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Information retrieval is an
increasingly complex process,
due to digital integration of
video, audio, and text
resources. An experimental
project will explore the
challenges posed by these
digital video libraries.

Computer

he Informedia Digital Video Library project' will establish alarge,

on-line digital video library featuring full-content and knowl-

edge-based search and retrieval. Intelligent, automatic mecha
nisms will be developed to populate the library. Search and retrieval from
digital video, audio, and text libraries will take place via desktop com-
puter over local-, metropolitan-, and wide-area networks. Initially, the
library will be populated with 1,000 hours of raw and edited documen-
tary and education videos drawn from video assets of WQED/Pittsburgh,
Fairfax County (Virginia) Public Schools, and the Open University
(United Kingdom). To assess the value of video reference libraries for
enhanced learning at different ages, we will deploy the library at Carnegie
Mellon University and local schools, from elementary school through
high school.

Our approach applies several techniques for content-based searching
and video-sequence retrieval. Content is conveyed in both the narrative
(speech and language) and the image. Only by the collaborative interac-
tion of image, speech, and natural-language understanding technology
can we successfully populate, segment, index, and search diverse video
collections with satisfactory recall and precision.

This collaborative interaction approach uniquely compensates for prob-
lems of interpretation and search in error-ridden and ambiguous data
sets. We start with a highly accurate, speaker-independent, connected
speech recognizer that automatically transcribes video soundtracks. A
language-understanding system then analyzes and organizes the tran-
script and storesit in afull-text information retrieval system. This text
database permits rapid retrieval of individual video segments that satisfy
an arbitrary query on the basis of the words in the soundtrack and in asso-
ciated annotations and credits. Image and language understanding lets
us locate and delineate the corresponding "video paragraph” context
through combined source information about camera cuts, object track-
ing, speaker changes, timing of audio and/or background music, and
change in content of spoken words. Controls let the user interactively
request corresponding video paragraphs to full volumes, browse the
results, intelligently "skim" the returned content, and reuse the stored
video objectsin different ways. Figure 1 illustrates a typical user retrieval
display.

The data and network architecture we have implemented provides a
distributed data multilevel hierarchy and enables networking on com-
mercial data services. To protect data rights in intellectual property and
to provide security and privacy, we've incorporated network billing, vari-
able pricing, and access control.

All digital libraries share common technical and sociological issues,
attributes, features, and challenges 2 The digital video library exacerbates
many of these problems. Moreover, it generates new research challenges
across diverse disciplines, beginningwith automated techniques to derive
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semantic content directly from source
material in the absence of metadata
describing it. The machine-cognition-tech-

nology approach to library creation-inte-

grating speech, image, and language
understanding-confronts each such area
with additional constraints and require- 455
ments, thereby necessitating novel solu-
tions. Finally, special user interface issues
relate to the creation of visual and textual
abstracts, skimming, and extraction of
video datafor reuse.

Assembling library content

Without suitable indexing, a collection
of video material cannot serve as an infor-
mation resource. Our goal of full-content
search/retrieval in the Informedialibrary
requires an automatically generated index
pointing to meaningful, small clipswithin
the videos (adjustable "video paragraphs"’
of two to five minutes) and yielding alter-
nate representations and abstraction
levels. Davis notes that a physical segmen-
tation of the video data imposes a fixed
segmentation of the content and a potential separation
from its original context.3 Because this may limit subse-
quent use of the library, our approach logically segments
the library data with video paragraph markers and indices
but keeps the video data intact in its original context. Our
multimodal approach to generating the index and the
abstractions poses difficult challenges for each of the
speech, image, and language understanding technologies
that we incorporate.

Speech understanding for
automated transcript generation

Even though much of broadcast television is closed-cap-
tioned, most of the nation's video and film assets are not.
More importantly, typical video production generates 50
to 100 times more content than what is broadcast and is
thus not captioned. We therefore combine automatically
generated transcripts, containing tolerable errors, with
captioning (where available) for the analysis, indexing,
and retrieval of multimedia data.

Unlimited-vocabulary, speaker-independent, con-
nected-speech recognition is an incompletely solved prob-
lem. However, recent results in domain-specific
applications demonstrate the promise and potential of
being able to automatically transcribe spoken language
with an unlimited vocabulary. Currently, our Sphinx-11
system recognizes, with 90-percent accuracy in bench-
mark evaluations, speaker-independent, continuously spo-
ken speech with avocabulary of more than 60,000 words 4
Several sources of error and variability occur in the video
transcription task that must be resolved. These include

Music and noise mixed with speech. FFT spectrogram
data can be used to determine high-energy areas out-
side the human speech bandwidth. Neural-net-fea-
ture detectors of other noise types appear promising.
Segmentation of long fragments. In video productions,
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Figure 1. Typlcal Informedia digital library user display screen.

the begin and end points for utterances are not
marked. Using energy profiles for algorithms to detect
breaks between utterances will help.

