma, & Jin, 2004; Lu, Ma, Li, & Wang, 2006;
Tsakiris, Sfakiotakis, Menciassi, La Spina, & Dario, 2005). Other
types of swimming have been less studiedwith CPGs. One example
is a CPG for ostraciform swimming that we implemented as a
system of coupled oscillators in a box-fish-like robot (Lachat,
Crespi, & Ijspeert, 2006). See also Zhao, Yu, Fang, andWang (2006)
for a similar approach.

Quadruped walking control using CPGs has been extensively
explored by Hiroshi Kimura and his colleagues (Fukuoka, Kimura,
& Cohen, 2003; Kimura et al., 1999; Kimura, Fukuoka, & Cohen,
2007). Among other things, they have explored different means of
integrating sensory feedback in the locomotion control and found
that sensory feedback that modulates CPG activity tends to lead
to the most stable locomotion in complex terrain (as opposed to
feedback that is independent of the CPG activity). Other work on
CPGs in quadruped robots can be found in Billard and Ijspeert
(2000), Brambilla, Buchli, and Ijspeert (2006), Buchli, Iida, and
Ijspeert (2006), Manoonpong, Pasemann, and Roth (2007), Tsujita,
Toui, and Tsuchiya (2004), Tsujita, Tsuchiya, and Onat (2001a)
and Tsujita, Tsuchiya, and Onat (2001b). We also developed a
salamander robot to study the transition between (anguilliform)
swimming and walking (Ijspeert et al., 2007), this work will be
further described in the next section.
Models of CPG are also increasingly used for the control of
biped locomotion in humanoid robots, often inspired by Gentaro
Taga’s seminal work on neuromechanical simulations (Taga, 1998;
Taga et al., 1991). Examples of CPG-controlled biped locomotion
include Aoi and Tsuchiya (2005), Aoi and Tsuchiya (2006), Endo,
Nakanishi, Morimoto, and Cheng (2005), Héliot and Espiau (2008),
Komatsu and Usui (2005), Matsubara, Morimoto, Nakanishi, Sato,
and Doya (2006), Miyakoshi, Taga, Kuniyoshi, and Nagakubo
(1998), Morimoto, Endo, Nakanishi, Hyon, Cheng, and Bentivegna
(2006), Nakanishi et al. (2004), Righetti and Ijspeert (2006b) and
Shan and Nagashima (2002). Note that interesting biologically
inspired locomotion controllers for biped locomotion can also be
constructed based on reflexes rather than on CPGs (Collins, Ruina,
Tedrake, & Wisse, 2005; Geng, Porr, & Wörgötter, 2006; Geyer,
Seyfarth, & Blickhan, 2003).

There are several interesting properties that make CPG models
useful for the control of locomotion in robots as an alternative
to methods based on finite-state machines, sine-generators, pre-
recorded reference trajectories, e.g. ZMP-based (Vukobratovic
& Borovac, 2004), or heuristic control laws, e.g. Virtual Model
control (Pratt, Chew, Torres, Dilworth, & Pratt, 2001). I identified
at least five interesting properties: (i) The purpose of CPG models
is to exhibit limit cycle behavior, i.e. to produce stable rhythmic
patterns. When this is the case, the system rapidly returns to
its normal rhythmic behavior after transient perturbations of
the state variables. See an example in Fig. 4. This provides
robustness against perturbations. (ii) CPGs are well suited for
distributed implementation, which might be interesting for
modular robots, i.e. see snake robot (Conradt & Varshavskaya,
2003) and reconfigurable robots (Kamimura et al., 2003, 2004;
Marbach & Ijspeert, 2005). (iii) CPG models typically have a few
control parameters (e.g. drive signals) that allow modulation of
the locomotion, for instance the speed and direction or even the
type of gait (Ijspeert et al., 2007). A properly implemented CPG
model therefore reduces the dimensionality of the control problem
such that higher-level controllers (or learning algorithms) do not
need to directly produce multidimensional motor commands but
only higher-level control signals. As discussed in Section 2, this
is one of the most interesting features of biological CPGs. Related
to this, CPG models typically produce smooth modulations of
the produced trajectories even when the control parameters are
abruptly changed (because the differential equations typically
act as first or second order filters). See an example in Fig. 5.
This property is useful for doing online trajectory generation
that avoids possible damage in motors and gearboxes due to
abrupt changes of motor commands.7 (iv) CPGs are ideally suited
to integrate sensory feedback signals (which can be added as
coupling terms in the differential equations). This provides the
opportunity to obtain mutual entrainment between the CPG and
the mechanical body (Kimura et al., 1999; Taga, 1998; Taga et al.,
1991; Verdaasdonk, Koopman, & van der Helm, 2006). (v) CPG
models usually offer a good substrate for learning and optimization
algorithms. This will be further discussed in Section 5.

CPG-based approaches also present disadvantages/challenges.
I see two main challenges to be overcome: First a sound design
methodology is yetmissing for designing CPGs to solve a particular
locomotor problem. We will come back to this in Section 5. A
second, related, challenge is that a solid theoretical foundation for
describing CPGs is yet missing. For instance, it is very difficult to
prove the stability of the complete CPG-robot system.
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Fig. 4. Limit cycle behavior of an energy-controlled nonlinear oscillator (Ijspeert et al., 2005). The oscillator is governed by the following differential equations τ v̇ =

−α x2+v2−E
E v − x and τ ẋ = v, where τ , α, and E are positive constants. Left: phase plot of the time evolution of the nonlinear oscillator with different random initial

conditions. Right: particular example of the time evolution of two state variables x and v.
Fig. 5. Smooth changes of locomotor patterns when changing the parameters of
a swimming CPG constructed as a chain of coupled amplitude-controlled phase
oscillators, see Ijspeert and Crespi (2007). Top: setpoint signals, Bottom: control
parameters. Initial parameters are left and right amplitudes AL = AR = 1, frequency
ν = 1 Hz and phase bias N · ∆φ = 1. At t = 4s, the frequency is temporarily
changed to 2.0 Hz, at t = 8 s, amplitudes AL and AR are temporarily changed to 0.5
and 1.5 respectively which leads to a negative offset of the setpoint oscillations. At
t = 12 s, the phase bias N · ∆φ is temporarily set to −1.0 which leads to a reversal
of the direction of the travelling wave. At t = 16 s, AL and AR are changed to 0.5
which leads to reduced amplitude in the oscillations.

4.2. Robots for neurobiological research

While most interactions between biology and robotics are
mainly in one direction, with robotics benefiting from biological
inspiration, an increasing number of projects try to provide
something back, i.e. to specifically use robots as scientific tools
to test biological models. Here I will present a few illustrative
examples, and then discuss the pros and cons of using robots
for neurobiological research. Part of this discussion comes
from Ijspeert et al. (2005). For a more general discussion of the
topic of using robots in biological research seeWebb (2001, 2002).

Projects which contribute to test hypotheses concerning CPGs
using robots include the lobster robot project (Ayers & Crisman,
1993; Ayers &Witting, 2007), the lamprey robot projects (Stefanini
et al., 2006; Wilbur et al., 2002), the Polychaete-like undulatory
robot (La Spina, Sfakiotakis, Tsakiris, Menciassi, & Dario, 2007;
Tsakiris et al., 2005), to name a few. Other projects that are not
directly related to CPGs but also use robots to test hypotheses
about animal locomotion include Altendorfer et al. (2001), Long,
Schumacher, Livingston, and Kemp (2006) and Ritzmann et al.
(2004).

In our own work on CPG models of salamander locomo-
tion (Ijspeert et al., 2007), the robot was very useful for validat-
ing various aspects of the mathematical model. In particular, the
robot allowed us (i) to show that our CPG model can generate for-
ward motion with variable speed and heading (i.e., aspects that
need a ‘‘body’’ for validation and cannot be studied at a neuronal
level alone), and (ii) to qualitatively compare the gaits generated to
those of the real salamander. It also allowed us to demonstrate that
the coordination between body undulation and limb movements
during walking allows the salamander to optimize its walking ve-
locity. In the future, we plan to use the robot to test the hypothesis
that sensory feedback plays a role in explaining the transition from
travelling waves (in water) to standing waves (on ground) in body
undulations. See Ijspeert et al. (2005) for preliminary tests in sim-
ulation.

