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Automated Analysis
of Nursing Home
Observations

Pervasive activity monitoring in a skilled-nursing facility helps capture
a continuous audio and video record. The CareMedia project analyzes
this video information by automatically tracking people, helping to
efficiently label individuals, and characterizing selected activities and
actions.
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ur society is increasingly aging.

The US Census reports that the

population over age 85 will triple

from 4.5 million in 2003 to 14.2

million by 2040. The ratio of

retired adults to working adults will grow over 50
percent by 2040. Five percent of Americans over
65 currently reside in nursing homes, with 20 to
50 percent of those over 85 expecting to be placed
in a nursing home at some point in their lives.!*
At Carnegie Mellon University, the CareMedia
project is using information technology to assist
this growing segment of the US
population and their caregivers.?
Currently, in skilled-nursing
facilities physicians might see a
patient for only a few minutes

I once a week. The assessment of

a patient’s progress is based on
staff reports that, owing to time and personnel con-
straints, might have resulted from few actual obser-
vations of the patient.

A critical element in long-term patient care is an
accurate account of the patient’s physical, behav-
ioral, and psychosocial functioning.* As direct
behavioral observation becomes indispensable to
data gathering and treatment planning, we’re
developing technologies that can automatically
capture and analyze all that they hear and see,’
with the potential for significantly affecting clin-
ical care. For example, early recognition of gait
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instability might help reduce the tremendous mor-
bidity and excessive economic burden associated
with unwitnessed falls. More accurate, complete
behavioral logs would also facilitate better use of
psychotropic medications.

The core technology problems

The core technological challenge for Care-
Media is transforming captured video and audio
into a meaningful information resource. Obser-
vations in a nursing home provide a concrete set-
ting for this challenge. In particular, success
requires these components:

e Tracking people in the captured video stream.
To accumulate information about any person,
we must be able to continuously track moving
people. Tracking is perhaps the most mature
technology, with research going back several
decades. In simple cases, separating a moving
person from the background is trivial; in prac-
tice, this effort is complicated by occlusions,
multiple, difficult-to-separate individuals criss-
crossing the room, background and lighting
changes, and inanimate objects deposited in
new locations.

o Identifying and labeling individuals. We also
need to separate a single person’s track over
multiple days. This involves associating a par-
ticular track with an individual of interest. The
large volume of continuous observations pro-
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hibits a strictly manual procedure
here.

* Analyzing specific individuals® activi-
ties. Given that we can follow an indi-
vidual over time, we want to charac-
terize and quantify what the individual
is doing. This analysis is open-ended—
we would like to identify as many dif-
ferent activities as possible, remem-
bering that they must be robustly
detected in different real-world situa-
tions to be useful.

We can achieve these components
through automated analysis of video and
audio information collected in the nursing
home. The video lets caregivers directly
see and hear evidence of episodes as they
review statistical summaries.

Once the system has tracked and iden-
tified an individual and recognized his or
her activities, we can create meaningful
summaries of these activities and associ-
ated changes over multiple days or weeks.
Realistically, the tracked people and their
activities or gestures will be frequently
misidentified. Even though automated
analysis might have flaws, a caregiver can
overcome many errors by directly linking
back to the original source video. For
example, the caregiver can dismiss a sys-
tem-reported fall as a false alarm upon
viewing the actual video record. So, the
caregiver can still review a comprehensive
record of important patient activities in a
short time period.

Experimental setup

For an initial feasibility investigation,
we mounted four cameras and micro-
phones in the dementia unit of a Pitts-
burgh-area nursing home, where resi-
dents’ mean age was 89. Recording went
on for eight hours a day over one week
from four viewpoints: one in the dining
room, one in the hallway, and two in the
television room. The medical staff pro-
hibited any wearable sensors as well as
devices that couldn’t be concealed from
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patients or that required patient coop-
eration. We took special care to protect
the privacy of the participating residents
so that names would remain confiden-
tial and faces unidentifiable in publicized
material.