Inappropriate language models. Adaptive language
models must be incorporated that automatically
change, based upon recognition likelihood in the first
pass. Hints from the title, as well as from ancillary
notes and annotations, may help in selecting alter-
native models.

Errorful closed-captioned data and scripts. The use of
forced alignment with language model modifications
and the accounting for spontaneous speech not in the
captions or script will together significantly reduce
error over straight transcript alignment.

Acoustic modeling. New models must be trained for
noise and music, and each type must be recognized
separately. Specialized audio parsers for noise, laugh-
ter, and other distinct acoustic phenomena have been
developed that will enable detection and retrieval of
these sounds from the audio contents
Identification of speaker change. Speaker gender
change is straightforward. Neural nets and various
pitch-dependent techniques will provide the func-
tionality.

Speech recognition for keyword retrieval. Focusing on
language models for keyword recognition may
improve overall accuracy of query-based retrieval
where relevant subject matter is sought. Absolute cor-
rectness of the derived transcript, however, maybe
less important in the library search than in a man-
machine conversational application.

For digital video transcription, processing time can be
traded for higher accuracy. The system doesn't have to
operate in real time, which permits the use of larger, con-
tinuously expanding dictionaries and more computation-
ally intensive language models and search algorithms.
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Image processing for classification,
segmentation, and retrieval

Image understanding plays a critical role in Informedia
for organizing, searching, and reusing digital video. When
the digital video library is formed, the first requisite capa-
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Figure 2. Informedia image-understanding video
processing overview.

bility is video segmentation (or paragraphing) into a group
of frames. Part of this task can be achieved with content-
free image statistics such as color histograms, DCT (discrete
cosine transform) coefficients, shape, and texture measures.
Scene transition effects such as fades, dissolves, and cuts
can also be automatically detected.6 Although queries are
expected for subject matter (comprising both image and
textual content), subsequent refinement of the query might
be visual, referring to image content. Examples are searches
for "similar scenery" or "comparable buildings."

Video information is temporal, spatial, often unstruc-
tured, and massive. As aresult, a complete solution-auto-
matic extraction of semantic information or a general
vision recognition system-is not yet feasible. Our overall
approach focuses on the interrelated problems of seg-
mentation, object detection, characterization, and simi-
larity matching. Figure 2 depicts the various image-
processing analyses that, when performed in the system,
enable appropriate data characterizations, both content-
free and content-based, for Informedia segmentation and
search. The technical obstacles and problem approaches
are summarized below.

« Comprehensive image statistics for ssgmentation and
indexing. Thisinitial ssgmentation can be donein a
content-free manner with image statistics by detect-
ing fast changes in them. A simple histogram differ-
ence measure is robust and efficient enough to
provide accurate segmentation for detecting scene
changes. An example of thisis shown in the top graph
of Figure 3. Once avideo isidentified, we extract
image features like texture, color, and shape from
video as attributes. While these are "indirect statis-
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Figure 3. Component technologies applied to segment video data.
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tics' to image content, they have
proved quite useful in quickly com-

paring and categorizing images, and

these attributes will be used for
retrieval.

Concurrent use of image and speech/
language information. In addition to

image properties, other cues, such as
speaker changes, timing of audio

and/or background music, and
change in the content of spoken words
can be used for reliable segmentation.

Camera and object motionin 2D. An
especially useful kind of visual seg-

mentation is based on the computer's
interpreting and following smooth

camera motions such as zooming,

panning, and forward camera motion.

Using the Lucas-Kanade gradient
descent method for optical flow,7 we
can track individual regions from one
frame to the next and create a vector
representation for all associative
camera motion. Optical flow for a
variety of camera motion is shown for
the scenes in Figure 3. A different
(but equally important) kind of video
segment is defined not by camera
motion but by motion or action of the
objects being viewed. Object motion typically
exhibits flow fields in specific image regions. Camera
motion is characterized by flow throughout the
entire image.

OBJECT PRESENCE. A powerful technique segments
video by the appearance of a particular object or combi-
nation of objects. Human content is a particularly impor-
tant and common case of object-presence detection, asis
a human interacting within an environment. The human-
face detection system used for our experiments is based
on the method of neural-net arbitration devel oped by
Rowley et al.8 Its current performance level detects over
90 percent of more than 300 faces contained in 70 images,
with approximately 60 false detections.