An interesting aspect of using robots in computational neuro-
science is that they allow computational models to be tested as
they are coupled to a real body and embedded in a real environ-
ment. In particular, this means that models can be tested within
a complete sensing to acting loop. This is important since some
aspects of locomotion might depend critically on the interaction
with the environment. For instance, the potential role of interac-
tion forces and sensory feedback in gait transitions discussed above
for the salamander CPGwould be difficult to study in isolated neu-
ral network models.

Dynamic simulators can be used to simulate the physics of
the body and the environment, but one should realize they only
provide a first approximation. Some interaction forces such as
contact forces, frictional forces, and hydrodynamic forces are
extremely difficult to simulate correctly, especially for articulated
bodies that move and change shape. Using a robot means that the
physical laws do not need to be simulated, and reduces the risk of
numerical artifacts. In our case, the amphibious salamander robot
was a key tool for testing swimming gaits, and for validating the
simulation results. The same holds for perception: the use of real
sensors (e.g. cameras, etc.) in a real environment eliminates the
need to simulate the richness (in terms of noise, variations, energy
spectrum, etc.) of sensory inputs due to the real world.

Another interesting aspect of using robots, is that they allowone
to evaluate a computational model by comparing its results with
biological data at multiple levels: from neuronal activity, to EMG
recordings, to kinematic studies, and up to behavioral studies.
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Finally, using robots forces one to aim at a comprehensive
understanding of the functioning of a system. Failure is very visible
with a robot (e.g. it will fall over, get stuck, etc.), and all the
components of the control system have to be in place for the
robot to work properly. For example, in the case of locomotion
this requires correctly solving the problems of rhythm generation,
coordination between degrees of freedom, control of balance,
and modulation of speed and direction. This requirement to be
comprehensive reduces the risks of wrongly assuming that some
key computation is performed by another component than the one
under study.

One should however not underestimate the difficulties in using
robots for computational neuroscience. First of all, it is very
difficult, if not impossible, to correctly replicate the biomechanical
properties of animal bodies, in particular their numbers of
degrees of freedom, their mass distribution, and their visco-
elastic properties. The benefits of not needing to simulate the
physics is therefore counterbalanced by the fact that the robot
might present an intrinsic dynamicswhich is significantly different
from that of the modelled animal. Similarly, while some sensor
modalities can correctly approximate biological ones, like vision
and sound processing, others, like touch and proprioception,
are yet far from being correctly replicated by current sensor
technologies. Compared to simulations, robots present several
additional constraints including (1) being less adjustable (i.e. only
few parameters/quantities can be easily changed, most require
designing and constructing a new robot), (2) requiring a large
overhead for construction and maintenance, and (3) being less
amenable to extensive experiments.

5. Design methodologies for CPGs

We have so far reviewed different CPG models used in
neurobiology and in robotics, but we have not yet discussed how
these models are created. Here I will briefly review what needs to
be designed as well as different methodologies for designing CPGs
to control a particular type of locomotion. As mentioned above,
there is not yet a well-established designmethod, and people have
explored different approaches including hand-coding, designs
based on dynamical systems theory, and learning/optimization
algorithms. This is related to the fact that a sound methodology
does not exist yet for learning arbitrary limit cycles in dynamical
systems, see a discussion in Buchli et al. (2006).

When constructing a CPGmodel, one has to define the following
items: (1) The general architecture of the CPG. This includes the
type and number of oscillators or neurons. In a robot, it also
involves choosing between position control (i.e. the outputs of the
CPG are the desired joint angles provided to a feedback controller)
or torque control (i.e. the outputs of the CPG directly control the
torque produced by the motors). (2) The type and topology of
couplings. Thesewill determine the conditions for synchronization
between oscillators and the resulting gaits, i.e the stable phase
relations between oscillators. (3) The waveforms. These will
determine what trajectories will actually be performed by each
joint angle during a cycle. The waveforms are clearly dependent
on the shape of the limit cycle produced by the chosen (neural)
oscillator, but can be transformed by the addition of filters. (4) The
effect of input signals, i.e. how control parameters can modulate
important quantities such as the frequency, amplitude, phase
lags (for gait transition), or waveforms (e.g. for independently
adjusting swing and stance phases). (5) The effect of feedback
signals, i.e. how feedback from the body will affect the activity of
the CPG (for instance accelerating or decelerating it depending on
environmental conditions). A major difficulty in designing CPGs is
that these five design axes are all strongly interconnected.
The theory of dynamical systems canhelp in designingCPGs. For
instance, the theory can help in identifying when synchronization
occurs in a system of coupled oscillators depending on parameters
such as coupling weights and intrinsic frequencies (Buchli et al.,
2006; Cohen et al., 1982; Ermentrout & Kopell, 1991; Golubitsky
& Stewart, 2002; Kopell, 1995; Pham & Slotine, 2007; Pikovsky,
Rosenblum, & Kurths, 2001; Schoner et al., 1990; Seo & Slotine,
2007; Stan & Sepulchre, 2007;Wang & Slotine, 2005). In particular,
it can determine which phase differences are stable and unstable,
and this knowledge can be used to design systems of coupled
oscillators that evolve towards specific phase-locked regimes (e.g
specific gaits). Symmetry considerations are particularly useful
to determine the number of oscillators and the topology of the
couplings necessary to obtain particular gaits (Buono, 2001; Buono
& Golubitsky, 2001; Golubitsky & Stewart, 2002; Golubitsky et al.,
1999; Pham & Slotine, 2007; Righetti & Ijspeert, 2008; Schoner
et al., 1990).

Learning and optimization algorithms can be used in differ-
ent ways. The approaches can be split into two categories: su-
pervised learning and unsupervised learning. Supervised learning
techniques can be applied when the desired rhythmic pattern that
the CPG should produce is known. The desired pattern can then
be used to define an explicit error function to be minimized. Such
techniques can sometimes be used for designing CPGs, but they
are restricted to situations where suitable patterns are available
(e.g. they are obtained from kinematic measurements of animals).
Examples of techniques include gradient-descent learning algo-
rithms for recurrent neural networks (Pearlmutter, 1995; Pren-
tice, Patla, & Stacey, 1998), learning for vector fields (Okada et al.,
2002), and statistical learning algorithms (e.g. locally weighted
regression) for dynamical systems (Ijspeert, Nakanishi, & Schaal,
2003; Nakanishi et al., 2004). We also explored the notion of pro-
grammable central pattern generators that use pools of frequency
adaptive oscillators to learn a specific rhythmic pattern (Righetti
& Ijspeert, 2006b). An interesting aspect here is that learning is
embedded into the dynamical system (as opposed to being imple-
mented by an external algorithm), see Buchli and Ijspeert (2004b)
and Righetti, Buchli, and Ijspeert (2006).

Unsupervised learning techniques are used when the desired
behavior of the CPG is not defined by a specific desired pattern (as
in supervised learning), but by a high-level performance criterion,
for instance, moving as fast as possible. Among unsupervised
learning techniques, stochastic population-based optimization
algorithms such as evolutionary algorithms have extensively been
used to design CPG-like models (Beer & Gallagher, 1992; Gruau
& Quatramaran, 1997; Ijspeert, 2001; Ijspeert & Kodjabachian,
1999; Kamimura et al., 2003; Lewis, Fagg, & Bekey, 1993; Paul
& Bongard, 2001; Sims, 1994). An interesting property of these
algorithms is that they can optimize a large class of cost functions
(for instance, the cost functions do not need to be continuous
as required for gradient-descent algorithms) and that they do
not require knowing the gradient of the cost functions (which is
usually not available). That makes them well suited to optimize
performance measurements of a robot, for instance, the forward
speed of locomotion. The parameters that are optimized are
usually synaptic weights in fixed neural network architectures
and coupling weights in systems of coupled oscillators. In some
cases, the architecture of the CPGs themselves are evolved using
developmental encoding (Gruau & Quatramaran, 1997; Ijspeert &
Kodjabachian, 1999). Two drawbacks of evolutionary approaches
are that they are slow, and they usually require extensive use of
simulators which might make the transfer of the CPGmodel to the
real robot difficult. See Nolfi and Floreano (2001) for a discussion.
Other unsupervised approaches include reinforcement learning
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algorithms8 (Matsubara et al., 2006; Nakamura, Mori, Sato, &
Ishii, 2007; Ogino, Katoh, Aono, Asada, & Hosoda, 2004; Sato,
Nakamura, & Ishii, 2002) and heuristic optimization algorithms
such as Powell’s method (Crespi & Ijspeert, 2008; Marbach &
Ijspeert, 2005; Sproewitz, Moeckel, Maye, & Ijspeert, 2008).