Manual analysis of a portion of the
data, which we accomplished by review-
ing a 10x speeded-up version of the
video wherever the system detected any
motion, took several months. Patients
spent at least 13.6 percent and at most
24.6 percent of their time in the recorded
spaces. Interpersonal interactions cov-
ered less than 20 percent of that time.
Surprisingly, meals accounted for over
75 percent of interpersonal interactions.
Additionally, unwitnessed by the staff,
two subjects successfully escaped from
their locked unit on six of 11 attempts
behind unsuspecting staff or visitors.®

Tracking people

We began our observational analysis
by tracking people on the recorded
video. After studying the three main
approaches to tracking—that is, tempo-
ral differencing, optical flow, and back-
ground subtraction—we adopted back-
ground subtraction” because the nursing
home’s background was stable and the
cameras were fixed.

We first classify each pixel as either
foreground or background given a back-
ground pixel B and an absolute differ-
ence threshold D. Pixel P is background
if| P— B | < D; otherwise, it’s foreground.
Two kinds of errors still exist: confu-
sions due to similar-looking foreground
and background pixels and fragmented
regions due to background noise. We use
a noise removal and region-growing tech-
nique’ to remove these inconsistencies.
Then, a low-band pass filter smoothes
the object boundary and filters back-
ground noise.

Tracking provides the spatial bound-
aries for moving objects, while event
detection encodes the history of previ-

ous tracks. Our framework combines
them to make the tracking algorithm
more robust to transient visual noise
and occlusions. We define an event e as
a video sequence of a tracked object
beginning when the system starts track-
ing the object and ending when it can
no longer track the object. Typically, an
entry-to-exit sequence for a person con-
stitutes an event. However, we may also
identify as one event a sequence from a
person’s entry up to his or her merging
with a group.

Consider a video frame at time ¢. To
find the correspondence between N
extracted blobs B; and M potential track-
ing paths E;, we must first evaluate a
matching matrix, defined as M? (i, j) =
f (Bj, E;), where the matching function
f (B, E) is 1 if B corresponds to event E,
or 0 otherwise. Effectively, the matching
function is a distance metric between the
blob features

fiB;, E;) = 6 (Dis(B, E;) — threshold),

where dis the Kronecker delta function.
Our system applies a first-order motion
model to estimate the object’s location
in the next frame. The current feature set
that characterizes a blob consists merely
of the bounding-box position and the
tracking region’s size.

When two people stand very close
together, the background subtraction
algorithm segments them as one single
region. Merging is undesirable because it
will interrupt the tracking history. Fre-
quently, if the overlap is incomplete,
resplitting the merged people into sepa-
rate regions is still possible using a mean-
shift tracking algorithm? based on color
or texture similarity, which is resilient to
partial occlusion. However, a drawback
of this algorithm is that a region to be
tracked has to be separately initiated—
that is, manually identified. In our inte-
grated solution, when the mean-shift
algorithm splits a merged region, we can
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Figure 1. An example of using a mean-shift
algorithm to split merged people: (a) the
original video, (b) merged tracking, and
(c) tracking a split with mean shift.

use the regions tracked before merging
to automatically initialize the new
regions. The mean-shift iterations find
the most similar candidate pre- and post-
merger. With the aid of this event detec-
tion algorithm, our tracking approach is
robust in defining events even when the
objects are temporarily occluded or split
into smaller pieces. Figure 1 shows an
example of such a merged-object split.
The only major tracking errors derive
from merged regions. To measure how
often the tracker will confuse multiple
persons as one region, we manually
tracked events in two hours of a single-
view video from the nursing home at 320
x 240 pixel resolution and 30 frames per
second. For this manually annotated por-
tion, we found that someone was visible
for 1,575.3 seconds, or 21.8 percent of
the time. Of that time, the tracker pur-
sued the correct number of tracks for
1,374.9 seconds, roughly 87.3 percent of
the time. The rest of the time tracks were
either split or merged inappropriately.
While substantial, this error rate doesn’t
invalidate the overall analysis of nursing
home observations. The system never
actually fails to track an individual’s
movement but only gets confused about
whether this track belongs to the same
individual as before or constitutes a new
event, merged or split from previous
tracks. So, failure at this analysis stage
merely results in more distinct events that
must be labeled and associated with the
particular individual in the next phase.