Another essential detection technique is that of textual
information appearing in the video but not repeated in the
audio. By detecting the clustered and often high-contrast
structure of printed characters, we can extract regions
from video that contain text.9 For example, out of 75
images processed, we can currently detect 86 percent of
the regions containing text while producing only 12 false
detections. Once text is extracted, optical character recog-
nition can be applied and the resulting data added to the
searchable text. Examples of face and text detection are
shown in Figure 4.

OBJECT AND scCeENE IN 3D. Because video represents
mostly 3D shape and motion, adding a 3D understanding
capability to the image understanding analyses will
enlarge the system's scope. The "factorization" approach
can potentially reconstruct 3D information from a 2D
video data sequence.

Figure 4. Face and text detection results.

Natural-language processing

Library search and retrieval, precision, and recall can
be improved through natural-language processing to
understand and expand the user's query and to associate
itwith correct but inexact matches from the library's con-
tent. This lets us go beyond limited keyword matching in
our library search. Natural-language processing in
Informediais applied to both query processing and library
creation. It serves four principal functions-spoken and
typed free-form query processing, ranked retrieval, auto-
mated transcript correction, and summarization for use
in title generation and video abstract creation (for exam-
ple, skims). The latter two pertain to special functions for
the library-creation process. Our retrieval engine, based
on the Pursuit engine embedded in the Lycos Web browser,
is of aclass that implements probabilistic matching to
return arank-ordered result list. By varying relative thresh-
olds, either precision or recall can be adjusted by the user.

The following goals for Informedia's natural-language
processing stem from the system's use of spoken language
and automated speech recognition for both query and data.

Provide multiple types of similarity matching. Several
kinds of similarity can be implemented and
adjusted-prefix, synonym, string, phonetic, and con-
ceptual .

Tolerate errors in speech recognition of the query.
Correct errors in speech recognition-generated tran-
scripts.

Parse both fluent and ungrammatical spoken lan-

guage-Provide phonetic matching to both query and tran-
script.
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« Apply data extraction techniques to spoken language.
» Offer broad-domain semantic matching.

EXPLORING THE LIBRARY

Library exploration includes search, retrieval, display,
and reuse. This complicates matters for user interface
alternatives, data and network architectures, and charg-
ing for content access mechanisms.

Video skimming through
integrated processing

Users of any information-retrieval system often want to
quickly review the results of their query to judge each
item's relevance or interest. For text, the delivery is static,
and the user applies personal techniquesto select and skip
content. Simply speeding up video and audio delivery
(beyond twice normal speed) eliminates the audio com-
prehension and distorts much of the image beyond visual
recognition. In addition, displaying video frames at fixed
intervals might cause important video content to be
skipped. As aresult, devising a method for conveying the
essence of avideo segment's content in a fraction of the
normal display time is a significant challenge.

Through combined techniques from language and
image understanding, we have developed video skims of
the original video at varying compression ratios. 9 This
compactvideo is created with significant image and audio
regions to produce a synopsis of the original, which can
also be used to select a single representative frame for each
scene. These frame icons are useful when only asingle
image is needed to describe a segment.

I

We apply term-weighting techniques to identify the most
relevant keywords and phrases® in the transcribed audio
track (as shown in the bottom graph of Figure 3). We auto-
matically examine the time-corresponding video for scene
changes and breaks, relevant objects, and motion analysis.
We examine the audio level for additional clues to detect
transitions between speakers and topics, which often cor-
respond to low energy or silence in the signal.

Having segmented the video, we statistically compute
the relative importance of each scene's image content.
Image significance is characterized through desirable cam-
eramotion and object presence. Through optical flow
analysis, we can determine which images in a scene contain
the most desirable motion. A film producer will often use
static frames preceding or following camera motion as the
focus of a given scene. Objects such as human faces and
text can be identified in video and used as a basis for sig-
nificance during skim creation. For example, statistical
numbers are not usually spoken but are included in the cap-
tions for viewer inspection. The "talking head" image com-
mon in interviews and news clipsillustrates a clear example
of video production focusing on an individual of interest.