Note that while the above design methodologies have mainly
been used for engineering purposes, they might also be usable as
scientific tools for designing and evaluating biological CPGmodels.
In particular, most learning and optimization algorithms described
above can be used to instantiate open parameters in biological
models, and to explore what parameters are found depending
on the criteria that are optimized. For instance, a variant of the
backpropagation algorithm has been applied to define synaptic
weights of a connectionist model representing the escape reflex
in a leech (Lockery & Sejnowski, 1993). See Ijspeert et al. (1999) for
an example in which a genetic algorithm is used to set synaptic
weights in a circuit corresponding to the lamprey segmental
network.

6. Open research topics

Here Iwill reviewa list of questionswhich inmyopinion remain
open research topics. These questions are related to various aspects
of CPGs both from a biological and/or a robotic perspective, namely
the evolution of CPGs, their modification through development,
their coupling to amechanical body, the ability to producemultiple
gaits, the link between CPGs and rich motor skills, and finally the
theoretical foundations of CPGs.

An important question which remains to be studied in more
detail is the evolutionary transition between different modes
of locomotion and different ecological niches. In vertebrates,
for instance, one would like to know how CPGs have changed
from lamprey-like primitive swimming circuits up to the various
types of locomotion seen in terrestrial animals (walking, flying,
running, crawling, etc.). Interestingly it seems that morphologies
of vertebrates have changed more than the underlying motor
control circuits (Cohen, 1988; ten Donkelaar, 2001). Comparative
studies and numerical modelling can be used to study what
might have been the chain of changes that have occurred to
switch from one type of locomotion to the other. In Ijspeert et al.
(2007), we have explored such a question for the evolutionary
transition from lamprey swimming to salamander swimming and
walking. One would like to see similar studies linking different
locomotor circuits up to mammal circuits, including human
locomotion. Related to this study, it would also be interesting to
explore links between locomotion control and higher cognition.
For instance, an article by Yuste, MacLean, Smith, and Lansner
(2005) presents intriguing similarities between CPG mechanisms
and microcircuits in the cortex, hinting that some mechanisms
evolved for locomotion control might also play a role in cognition.

Another important question concerns developmental mecha-
nisms, that is what are the mechanisms that underlie how a CPG
constructs itself. Apart from a few exceptions (e.g. human infants),
animals need to be capable of efficiently moving at all stages of
their lives from newborns to adults. That often involves adapting
to body properties that vary over several orders of magnitude (in
dimensions andmass). Inmany cases, themodes of locomotion are
quite different for different stages in life, especially in animals that
undergo metamorphosis (e.g. frogs and butterflies). Furthermore
there is good evidence that biological CPGs are capable of some
8 See also Collins et al. (2005) and Geng et al. (2006) for two interesting examples
of the application of reinforcement learning to biped locomotion control without
CPGs.
plasticity (i.e. some learning with locomotor training) see Rossig-
nol (2000). These are fascinating adaptation capabilities from a
robotics point of view, and it would be very interesting and use-
ful to understand the underlying organizational principles.

The notion of mutual entrainment between a CPG and a
mechanical body is of great importance in robotics. Most robots
have several resonant frequencies due to pendulum and/or (in
compliant robots) spring–mass phenomena. It is typically useful
to adapt gaits to these frequencies such as to minimize energy
consumption. See for instance the work on passive or dynamic
walkers (Collins et al., 2005). In many cases, a CPG with mutual
couplingwill synchronize with a frequency close to those resonant
frequencies, if the coupling from body to CPG is strong enough
compared to the difference between the resonant frequency and
the intrinsic frequency of the CPG (Taga, 1998; Verdaasdonk et al.,
2006). In more general cases, it might be worth adding frequency
adaptation to the CPGs, that is, mechanisms that go beyond mere
synchronization and that can change the intrinsic frequencies
of CPGs according to feedback signals from the body. We have
developed such a method in Buchli et al. (2006) using adaptive
frequency oscillators (Righetti et al., 2006), and related work can
be found inNishii (1998, 1999). It is likely that biological CPGs have
similar adaptationmechanisms in order to adapt to changing body
properties during growth (as discussed above).

Many animals are capable of using multiple gaits. As discussed
in Section 2, often simple electrical stimulation of a particular
region of the brain stem in vertebrate animals can induce dramatic
gait changes, for instance from walk to trot to gallop in cat. The
underlying neural mechanisms are not yet fully understood, and
mathematical modelling and robotic implementations can help in
exploring them. Several computational studies of gait transitions
exist, for instance by modelling gait transitions as bifurcation
phenomena (Buchli & Ijspeert, 2004a; Buono, 2001; Buono &
Golubitsky, 2001; Canavier et al., 1997; Collins & Richmond, 1994;
Golubitsky et al., 1999; Kaske et al., 2003; Pribe et al., 1997;
Schoner et al., 1990; Schoner & Kelso, 1988), but few have been
applied to robotics. CPG-based gait transitions in robots have
been explored in Ijspeert et al. (2007). It would be interesting
to have more studies in that direction, in particular, to study (1)
how different gaits are produced, e.g. the role of central versus
peripheral mechanisms, and (2) to relate this to the usefulness
of gait transitions, e.g. in terms of equilibrium, speed, and energy
efficiency (Full & Koditscheck, 1999; Hoyt & Taylor, 1981; Kimura,
Shimoyama, & Miura, 1990).

Animals rarely perform steady-state locomotion for long, and
tend to superpose, and switch between, multiple motor behaviors.
A remaining open challenge is therefore to design control
architectures capable of exhibiting such richness of motor skills.
For a long time, central pattern generators were falsely perceived
(by neurobiologists and roboticists) to produce only stereotyped
fixed patterns. As reviewed in this article, neurophysiological
experiments and CPG models have now clearly shown that CPGs
can produce very rich behavior, being for instance capable of
modulating speed, direction, and types of gaits depending on
descending control signals. But the linkwith othermotor behaviors
such as scratching, standing up, kicking, sitting down, laying
down, reaching, manipulation, etc. remains, to a large extent, to
be decoded in animals and implemented in robots. To take one
example, the problem of visually-guided feet placement is an
interesting topic since it involves the superposition of discrete and
rhythmic movements. For instance, when specific feet placements
are required during walking (e.g. when a cat walks over a branch
or when we cross a river walking on stones), rhythmic signals
from the CPGs need to be modulated such that the feet reach
specific end positions. Examples of CPG-based models capable
of superposing discrete and rhythmic movements can be found
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in Degallier, Santos, Righetti, and Ijspeert (2006), Lewis (2002)
and Taga (1998). More generally, the problem of how to design
controllers capable of producing rich motor skills is still an open
research question. Many researchers now propose that animal
motor control is based on the combination of motor primitives,
i.e. complex movements are generated by combining a finite
set of simpler elementary movements (Flash & Hochner, 2005;
Thoroughman & Shadmehr, 2000; Todorov, 2004; Tresch, Saltiel,
d’Avella, & Bizzi, 2002). Motor primitives (and related concepts
such as muscle synergies, force fields, and motor schemas) are
seen like elementary controllers that produce specific movements
under the control of a few open control parameters. Experiments
on decerebrated and spinalized animals indicate that, like CPGs,
many of these motor primitives are implemented at a low level
in the vertebrate central nervous system, namely in the brainstem
and the spinal cord (Bizzi et al., 2000; Grillner, 2006; Stein & Smith,
1997; Tresch et al., 2002; Whelan, 1996). The interesting features
of CPGs discussed in Section 2, e.g. in terms of the dimensionality
of the control signals, can indeed also be found in discrete pattern
generators, see the force field concept identified by Bizzi et al.
(2000). CPGs should therefore be seen as particular movement
primitives that can be activated together with others. From a
robotics point of view, the idea of using motor primitives for
constructing controllers for complex motor skills is appealing and
is attracting a growing number of researchers (Ijspeert et al., 2003;
Mussa-Ivaldi, 1997; Schaal & Schweighofer, 2005; Todorov, Li, &
Pan, 2005).