Figure 2. Identification accuracy as a
function of training examples. We
identified 1,012 tracked events from 10
individuals as test data. Initially, the
system randomly selected 21 labels until
it obtained at least one event from every
individual. It then added manually labeled
training examples in increments of 5.
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Identifying and labeling
individuals

Next, we automatically identify the
tracked events as particular individuals.
Manually labeling all the data is impossi-
ble because even for only one camera, we
would need to manually label 2,592,000
frames recorded in one day.

The system can’t identify a person
without some prior knowledge of the
person’s appearance. So, we try to semi-
automatically identify all the events
involving a single person with just a few
manually labeled frames for that person.
This motivated us to adapt an incre-
mental, or active, learning framework
with interaction and supervision from a
human. We can formulate it as a multi-
class classification problem, where each
example (event) is associated with one
of a given set of classes (persons). Let x
denote the domain of possible examples,
y be a finite set of classes, and k be the
size of y. Formally, the learning algo-
rithm takes a set of training examples

(%15 Y1) --+ (X, V5n) as input, where y; is
the label assigned to example x;. Assum-
ing that people don’t change clothes dur-
ing a video sequence, the color histogram
is one of the most robust image features
in this environment. So, we represent
tracked people using a color histogram.

In experiments with this nursing home
data,’ the best sample selection strategy
achieved a more than 50 percent error
reduction over random sample selection
with learning. Figure 2 shows how the
number of training examples (each requir-
ing one human click to identify the per-
son) that the active-learning system chose
increases labeling accuracy. This demon-
strates that an active learner with careful
sample selection can achieve remarkably
good performance with only a small per-
centage of the potential human labeling
effort.

Analyzing activities
Given that we can follow a specified
individual over time, we want to charac-
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terize and ideally quantify what the indi-
vidual is doing. We focus on two types of
activities: eating in the dining room and
personal hygiene in front of a mirror.

Dining room activity

Because the dining room was a focal
point of observed interactions, we devel-
oped an automatic characterization of
the main dining room activity, eating.
Although tracking in the dining room
was more difficult owing to occlusions
and the visually cluttered background,
labeling was easier because, once seated,
patients didn’t move from their seats at
the table, requiring only a single manual
identification click.

Our algorithm for detecting “eating”
has three steps:

1. Finding an individual’s detailed out-
line region.

2. Detecting and tracking the motion
of body parts—that is, estimating
motion vectors and associated mov-
ing regions.

3. Characterizing activity from the body
part motion. This involves finding
the person’s face and identifying
dominant motions in the body area.

Finding a person’s detailed outline region.
The people-tracking algorithm just
described gives a coarse idea of the
region identified with one person. To get
a finer distinction of the person’s outline,
we examine the individual’s motion sub-
space and accumulate the moving pixels
into clusters, which provide an accurate
boundary of each person in the scene.
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Let M(x, v, t) be a binary mask indi-
cating all regions of motion in frame #
that is,

M(X, Vs t) =1

indicates the pixel at (x, y) in frame # is
in a moving region. Then, we obtain the
individual’s regions by accumulating
M(x, vy, t) over time. Let

T-1
UM(x,y,t —i),
i=0

Cluster, (x,y, t) =

where 7is the temporal duration. If Tis

large enough (typically around 2 min-
utes), Cluster (x, y, t) will approximate
the individual person-regions at time #, as
Figure 3a shows.

Detecting and tracking body part motion.
We developed a motion segmentation
algorithm that uses RANSAC (Random
Sample Consensus)!? to find affine
motion patterns of apparent motion of
human body parts in video on the basis
of optical flow.!! This algorithm effec-
tively detects and labels parametric
motion patterns of natural human
motion with normal clothing in natural
environments.