The unsynchronized audio and video are now inte-
grated into an effective skim of the original content. In
Figure 5 we show the keywords and significant images
selected for skim creation, and the corresponding skim
video. Keywords will not always align with the selected
frames. The audio data can cross multiple frames depend-
ing on keyword length. The word "dinosaurs" consumes
1.13 seconds (34 frames), so frames from adjacent scenes
are also selected. Scenes with human faces are important;
however, the same frames with text captions contain more

Original Video (1100 frames)

Skim Video (78 frames)

1.0

—— Frames Selected for Skim
- = - - Audio from Transcript

seconqls

|
doomed dinosaurs

replacing

Figure 5. Keyword and image selection for video skim (14:1 compaction).
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information. When possible, sesgments of
shots that bound camera motion are used

Table 1. Skim compaction.

with scenesthat contain pansor zooms.

For example, the scene with the polar bear Video segments Original (seconds) Skim scenes
beginswith a downward pan, showing K'nex toy 61.0 7.13
only the lower portion of theanimal. Inthe | Species destruction (half) 68.65 6.40
latter frames, camera motion has stopped * Species destruction (full) 123.23 12.43
and the camera focuses on the animal's * Space university 166.20 28.13
face. Thefinal representation is controlled * Rain forest 107.13 5.36
by the user and can vary in size and con- * Peru forest destruction 58.13 5.30
tent. We have found useful skimswith time * Underwater exploration 119.50 5.67

compression ratiosranging from 6:1to
20:1. Table 1 lists the skim compaction
results of various video segments.

*Manual skims

Figure 6 shows the complete skim for the

video with associative frames and keywordsfor all scenes.
Another representation for the significant image regions
isthe static skim. By displaying only a select group of frame
icons from different scenes, the user can quickly interpret
the content of a given segment. An extension to thisform
of skim will be the display of selected keywords or phrases
along with theimage frames.

Productive user interfaces

The user-interface requirementsfor avideo library dif-
fer substantially from those for atext or imagelibrary due
tothetemporal nature of theretrieval data. Figure 1illus-
trated atypical retrieval display. We believe several func-
tions are essential for a successful digital video library
interface, as we discuss next. The Infor media testbed will
let us evaluate the relative effectiveness, sensitivity, and
frequency of use of the alter native display methods and
their user-adjustable parameters.

PARALI FI PRESENTATION. When a sear ch contains
many hits, the system will simultaneously present icons,
intelligent moving icons (imicons) and full-motion
sequences along with their text summarization. Userswill
likely react differently to a screen pop-
ulated by still images than by moving

asingleindividual, it's possible to construct a simulated
interview interface, wher eby the user interactsvirtually
with the subject. Thisenablesamore interesting personal
experience than simply watching a linear interview by oth-
ers. Comparable synthetic interviews have been hand-
crafted11,12 that demonstrate thisformat's potential.

REUSE. Once usersidentify video objects of interest,
they will need to be able to perform the difficult tasks of
manipulating, organizing, and reusing the video. Even the
editing task isdifficult. To effectively reuse video assets,
the user must combine text, images, video, and audioin
new and creative ways. It isour intent to enable use of
commercial video editorsaswell asto comply with stan-
dard object interfaces (for example, OLE), so that
Informedia-cr eated video segments can be incor por ated
into commer cial applications. Effective video reuseis hin-
dered by complexitiesin under standing the nature of cin-
ematic production-inter play of scene, framing, camera
angle, and transition. Building on previouswork, 11,12 we
plan toexaminetoolsthat provide expert assistance in cin-
ematic knowledge, comparable to the successful function
of templatesin document production systems.

images. Therefore, we will identify the
optimal number and mix of object types
through studies.

CONTEXT-SIZING. Userscan adjust
the"size" (duration) of theretrieved
video/audio segments for playback.
Herethe" size" may betimeduration,
but it can also be based on scenes or
information complexity. Usersare also
offered optionswith respect to increas-
ing the context of a previously displayed
segment by providing the preceding or
following video par agraphs from the
original work or the much larger video
segment from which it was extracted.
These controlswere also pictured in
Figure 1.

SYNTHETIC INTERVIEWS. When suffi-

cient data existsin thelibrary in theform
of interviewsor news conferenceswith

Figure 6. Skim video frames and audio keywords from "Destruction
of Species," WQED, Pittsburgh.
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WE HAVE FOCUSED THE WORK Onh two corpuses. One is based
on science documentaries and lectures that have been
experimentally deployed with corrected transcripts and
segmentation at alocal high school. The other is broad-
cast news content with partial closed-captionsthat is fully
automatically processed and incorporated into the library.
We have added a natural language, spoken query inter-
face in the latter prototype. Future work will continue to
improve the accuracy and performance of the underlying
processing as well as explore performance issues related
to Web-based access and interoperability with other dig-
ital video resources. Further information is available

through hitp-//informedia cscmuedu. |
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