Finally, one of the most important open research topics is the
development of a solid methodology and theoretical foundation
for designing CPGs. Excellent theoretical approaches have been de-
veloped for analyzing systems of coupled oscillators (Ermentrout
& Kopell, 1991; Golubitsky & Stewart, 2002; Kopell, 1995; Pham &
Slotine, 2007; Pikovsky et al., 2001; Slotine & Li, 1991;Wang & Slo-
tine, 2005), but many of these tools are not yet sufficient to com-
pletely design CPGs for a particular task, namely the five design
items listed in Section 5. While good progress is being made, the
development of mathematical tools to help in synthesizing CPG-
based controllers that exhibit particular desired characteristics for
a particular robot structure is still needed.

7. Conclusion

In this article, I have reviewed research on locomotor CPGs
both in animals and in robots. It is a field of research in which
there are very exciting interactions betweenmathematics, biology,
and robotics. As illustrated by several examples in this review,
each of these three fields has something to gain from the other
two. I hope that the discussion presented here will stimulate
young researchers to join this type of research and to contribute
to the development of new mathematical tools, new biological
hypotheses and experiments, as well as new technologies for
robotics. Advances in the fundamental understanding of the
functioning of CPGs will not only help biology and robotics,
but hopefully also have an impact in medicine, with possible
contributions in the long run to the design of therapies (e.g. using
electrical stimulation) for patients with spinal cord injuries (Loeb,
2001).

Acknowledgements

This work has been supported by funding from the Swiss
National Science Foundation and from the European Commission
(Cognition Unit, project No. IST-2004-004370: RobotCub).
References

Altendorfer, A.,Moore, N., Komsuoglu, H., Buehler,M., Brown,H. B., Jr.,McMordie, D.,
et al. (2001). Rhex: A biologically inspired hexapod runner. Autonomous Robots,
11, 207–213.

Aoi, S., & Tsuchiya, K. (2005). Locomotion control of a biped robot using nonlinear
oscillators. Autonomous Robots, 19, 219–232.

Aoi, S., & Tsuchiya, K. (2006). Stability analysis of a simple walking model driven
by an oscillator with a phase reset using sensory feedback. IEEE Transactions on
Robotics, 22(2), 391–397.

Arena, P. (2000). The central pattern generator: A paradigm for artificial locomotion.
Soft Computing , 4(4), 251–266.

Arena, P. (2001). Amechatronic lamprey controlled by analog circuits. In Proceedings
of the 9th IEEE mediterannean conference on control and automation.

Arena, P., Fortuna, L., Frasca, M., & Sicurella, G. (2004). An adaptive, self-organizing
dynamical system for hierarchical control of bio-inspired locomotion. IEEE
Transactions on Systems, Man and Cybernetics, Part B, 34(4), 1823–1837.

Armstrong, D. M. (1988). Review lecture: The supraspinal control of mammalian
locomotion. Journal of Physiology, 405, 1–37.

Ayers, J., & Crisman, J. (1993). The lobster as a model for an omnidirectional
robotic ambulation control architecture. In R. D. Beer, R. E. Ritzmann, & T. M.
McKenna (Eds.), Biological neural networks in invertebrate neuroethology and
robotics (pp. 287–316). Academic Press.

Ayers, J., Davis, J. L., & Rudolph, A. (2002).Neurotechnology for biomimetic robots. MIT
Press.

Ayers, J., & Witting, J. (2007). Biomimetic approaches to the control of underwater
walking machines. Philosophical Transactions: Mathematical, Physical and
Engineering Sciences (Series A), 365(1850), 273–295.

Beer, R. D., Chiel, H. J., Quinn, R. D., Espenshied, K. S., & Larsson, P. (1992). A
distributed neural network architecture for hexapod robot locomotion. Neural
Computation, 4, 356–365.

Beer, R. D., Chiel, H. J., Quinn, R. D., & Ritzmann, R. E. (1998). Biorobotic approaches
to the study of motor systems. Current Opinion in Neurobiology, 8, 777–782.

Beer, R. D., & Gallagher, J. C. (1992). Evolving dynamical neural networks for
adaptive behavior. Adaptive Behavior , 1(1), 91–122.

Beer, R. D., Ritzmann, R. E., & McKenna, T. M. (1993). Biological neural networks in
invertebrate neuroethology and robotics. Academic Press.

Bem, T., Cabelguen, J. M., Ekeberg, O., & Grillner, S. (2003). From swimming
to walking: A single basic network for two different behaviors. Biological
Cybernetics, 88, 79–90.

Billard, A., & Ijspeert, A. J. (2000). Biologically inspired neural controllers for motor
control in a quadruped robot. In Proceedings of the IEEE-INNS-ENNS international
joint conference on neural networks – IJCNN2000: Vol. VI (pp. 637–641). IEEE
Computer Society.

Bizzi, E., Tresch, M. C., Saltiel, P., & d’Avella, A. (2000). New perspectives on spinal
motor systems. Nature Reviews Neuroscience, 1, 101–108.

Brambilla, G., Buchli, J., & Ijspeert, A. J. (2006). Adaptive four legged locomotion
control based on nonlinear dynamical systems. In SAB’06: Vol. 4095. From
animals to animats 9. Proceedings of the ninth international conference on the
simulation of adaptive behavior . Springer Verlag.

Brown, T. G. (1911). The intrinsic factors in the act of progression in the mammal.
Proceedings of the Royal Society of London. Series B, 84(572), 308–319.

Brown, T. G. (1914). On the nature of the fundamental activity of the nervous
centres; together with an analysis of the conditioning of rhythmic activity in
progression, and a theory of the evolution of function in the nervous system..
Journal of Physiology - London, 48, 18–46.

Buchanan, J. T. (1992). Neural network simulations of coupled locomotor oscillators
in the lamprey spinal cord. Biological Cybernetics, 66, 367–374.

Buchli, J., Iida, F., & Ijspeert, A. J. (2006). Finding resonance: Adaptive frequency
oscillators for dynamic legged locomotion. In Proceedings of the IEEE/RSJ
international conference on intelligent robots and systems (pp. 3903–3909). IEEE.

Buchli, J., & Ijspeert, A. J. (2004a). Distributed central pattern generator model for
robotics application based on phase sensitivity analysis. In A. J. Ijspeert, M.
Murata, & N. Wakamiya (Eds.), BioADIT 2004: Vol. 3141. Biologically inspired
approaches to advanced information technology: First international workshop
(pp. 333–349). Springer Verlag Berlin Heidelberg.

Buchli, J., & Ijspeert, A. J. (2004b). A simple, adaptive locomotion toy-system. In S.
Schaal, A. J. Ijspeert, A. Billard, S. Vijayakumar, J. Hallam, & J. A. Meyer (Eds.),
From animals to animats 8. Proceedings of the eighth international conference on
the simulation of adaptive behavior (pp. 153–162). MIT Press.

Buchli, J., Righetti, L., & Ijspeert, A. J. (2006). Engineering entrainment and
adaptation in limit cycle systems — from biological inspiration to applications
in robotics. Biological Cybernetics, 95(6), 645–664.

Buono, P. L. (2001). Models of central pattern generators for quadruped locomotion.
ii. Secondary gaits. Journal of Mathematical Biology, 42(4), 327–346.

Buono, P. L., & Golubitsky, M. (2001). Models of central pattern generators for
quadruped locomotion. i. Primary gaits. Journal of Mathematical Biology, 42(4),
291–326.

Cabelguen, J. M., Bourcier-Lucas, C., & Dubuc, R. (2003). Bimodal locomotion elicited
by electrical stimulation of the midbrain in the salamander notophthalmus
viridesecens. The Journal of Neuroscience, 23(6), 2434–2439.

Canavier, C. C., Butera, R. J., Dror, R. O., Baxter, D. A., Clark, J. W., & Byrne, J. H. (1997).
Phase response characteristics of model neurons determine which patterns are
expressed in a ring circuit model of gait generation. Biological Cybernetics, 77,
367–380.



A.J. Ijspeert / Neural Networks 21 (2008) 642–653 651
Cheng, J., Stein, R. B., Jovanovic, K., Yoshida, K., Bennett, D. J., & Han, Y. (1998).
Identification, localization, and modulation of neural networks for walking in
the mudpuppy (necturus maculatus) spinal cord. The Journal of Neuroscience,
18(11), 4295–4304.

Cohen, A. H. (1988). Evolution of the vertebrate central pattern generator for
locomotion. In A. H. Cohen, S. Rossignol, & S. Grillner (Eds.), Neural control of
rhythmic movements in vertebrates. Jon Wiley & Sons.