Accuracy is a major problem for
motion segmentation. The algorithm can
partially missegment motions in various
body parts; this is the main cause of false
alarms. We improve the algorithm by
tracking segmented regions after body
part motion segmentation and filtering
out temporally inconsistent motions.'?
The combination of motion segmentation

Figure 3. Examples of how the system
detects eating motions: (a) regions where
the system detected people’s motions at a
dining room table over a period of 2
minutes. Each cluster of motions is
associated with a person. (b)The motion
vectors (directions) are estimated to be
hand motions related to eating (in red),
while the blue areas indicate the part of
the body that is moving.

and tracking lets the algorithm be sensi-
tive to subtle body motions yet remain
resistant to tracking errors.

Characterizing activity from body part
motion. To classify specific activities, we
identify two main motion components
(corresponding to the left and right
hands and arms) in addition to the head
region. First, a face detector!? finds each
person’s face in individual regions. The
face detection algorithm uses statistical
modeling to capture the variation in
facial appearances. It’s accuracy is 94.4
percent on a per-frame basis. Knowledge
of the head region lets us normalize sub-
sequent hand, arm, and body motions
with respect to their distance from and
orientation to the head.

We then identify the two main motion
components (corresponding to the left and
right hands and arms) outside the head-
motion region. Because several segmented
moving regions usually exist in each per-
son’s subspace, simply using the detected
motions’ magnitude to define which
region is dominant doesn’t work. Our
solution is to use a temporal-consistency
constraint. We developed a weighted
sequential-projection algorithm to detect
temporally consistent motions.'* The
algorithm projects the current motion
vector to the one in the next frame for
the same region and adds inner products
within several frames. The system retains
only regions with a large sum of inner
products, because this indicates that the
region is moving consistently in a simi-
lar direction over consecutive frames.
The algorithm filters out inconsistent or
random motions, which are irrelevant to
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our objective, and keeps only consis-
tently moving regions.!? We assign the
two regions with the most consistent
(dominant) motions as the left and right
arm and hand motions as appropriate.
If more than two regions exist in the can-
didate-consistent region list, we select
regions that overlap most with other
candidate regions.

Finally, we use the relative distances
and movements between the head and
the two hand and arm components to
characterize the eating activity. Figure 4
shows the head-hand model. To recog-
nize eating motions, we simply map the
two hand and arm regions’ motion vec-
tors to the main axes between the head
and the hands, as Figure 4 shows. We use
the projected distance change on these
axes to indicate a person’s eating gestures.

We evaluated our approach on 30
minutes of video recording 10 residents
at the nursing home during lunch. Fig-
ures 3 and 4 show examples of both the
segmented moving regions and their
motion vectors.

We studied our approach’s effective-
ness by comparing the result from com-
bined motion segmentation, tracking,
and consistent motion filtering with the
result using only motion segmentation
(see Table 1). The combined approach
appears more robust to random motions
by giving fewer false alarms. Because
tracking is more sensitive to subtle
motions, which are hard to detect using
only motion segmentation, the combined
approach also improves the recall rate.

Personal-hygiene activities

As we mentioned previously, we’re
also developing a system to observe what
people are doing in the bathroom mir-
ror during their personal-hygiene activ-
ities,® classify these observations into
different activity types, and summarize
their frequencies and durations.

Our system has learned to recognize
specific activities including brushing
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Arms/hands

(a)

(b)

Figure 4. A head-hand model for individuals: (a) the abstract model, which only

considers motions by the arm and hand either toward or away from the head,

ignoring motions in directions other than the part along this head-hand axis. The red

lines indicate normalized motion vectors that characterize eating motions. (b) The

automatically analyzed motion from the recorded nursing-home video. The arrows are

motion vectors of the two major arm and hand components. They are mapped to the

head-hand axes to capture the person’s eating gesture.

teeth, shaving, combing hair, face wash-
ing, and hand washing, as well as “mis-
cellaneous activities.” Owing to extreme
privacy concerns regarding bathroom
activities, we set up cameras to record
this data privately at the homes of CMU
researchers. The analyzed video con-
tained 44 personal-hygiene activities
from 11 people.