Cohen, A. H., Holmes, P. J., & Rand, R. (1982). The nature of coupling between
segmented oscillations and the lamprey spinal generator for locomotion: A
mathematical model. Journal of Mathematical Biology, 13, 345–369.

Cohen, A. H., & Wallen, P. (1980). The neural correlate of locomotion in fish. fictive
swimming ‘‘induced in a in vitro preparation of the lamprey spinal cord’’.
Experimental Brain Research, 41, 11–18.

Collins, J., & Richmond, S. (1994). Hard-wired central pattern generators for
quadrupedal locomotion. Biological Cybernetics, 71, 375–385.

Collins, S., Ruina, A., Tedrake, R., & Wisse, M. (2005). Efficient bipedal robots based
on passive-dynamic walkers. Science, 307(5712), 1082–1085.

Conradt, J., & Varshavskaya, P. (2003). Distributed central pattern generator control
for a serpentine robot. In International conference on artificial neural networks.

Crespi, A., & Ijspeert, A. (2008). Online optimization of swimming and crawling in
an amphibious snake robot. IEEE Transactions on Robotics, 24(1), 75–87.

Crespi, A., & Ijspeert, A. J. (2006). AmphiBot II: An amphibious snake robot that
crawls and swims using a central pattern generator. In Proceedings of the 9th
international conference on climbing and walking robots (pp. 19–27).

Cruse, H., Brunn, D. E., Bartling, C., Dean, J., Dreifert, M., Kindermann, T., et al. (1995).
Walking: A complex behavior controlled by simple networks.Adaptive Behavior ,
3(4), 385–418.

Degallier, S., Santos, C. P., Righetti, L., & Ijspeert, A. J. (2006). Movement generation
using dynamical systems: A humanoid robot performing a drumming task. In
IEEE-RAS international conference on humanoid robots.

Delcomyn, F. (1980). Neural basis for rhythmic behaviour in animals. Science, 210,
492–498.

Delcomyn, F. (1999). Walking robots and the central and peripheral control of
locomotion in insects. Autonomous Robots, 7, 259–270.

Deliagina, T. G., Zelenin, P. V., Fagerstedt, P., Grillner, S., & Orlovsky, G. N. (2000).
Activity of the reticulospinal neurons during locomotion in freely behaving
lamprey. Journal of Neurophysiology, 83, 853–863.

Delvolvé, I., Branchereau, P., Dubuc, R., & Cabelguen, J. M. (1999). Fictive rhythmic
motor patterns induced by NMDA in an in vitro brain stem-spinal cord
preparation from an adult urodele. Journal of Neurophysiology, 82, 1074–1077.

DeWeerth, S. P., Patel, G. N., Simoni, M. F., Schimmel, D. E., & Calabrese, R. L. (1997).
A VLSI architecture for modeling intersegmental coordination. In R. Brown, &
A. Ishii (Eds.), 17th conference on advanced research in VLSI (pp. 182–200). IEEE
Computer Society.

Dickinson, M. H., Farley, C. T., Full, R. J., Koehl, M. A. R., Kram, R., & Lehman, S. (2000).
How animals move: An integrative view. Science, 288(5463), 100–106.

Ekeberg, Ö. (1993). A combined neuronal and mechanical model of fish swimming.
Biological Cybernetics, 69, 363–374.

Ekeberg, Ö., & Pearson, K. (2005). Computer simulation of stepping in the hind
legs of the cat: An examination of mechanisms regulating the stance-to-swing
transition. Journal of Neurophysiology, 94, 4256–4268.

Ekeberg, Ö., Wallén, P., Lansner, A., Traven, H., Brodin, L., & Grillner, S. (1991). A
computer-basedmodel for realistic simulations of neural networks i: The single
neuron and synaptic interaction. Biological Cybernetics, 65, 81–90.

Endo, G., Nakanishi, J., Morimoto, J., & Cheng, G. (2005). Experimental studies of a
neural oscillator for biped locomotionwith Q RIO. In Proceedings of the 2005 IEEE
international conference on robotics and automation (pp. 598–604)..

Ermentrout, B., & Kopell, N. (1991). Multiple pulse interactions and averaging
in systems of coupled neural oscillators. Journal of Mathematical Biology, 29,
195–217.

Ermentrout, B., & Kopell, N. (1994). Inhibition-produced patterning in chains
of coupled nonlinear oscillators. SIAM Journal of Applied Mathematics, 54(2),
478–507.

Flash, T., & Hochner, B. (2005). Motor primitives in vertebrates and invertebrates.
Current Opinion in Neurobiology, 15(6), 660–666.

Fukuoka, Y., Kimura, H., & Cohen, A. H. (2003). Adaptive dynamic walking of
a quadruped robot on irregular terrain based on biological concepts. The
International Journal of Robotics Research, 3–4, 187–202.

Full, R. J., & Koditscheck, D. E. (1999). Templates and anchors: Neuromechanical
hypotheses of legged locomotion on land. Journal of Experimental Biology, 202,
3325–3332.

Geng, T., Porr, B., & Wörgötter, F. (2006). Fast biped walking with a reflexive
neuronal controller and real-time online learning. International Journal of
Robotics Research, 3, 243–261.

Geyer, H., Seyfarth, A., & Blickhan, R. (2003). Positive force feedback in bouncing
gaits? Proceedings of the Royal Society of London Series B - Biological Sciences,
270(1529), 2173–2183.

Ghigliazza, R. M., & Holmes, P. (2004). A minimal model of a central pattern
generator and motoneurons for insect locomotion. SIAM Journal on Applied
Dynamical Systems, 3(4), 671–700.

Golubitsky, M., & Stewart, I. (2002). The symmetry perspective: From equilibrium
to chaos in phase space and physical space (progress in mathematics, vol. 200).
Birkhauser.

Golubitsky, M., Stewart, I., Buono, P. L., & Collins, J. J. (1999). Symmetry in locomotor
central pattern generators and animal gaits. Nature, 401, 693–695.
Grillner, S. (1985). Neural control of vertebrate locomotion — central mechanisms
and reflex interactionwith special reference to the cat. InW. J. P. Barnes, & G.M.
H. (Eds.), Feedback andmotor control in invertebrates and vertebrates (pp. 35–56).
Croom Helm.

Grillner, S. (2006). Biological pattern generation: The cellular and computational
logic of networks in motion. Neuron, 52(5), 751–766.

Grillner, S., Degliana, T., Ekeberg, Ö., El Marina, A., Lansner, A., Orlovsky, G. N., et al.
(1995). Neural networks that co-ordinate locomotion and body orientation in
lamprey. Trends in Neuroscience, 18(6), 270–279.

Grillner, S., Georgopoulos, A. P., & Jordan, L. M. (1997). Selection and initiation of
motor behavior. In P. S. G. Stein, S. Grillner, A. Selverston, & D. G. Stuart (Eds.),
Neurons, networks and motor behavior . MIT Press.

Grillner, S., Wallén, P., & Brodin, L. (1991). Neuronal network generating locomotor
behavior in lamprey: Circuitry, transmitters, membrane properties, and
simulation. Annual Review of Neuroscience, 14, 169–199.

Gruau, F., & Quatramaran, K. (1997). Cellular encoding for interactive evolutionary
robotics. In P. Husbands, & I. Harvey (Eds.), Proceedings of the fourth european
conference on artificial life (pp. 368–377). MIT Press.

Héliot, R., & Espiau, B. (2008). Multisensor input for CPG-based sensory—motor
coordination. IEEE Transactions on Robotics, 24(1), 191–195.

Hellgren, J., Grillner, S., & Lansner, A. (1992). Computer simulation of the segmental
neural network generating locomotion in lamprey by using populations of
network interneurons. Biological Cybernetics, 68, 1–13.

Holmes, P., Full, R. J., Koditschek, D., & Guckenheimer, J. (2006). The dynamics
of legged locomotion: Models, analyses, and challenges. SIAM Review, 48(2),
207–304.

Hoyt, D. F., & Taylor, R. (1981). Gait and the energetics of locomotion in horses.
Nature, 292, 239–240.

Ijspeert, A. J. (2001). A connectionist central pattern generator for the aquatic
and terrestrial gaits of a simulated salamander. Biological Cybernetics, 84(5),
331–348.

Ijspeert, A. J., & Crespi, A. (2007). Online trajectory generation in an amphibious
snake robot using a lamprey-like central pattern generator model. In
Proceedings of the IEEE international conference on robotics and automation.

Ijspeert, A. J., Crespi, A., & Cabelguen, J. M. (2005). Simulation and robotics studies
of salamander locomotion: Applying neurobiological principles to the control
of locomotion in robots. NeuroInformatics, 3(3), 171–196.

Ijspeert, A. J., Crespi, A., Ryczko, D., & Cabelguen, J. M. (2007). From swimming
to walking with a salamander robot driven by a spinal cord model. Science,
315(5817), 1416–1420.

Ijspeert, A. J., Hallam, J., &Willshaw, D. (1999). Evolving swimming controllers for a
simulated lamprey with inspiration from neurobiology. Adaptive Behavior , 7(2),
151–172.

Ijspeert, A. J., & Kodjabachian, J. (1999). Evolution and development of a central
pattern generator for the swimming of a lamprey. Artificial Life, 5(3), 247–269.

Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2003). Learning control policies for
movement imitation and movement recognition. In S. T. S. Becker, & K.
Obermayer (Eds.), Neural information processing system 15 (pp. 1547–1554).

Inagaki, S., Yuasa, H., & Arai, T. (2003). CPG model for autonomous decentralized
multi-legged robot system—generation and transition of oscillation patterns
and dynamics of oscillators. Robotics and Autonomous Systems, 44(3–4),
171–179.

Inagaki, S., Yuasa, H., Suzuki, T., & Arai, T. (2006). Wave CPG model for autonomous
decentralized multi-legged robot: Gait generation and walking speed control.
Robotics and Autonomous Systems, 54(2), 118–126.

Inoue, K., Ma, S., & Jin, C. (2004). Neural oscillator network-based controller
for meandering locomotion of snake-like robots. In Proceedings of the IEEE
international conference on robotics and automation (pp. 5064–5069).

Ito, S., Yuasa, H., Luo, Z., Ito, M., & Yanagihara, D. (1998). A mathematical model
of adaptive behavior in quadruped locomotion. Biological Cybernetics, 78(5),
337–347.

Jung, R., Kiemel, T., & Cohen, A. H. (1996). Dynamical behavior of a neural network
model of locomotor control in the lamprey. Journal of Neurophysiology, 75,
1074–1086.

Kamimura, A., Kurokawa, H., Toshida, E., Tomita, K., Murata, S., & Kokaji, S.
(2003). Automatic locomotion pattern generation for modular robots. In IEEE
international conference on robotics and automation.

Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., & Kokaji, S. (2004)
Distributed adaptive locomotion by a modular robotic system, M-TRAN II.
In Proceedings of the IEEE/RSJ international conference on intelligent robots and
systems (pp. 2370–2377).

Kaske, A., Winberg, G., & Cöster, J. (2003). Emergence of coherent traveling waves
controlling quadruped gaits in a two-dimensional spinal cord model. Biological
Cybernetics, 88(1), 20–32.

Kimura, H., Akiyama, S., & Sakurama, K. (1999). Realization of dynamic walking
and running of the quadruped using neural oscillators. Autonomous Robots, 7(3),
247–258.

Kimura, H., Fukuoka, Y., & Cohen, A. H. (2007). Adaptive dynamic walking of a
quadruped robot on natural ground based on biological concepts. International
Journal of Robotics Research, 26(5), 475–490.

Kimura, H., Shimoyama, I., & Miura, H. (1990). Dynamics in the dynamic walk of a
quadruped robot. Advanced Robotics, 4(3), 283–301.

Kimura, H., Tsuchiya, K., Ishiguro, A., & Witte, H. (2005). Adaptive motion of animals
and machines. Springer-Verlag.

Klaassen, B., Linnemann, R., Spenneberg, D., & Kirchner, F. (2002). Biomimetic
walking robot scorpion: Control and modeling. Autonomous Robots, 41, 69–76.



652 A.J. Ijspeert / Neural Networks 21 (2008) 642–653
Komatsu, T., & Usui, M. (2005). Dynamic walking and running of a bipedal robot
using hybrid central pattern generator method. In Proceedings of the IEEE
international conference on mechatronics and automation (pp. 987–992).

Kopell, N. (1995). Chains of coupled oscillators. In M. A. Arbib (Ed.), The handbook of
brain theory and neural networks (pp. 178–183). MIT Press.

Kopell, N., Ermentrout, G. B., &Williams, T. L. (1991). On chains of oscillators forced
at one end. SIAM Journal of Applied Mathematics, 51(5), 1397–1417.

Kuniyoshi, Y., & Suzuki, S. (2004). Dynamic emergence and adaptation of behavior
through embodiment as coupled chaotic field. In Proceedings of 2004 IEEE/RSJ
international conference on intelligent robots and systems (pp. 2042–2049). IEEE.

Kuo, P. D., & Eliasmith, C. (2004). Integrating behavioral and neural data in a model
of zebrafish network interaction. Biological Cybernetics, 93(3), 178–187.

Kuramoto, Y. (2003). Collective behavior of coupled phase oscillators. In M. A. Arbib
(Ed.), The handbook of brain theory and neural networks (pp. 223–226).MIT Press.

Lachat, D., Crespi, A., & Ijspeert, A.J. (2006). Boxybot: A swimming and crawling fish
robot controlled by a central pattern generator. In Proceedings of the first IEEE /
RAS-EMBS international conference on biomedical robotics and biomechatronics.

La Spina, G., Sfakiotakis,M., Tsakiris, D., Menciassi, A., & Dario, P. (2007). Polychaete-
like undulatory robotic locomotion in unstructured substrates. IEEE Transactions
on Robotics, 23(6), 1200–1212.

Lewis, M. A. (2002). Perception driven robot locomotion. Journal Robot Society of
Japan, 20, 51–56.

Lewis, M. A., Fagg, A. H., & Bekey, G. A. (1993). Genetic algorithms for gait synthesis
in a hexapod robot. In Y. F. Zheng (Ed.), Recent trends in mobile robots. World
Scientific.

Lewis, M.A., Tenore, F., & Etienne-Cummings, R. (2005). CPG design using inhibitory
networks. In IEEE international conference on robotics and automation.

Lockery, S. R., & Sejnowski, T. J. (1993). The computational leech. Trends in
Neuroscience, 16(7), 283–290.

Loeb, G. (2001). Learning from the spinal cord. The Journal of Physiology, 533(1),
111–117.

Long, J. H., Schumacher, J., Livingston, N., & Kemp, M. (2006). Four flippers or two?
Tetrapodal swimming with an aquatic robot. Bioinspiration and Biomimetics, 1,
20–29.

Lu, Z., Ma, B., Li, S., & Wang, Y. (2005). Serpentine locomotion of a snake-like robot
controlled by cyclic inhibitory CPG model. In The proceedings of the IEEE/RSJ
international conference on intelligent robots and systems (pp. 96–101).

Lu, Z., Ma, B., Li, S., &Wang, Y. (2006). 3D locomotion of a snake-like robot controlled
by cyclic inhibitory CPG model. In The proceedings of the IEEE/RSJ international
conference on intelligent robots and systems (pp. 3897–3902).

Manoonpong, P., Pasemann, F., & Roth, H. (2007). Modular reactive neurocontrol
for biologically inspired walking machines. International Journal of Robotics
Research, 26(3), 301–331.

Marbach, D., & Ijspeert, A. J. (2005). Online optimization of modular robot
locomotion. In Proceedings of the IEEE Int. conference on mechatronics and
automation (pp. 248–253).

Matsubara, T., Morimoto, J., Nakanishi, J., Sato, M., & Doya, K. (2006). Learning
CPG-based biped locomotion with a policy gradient method. Robotics and
Autonomous Systems, 54, 911–920.

Matsuoka, K. (1985). Sustained oscillations generated by mutually inhibiting
neurons with adaptation. Biological Cybernetics, 52, 367–376.

Matsuoka, K. (1987). Mechanisms of frequency and pattern control in the neural
rhythm generators. Biological Cybernetics, 56, 345–353.

McClellan, A. D., & Jang, W. (1993). Mechanosensory inputs to the central pattern
generators for locomotion in the lamprey spinal cord: Resetting, entrainment,
and computer modeling. Journal of Neurophysiology, 70(6), 161–166.