To analyze this, we first extract audio
and visual features from the recorded
video. The system converts the audio
into mel-frequency cepstral coefficients
and audio pitch.'¢

Because subjects are close to the cam-
era attached to the mirror, the video has
high-enough resolution to detect skin
color pixels, which allows simple hand-
motion tracking (see Figure 5). Our skin
color model” is a 2D Gaussian model in
a red, green, blue color space initialized
by the detected face color. After applying

the model to each pixel, we look for con-
nected skin areas.!! Because the human
shape is roughly symmetrical along its
vertical axis, we use axis projection his-
tograms to represent the outline shape at
any moment. We extract other visual fea-
tures as we described earlier.

Our 110 visual features include the
human body shape, its relative size, its
width and length, projection histograms,
the magnitude and angle of the princi-
pal motion vectors, detected-face para-
meters, and the largest skin color objects.

After extracting audio and visual fea-
tures, we classify each audio frame into
one of six audio classes: Silence, Human
Sound, Water, Brushing, Shaving, and
Other. Meanwhile, we classify each
video frame into one of six visual classes:
Blank, Standing, Washing Face, Comb-
ing or Brushing Hair, Brushing Teeth,
and Close_to_Mirror/Camera. To clas-

TABLE 1
Eating activity analysis results.

Correct detections

43
50

Motion segmentation
Motion segmentation,
tracking, and temporal
consistency

Misdetections False alarms

39
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Motion analyzed

Status of motion segmentation

(b)

sify an activity, we use a support-vector-
machine classifier!” separately for audio
and imagery.

After separate visual and audio pat-
tern classification, a secondary-level
SVM meta-classifier combines the results
and categorizes the current frame into
one of the six hygiene activity classes
mentioned earlier. At the frame unit, the
system achieves an average of 55 percent
precision and 53 percent recall in a ten-
fold cross-validation over all six classes
of hygiene activities. Performance varies
widely for different activities, each
recorded under dramatically different
conditions in each subject’s home. For
example, shaving averages 70 percent
precision and 73 percent recall, while
brushing teeth has around 30 percent
precision and 27 percent recall. These
results are preliminary and we expect
better performance from sequential
models'® that exploit such activities’
temporal continuity.

he Informedia Digital Video
project'® demonstrated that
extracted data doesn’t have to
be perfect to be useful. Specif-
ically, we found that transcription error
rates of 35 percent will result in only
minimal information retrieval degrada-
tion compared to perfect transcrip-
tions.2? The end goal isn’t perfect video
analysis. Our medical experts have sug-
gested that capturing trend information
over time is critical for patient assess-
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ments and diagnoses. So, it’s not the
exact number of bites the patient ate
that’s interesting, but rather that he or
she took 50 percent fewer bites than last
week. Similarly, trends in walking and
personal care are interesting for seeing if
a new drug has made the patient less
mobile or less able to perform normal
bathroom rituals. Despite analysis errors,
we can capture long-term trends because
independently distributed errors cancel
out over many observations and long
time periods.

Through CareMedia, we’re demon-
strating that pervasive computing with
long-term observation of the elderly in
nursing homes can

e Effectively track people over long peri-
ods of time

e Identify individuals in tracked events
(between entry and exit) with minimal
human help

¢ Characterize detailed human activity
such as eating or personal hygiene
motions

We’re working with nurses and physi-
cians at the nursing home to develop an
interface that presents the results of our
analyses in a format suitable to care-
givers’ needs. Medical caregivers, espe-
cially, feel strongly that this type of obser-
vation’s potential benefits far outweigh
the inherent intrusions into privacy.

This research is limited by the types of
activities that can be observed and
detected automatically and by the extent

Figure 5. Visual feature extraction from
the personal-hygiene video: (a) a combing
activity and (b) the corresponding
extracted segments. Red circles on the
right show the detected skin color
regions, and the red square shows the
detected face.

that patients deem such monitoring
acceptable when weighing privacy con-
cerns against care benefits. Even this early
work has made it clear that observing
patients in a nursing home is feasible and
can provide a meaningful information
resource that supports more complete
and accurate assessment and evaluation
of behavioral problems for the elderly. B
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