Miyakoshi, S., Taga, G., Kuniyoshi, Y., & Nagakubo, A. (1998). Three dimensional
bipedal stepping motion using neural oscillators — towards humanoid motion
in the realworld. In Proceedings of the IEEE/RSJ Int. conference on intelligent robots
and systems (pp. 84–89).

Morimoto, J., Endo, G., Nakanishi, J., Hyon, S., Cheng, G., & Bentivegna, D. et al.
(2006). Modulation of simple sinusoidal patterns by a coupled oscillator model
for biped walking. In Proceedings of the 2006 IEEE international conference on
robotics and automation (pp. 1579–1584).

Mussa-Ivaldi, F. A. (1997). Nonlinear force fields: A distributed system of control
primitives for representing and learning movements. In IEEE international
symposium on computational intelligence in robotics and automation (pp. 84–90).
IEEE, Computer Society, Los Alamitos.

Nakada, K., Asai, T., &Amemiya, Y. (2003). An analog CMOS central pattern generator
for interlimb coordination in quadruped locomotion. IEEE Transactions onNeural
Networks, 14(5), 1356–1365.

Nakamura, Y., Mori, T., Sato,M., & Ishii, S. (2007). Reinforcement learning for a biped
robot based on a cpg-actor-critic method. Neural Networks, 20(6), 723–735.

Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., & Kawato, M. (2004).
Learning from demonstration and adaptation of biped locomotion. Robotics and
Autonomous Systems, 47, 79–91.

Nishii, J. (1998). A learning model for oscillatory networks. Neural Networks, 11,
249–257.

Nishii, J. (1999). Learning model for coupled neural oscillators. Network: Computa-
tion in Neural Systems, 10, 213–226.

Nishii, J., Uno, Y., & Suzuki, R. (1994). Mathematical models for the swimming
pattern of a lamprey, i. Analysis of collective oscillators with time-delayed
interaction and multiple coupling. Biological Cybernetics, 72, 1–9.

Nolfi, S., & Floreano, D. (2001). Evolutionary robotics. The biology, intelligence, and
technology of self-organizing machines. Cambridge, MA: MIT Press, 2001 (2nd
print), 2000 (1st print).
Ogino, M., Katoh, Y., Aono, M., Asada, M., & Hosoda, K. (2004). Reinforcement learn-
ing of humanoid rhythmicwalking parameters based on visual information. Ad-
vanced Robotics, 18(7), 677–697.

Okada, M., Tatani, K., & Nakamura, Y. (2002). Polynomial design of the nonlinear
dynamics for the brain-like information processing of whole body motion. In
IEEE international conference on robotics and automation (pp. 1410–1415).

Paul, C., & Bongard, J. C. (2001). The road less travelled: Morphology in
the optimization of biped robot locomotion. In Proceedings of the IEEE/RSJ
international conference on intelligent robots and systems.

Pearlmutter, B. A. (1995). Gradient calculations for dynamic recurrent neural
networks: A survey. IEEE Transactions on Neural Networks, 6(5), 1212–1228.

Pearson, K. G. (1995). Proprioceptive regulation of locomotion. Current Opinion in
Neurobiology, 5, 786–791.

Pearson, K., & Gordon, J. (2000). Spinal reflexes. In E. R. Kandel, J. H. Schwartz, & T.
M. Jessel (Eds.), Principles of neural science (4th Ed.). New York: McGraw-Hill.

Pham, Q. C., & Slotine, J. J. (2007). Stable concurrent synchronization in dynamic
system networks. Neural Networks, 20(1), 62–77.

Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization, a universal concept
in nonlinear sciences: Vol. 12. Cambridge, UK: Cambridge University Press.

Pratt, J., Chew, C. M., Torres, A., Dilworth, P., & Pratt, G. (2001). Virtual model
control: An intuitive approach for bipedal locomotion. The International Journal
of Robotics Research, 20(2), 129–143.

Prentice, S. D., Patla, A. E., & Stacey, D. A. (1998). Simple artificial neural network
models can generate basic muscle activity patterns for human locomotion at
different speeds. Experimental Brain Research, 123, 474–480.

Pribe, C., Grossberg, S., & Cohen,M. A. (1997). Neural control of interlimb oscillations
ii. Biped and quadruped gaits and bifurcations. Biological Cybernetics, 77,
141–152.

Righetti, L., Buchli, J., & Ijspeert, A. J. (2006). Dynamic hebbian learning in adaptive
frequency oscillators. Physica D, 216(2), 269–281.

Righetti, L., & Ijspeert, A. (2008). Pattern generators with sensory feedback for the
control of quadruped locomotion. In Proceedings of the 2008 IEEE international
conference on robotics and automation.

Righetti, L., & Ijspeert, A.J. (2006a). Design methodologies for central pattern
generators: An application to crawling humanoids. In Proceedings of robotics:
Science and systems (pp. 191–198). Philadelphia, USA.

Righetti, L., & Ijspeert, A. J. (2006b). Programmable central pattern generators:
An application to biped locomotion control. In Proceedings of the 2006 IEEE
international conference on robotics and automation (pp. 1585–1590).

Ritzmann, R. E., Quinn, R. D., & Fischer, M. S. (2004). Convergent evolution
and locomotion through complex terrain by insects, vertebrates and robots.
Arthropod Structure and Development , 33, 361–379.

Roberts, A., & Tunstall, M. J. (1990). Mutual re-excitation with post-inhibitory
rebound: A simulation study on the mechanisms for locomotor rhythm
generation in the spinal cord of xenopus embryo. European Journal of
Neuroscience, 2, 11–23.

Rossignol, S. (2000). Locomotion and its recovery after spinal injury. Current Opinion
in Neurobiology, 10(6), 708–716.

Rossignol, S., Dubuc, R., & Gossard, J. P. (2006). Dynamic sensorimotor interactions
in locomotion. Physiological Reviews, 86, 89–154.

Rybak, I. A., Shevtsova, N. A., Lafreniere-Roula, M., & McCrea, D. A. (2006).
Modelling spinal circuitry involved in locomotor pattern generation: Insights
from deletions during fictive locomotion. Journal of Physiology - London, 577,
617–639.

Rybak, I. A., Stecina, L., Shevtsova, N. A., & McCrea, D. A. (2006). Modelling spinal
circuitry involved in locomotor pattern generation: Insights from the effects of
afferent stimulation. Journal of Physiology - London, 577, 641–658.

Sato, M., Nakamura, Y., & Ishii, S. (2002). Reinforcement learning for biped
locomotion. In Lecture notes in computer science: Vol. 2415. International
conference on artificial neural networks (pp. 777–782).

Schaal, S., & Schweighofer, N. (2005). Computational motor control in humans and
robots. Current Opinion in Neurobiology, 15(6), 675-82.

Schoner, G., Jiang, W. Y., & Kelso, J. A. S. (1990). A synergetic theory of quadrupedal
gaits and gait transitions. Journal of Theoretical Biology, 142, 359–391.

Schoner, G., & Kelso, J. A. S. (1988). Dynamic pattern generation in behavioral and
neural systems. Science, 239, 1513–1520.

Seo, K., & Slotine, J.-J. (2007). Models for global synchronization in CPG-based
locomotion. In Proceedings of the IEEE international conference on robotics and
automation (pp. 281–286).

Shan, J., & Nagashima, F. (2002). Neural locomotion controller design and
implementation for humanoid robot HOAP-1. In Proceedings of the 20th annual
conference of the robotics society of Japan.

Shik, M. L., Severin, F. V., & Orlovsky, G. N. (1966). Control of walking by means of
electrical stimulation of the mid-brain. Biophysics, 11, 756–765.

Sigvardt, K. A., & Williams, T. L. (1996). Effects of local oscillator frequency
on intersegmental coordination in the lamprey locomotor CPG: Theory and
experiment. Journal of Neurophysiology, 76(6), 4094–4103.

Simoni, M., & DeWeerth, S. (2007). Sensory feedback in a half-center oscillator
model. IEEE Transactions on Biomedical Engineering , 54, 193–204.

Sims, K. (1994). Evolving 3d morphology and behavior by competition. In Proceed-
ings, artificial life IV (pp. 28–39). MIT Press.

Sirota, M. G., Viana Di Prisco, G., & Dubuc, R. (2000). Stimulation of the
mesencephalic locomotor region elicits controlled swimming in semi-intact
lampreys. European Journal of Neuroscience, 12, 4081–4092.

Slotine, J. J. E., & Li, W. (1991). Applied nonlinear control. New Jersey: Prentice Hall.



A.J. Ijspeert / Neural Networks 21 (2008) 642–653 653
Soffe, S. R., & Roberts, A. (1982). Tonic and phasic synaptic input to spinal
cord motoneurons during fictive locomotion in frog embryos. Journal of
Neurophysiology, 48(6), 1279–1288.

Sproewitz, A., Moeckel, R., Maye, J., & Ijspeert, A. J. (2008). Learning to move
in modular robots using central pattern generators and online optimization.
International Journal of Robotics Research, 27(3–4), 423–443.

Stan, G. B., & Sepulchre, R. (2007). Analysis of interconnected oscillators by
dissipativity theory. IEEE Transactions on Automatic Control, 52(2), 256–270.

Stefanini, C., Orlandi, G., Menciassi, A., Ravier, Y., Spina, G.L., & Grillner, S. et
al. (2006). A mechanism for biomimetic actuation in lamprey-like robots.
In Proceedings of the first ieee/ras-embs international conference on biomedical
robotics and biomechatronics (pp. 579–584).

Stein, P. S. G., Grillner, S., Selverston, A., & Stuart, D. G. (Eds.) (1997). Neurons,
networks and motor behavior . MIT Press.

Stein, P. S. G., & Smith, J. L. (1997). Neural and biomechanical control strategies for
different forms of vertebrate hindlimb motor tasks. In P. S. G. Stein, S. Grillner,
A. Selverston, & D. G. Stuart (Eds.), Neurons, networks, and motor behavior
(pp. 61–73). MIT Press.

Still, S., & Tilden, M. W. (1998). Controller for a four legged walking machine. In L.
S. Smith, & A. Hamilton (Eds.), Neuromorphic systems: Engineering silicon from
neurobiology. World Scientific.

Taga, G. (1998). A model of the neuro-musculo-skeletal system for anticipatory
adjustment of human locomotion during obstacle avoidance. Biological
Cybernetics, 78(1), 9–17.

Taga, G., Yamaguchi, Y., & Shimizu, H. (1991). Self-organized control of bipedal
locomotion by neural oscillators in unpredictable environment. Biological
Cybernetics, 65, 147–159.

ten Donkelaar, H. J. (2001). Evolution of vertebratemotor systems. In G. Roth, &M. F.
Wullimann (Eds.), Brain evolution and cognition (pp. 77–112). Wiley-Spectrum.

Thoroughman, K. A., & Shadmehr, R. (2000). Learning of action through adaptive
combination of motor primitives. Nature, 407, 742–747.

Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuro-
science, 7, 907–915.

Todorov, E., Li, W., & Pan, X. (2005). From task parameters to motor synergies:
A hierarchical framework for approximately optimal control of redundant
manipulators. Journal of Robotic Systems, 22(11), 691–710.

Traven, H., Brodin, L., Lansner, A., Ekeberg, Ö., Wallén, P., & Grillner, S. (1993).
Computer simulations of nmda and non-nmda receptors mediated synaptic
drive: Sensory and supraspinal modulation of neurons and small networks.
Journal of Neurophysiology, 70(2), 695–709.

Tresch, M. C., Saltiel, P., d’Avella, A., & Bizzi, E. (2002). Coordination and localization
in spinal motor systems. Brain Research Reviews, 40(1–3), 66–79.

Tsakiris, D.P., Sfakiotakis, M., Menciassi, A., La Spina, G., & Dario, P. (2005).
Polychaete-like undulatory robotic locomotion. In Proceedings of the IEEE
international conference on robotics and automation (pp. 3029–3034).

Tsujita, K., Toui, H., & Tsuchiya, K. (2004). Dynamic turning control of a quadruped
robot using nonlinear oscillators. In IROS04: Vol. 1. Proceedings of the IEEE/RSJ
international conference on intelligent robots and systems (pp. 969–974).

Tsujita, K., Tsuchiya, K., & Onat, A. (2001a). Adaptive gait pattern control of a
quadruped locomotion robot. In IEEE international conference on intelligent
robots an systems.
Tsujita, K., Tsuchiya, K., & Onat, A. (2001b). Decentralized autonomous control of a
quadruped locomotion robot. Artifical Life and Robotics, 1433–5298.

Verdaasdonk, B. W., Koopman, H. F. J. M., & van der Helm, F. C. T. (2006). Energy
efficient and robust rhythmic limb movement by central pattern generators.
Neural Networks, 19(4), 388–400.

Viana Di Prisco, G., Wallén, P., & Grillner, S. (1990). Synaptic effects of
intraspinal stretch receptor neurons mediating movement-related feedback
during locomotion. Brain Research, 530, 161–166.

Vukobratovic, M., & Borovac, B. (2004). Zero-moment point - thirty five years of life.
International Journal of Humanoid Robotics, 1(1), 157–173.

Wadden, T., Hellgren, J., Lansner, A., & Grillner, S. (1997). Intersegmental
coordination in the lamprey: Simulations using a network model without
segmental boundaries. Biological Cybernetics, 76, 1–9.

Wang, W., & Slotine, J. J. E. (2005). On partial contraction analysis for coupled
nonlinear oscillators. Biological Cybernetics, 92(1), 38–53.

Webb, B. (2001). Can robots make good models of biological behaviour? Behavioral
and Brain Sciences, 24(6).

Webb, B. (2002). Robots in invertebrate neuroscience. Nature, 417, 359–363.
Whelan, P. J. (1996). Control of locomotion in the decebrate cat. Progress in

Neurobiology, 49, 481–515.
Wilbur, C., Vorus, W., Cao, Y., & Currie, S. N. (2002). A lamprey-based undulatory

vehicle. In J. Ayers, J. L. Davis, &A. Rudolph (Eds.),Neurotechnology for biomimetic
robots. Cambridge London: Bradford/MIT Press.

Williams, T. L. (1991). The neural-mechanical link in lamprey locomotion. In D. M.
Armstrong, & B. M. H. Bush (Eds.), Locomotor neural mechanisms in arthropods
and vertebrates (pp. 183–195). Manchester University Press.

Williams, T. L. (1992a). Phase coupling by synaptic spread in chains of coupled
neuronal oscillators. Science, 258, 662–665.

Williams, T. L. (1992b). Phase coupling in simulated chains of coupled neuronal
oscillators representing the lamprey spinal cord. Neural Computation, 4,
546–558.

Williams, T. L., Sigvardt, K. A., Kopell, N., Ermentrout, G. B., & Rempler, M. P. (1990).
Forcing of coupled nonlinear oscillators: Studies of intersegmental coordination
in the lamprey locomotor central pattern generator. Journal of Neurophysiology,
64, 862–871.

Williamson, M. M. (1998). Neural control of rhythmic arm movements. Neural
Networks, 11(7–8), 1379–1394.

Wolf, E., & Roberts, A. (1995). The influence of premotor interneuron populations
on the frequency of the spinal pattern generator for swimming in the xenopus
embryos: A simulation study. European Journal of Neuroscience, 7, 671–678.

Yakovenko, S.,McCrea, D. A., Stecina, K., & Prochazka, A. (2005). Control of locomotor
cycle durations. Journal of Neurophysiology, 94, 1057–1065.

Yuste, R.,MacLean, J. N., Smith, J., & Lansner, A. (2005). The cortex as a central pattern
generator. Nature Reviews Neuroscience, 6, 477–483.

Zhao,W., Yu, J., Fang, Y., &Wang, L. (2006). Development ofmulti-mode biomimetic
robotic fish based on central pattern generator. In The proceedings of the IEEE/RSJ
international conference on intelligent robots and systems (pp. 3891–3896).

Zhaoping, L., Lewis, A., & Scarpetta, S. (2004).Mathematical analysis and simulations
of the neural circuit for locomotion in lampreys. Physical Review Letters, 92(19),
1981061–1981064.


	Central pattern generators for locomotion control in animals and robots:  A review
	Introduction
	Neurobiology of CPGs
	Neurobiological models of CPGs
	Different levels
	Different animal models

	CPGs in robotics
	CPGs for robot locomotion
	Robots for neurobiological research

	Design methodologies for CPGs
	Open research topics
	Conclusion
	Acknowledgements
	References


