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Conjugate Priors

Suppose k has a Poisson distribution with unknown rate parameter A

Aree—2

Pr(k | X) = 55—

k=1,2,...

The Poisson distribution is used for modeling the number of times an event occurs within a fixed time interval
given a mean occurrence rate assuming that the occurrences are independent.

Let the prior for A be a gamma distribution with shape parameter o and rate parameter 3:

p(A |, B) = Fﬁ(:))\a_le_” A>0

where I' is the gamma function.

1.

Plot the gamma distribution over the domain (0,10] with the following parameters: (o« = 1,0
2),(a=2,8=2)and (a = 3,8 = 2). How does increasing « affect our belief about A?

alpha = 1, beta = 2 alpha = 2, beta = 2 alpha = 3, beta = 2
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As a increases, our belief increasingly moves towards greater values of A. Our prior belief is also

more spread out, and this is also shown by the fact that the mode of the distribution p(\ | «, 8)
decreases as « increases.




2. Now, plot the gamma distribution over the domain (0, 10] with the following parameters: («

= 2’ /8 =
0.5),(a=2,8=1) and (o = 2,8 = 2). How does increasing S affect our belief about \?

alpha = 2, beta = 0.5 alpha =2, beta=1 alpha = 2, beta = 2
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As [ increases, our prior belief on A moves closer to zero. The mode of the prior distribution
also becomes larger, indicating that our belief is more concentrated. The different plots are
more similar to each other when compared to those obtained by changing a.

3. Show that given an observation k, the posterior p(A | k, «, 8) is a gamma distribution with updated
parameters (o, 3').

‘We have
>\k€7A Ba a—1_—pBA
Pr(k|A)-p(A| o, B) = k! 'F(a) ‘
ﬁot

—_ 7}\04%»1671 —(B+1)A
T(a) & ¢

We observe that this resembles to a Gamma distribution with parameters o = a + k and
B = B+ 1. Indeed,

/OO \aFk—1,—(B+DA _ [+ k)
0 (B + 1)tk

— Pr(k: | 04,5) = /Ooo Pr(k | )\) 'p<>‘ | Oé,ﬁ) = F(f)a. k! ’ (;‘(_fl—gaklk

Thus, by Bayes’ theorem,

p(A| ke, B) = Pr(k}r(;|pgﬁ)a’ﬁ J

(Bt Netk—1,—(B+D)A
- T(a+k)

Thus, the posterior is a Gamma distribution with parameters o/ = o+ k and 8/ = 8 + 1.




4. Suppose we receive a set of n observations D = {k1,ko,...,k,}. We again start with a gamma prior

for A\ with parameters o and 8 and we update our belief on A after each observation k; € D.

What is the posterior p(A | D, «, 8)7 What is the posterior mean? What is the posterior mode?

Since the samples are iid, the likelihood is

Pr(D | a) = HPr(ki | o, B)

where K =[]}, k;!. By Bayes’ theorem,

p(A | D,a,B) x Pr(D | A) - p(A | o, B)
AZizki BT —Bx
= I e . I‘(a))\ e

B
_ )\ocflJrZ?:l kie*(ﬁ”rﬂ))\,

INa)- K
which corresponds to a Gamma distribution with updated parameters o/ = o+ Y .- | k; and
B'=B+n.
From the Wikipedia entry on Gamma distribution, we have
n
vk
Posterior mean: %
B+n
m k-1
Posterior mode; (Oé + Zz:l 7 )+ ’
B+n

where (z) = max{z, 0}

5. In light of these results, can you give an interpretation of the prior parameters o and 57 What happens

in the limit as n — oo?

We can interpret 8 as the number of ‘pseudo-samples’ seen before the experiment, and a to
be the sum of the k;’s observed in those pseudo-experiments. Our prior belief is as if we have
observed some instances of the experiment beforehand.
As n — oo, the denominator is increasingly dominated by n, and the numerator is increasingly
dominated by Y ", k;. Thus, the posterior mean and mode both become close to the empirical
mean. Our posterior for A tends to the empirical mean.



https://en.wikipedia.org/wiki/Gamma_distribution

2 Maximum likelihood - Interpretation

Short answer: Suppose you flip a coin with unknown bias 6, Pr(x = H | 8) = 0, three times and observe
the outcome HHH. What is the maximum likelihood estimator for 87 Do you think this is a good estimator?
Would you want to use it to make predictions?

Let hq, ho, h3 be the random variables for the outcomes of the three tosses. Let h; = 1 if ;1 = H and
0 otherwise. The likelihood for the coin is given by

Pr(hy, ha, hy | 0) = §Zi=1hi(1 — )3~ Zizi ha
Since we obtain three heads, the likelihood of this outcome is
Pr(hy = 1,hy =1,h3 =1|6) = 6®

The likelihood is maximized by 8 = 1, which would be our maximum likelihood estimator. This
estimator is not very trustworthy, since we have tossed the coin only thrice, and obtaining three
heads is not that unlikely. For instance, even with an unbiased coin, we can obtain three consecutive
heads with probability 1/8, which is quite significant.




3 Beta distribution - Intuition

The PDF for a Beta distribution is given by

P(p|a,f) = s—a* (1 —z) !
B(a, 8)
a=1,8=1 a=2,B8=2 a=10, =10
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For @ = 3, we observe that the PDF is symmetric about 0.5. As «
more concentrated about 0.5.

= [ increases, the function becomes
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For a < 8, we observe that the PDF is skewed towards lower values of ¢, whereas for 8 > «, the PDF is
skewed towards higher values. As « becomes smaller and [ increases, the skew to the left becomes more

prominent. A similar property holds for a skew to the right, with the skew increasing as a becomes larger
and (S smaller.

Intuition about « and 5. What does a Beta prior for the bias § of a coin mean? Here, the bias of the
coin is simply taken to be the probability of obtaining heads. A Beta prior B(«, ) is like having information
about a + 8 ‘pseudo’ coin tosses, out of which a were obtained to be heads and the remaining were tails.
Indeed, a smaller a and larger S moves our prior belief about the bias towards lower probabilities. On the

other hand, larger o and 8 means that our belief is skewed towards a high probability of obtaining heads.
Let us now take a look at some pathological cases of (¢, 8):

a=0.5,=0.3 a=0.5,8=05 a=058=1
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We observe that for a« < 1 or 8 < 1, the distribution is highly skewed. If both o and 3 are less than 1, the
distribution is bimodal, with very concentrated modes at zero and one.



4 Conditional Distribution for 2-dimensional Gaussian distribu-
tion

Consider a multivariate Gaussian distribution in two variables. That is, we have

X ~N(p, D),
with X, € R?, and ¥ € R?*2, Let

= |:U1:|7 and X = [011 012}
2

Here, 011 = V(Xl), 0922 = V(XQ), 012 = COV(Xl,XQ) = COV(XQ,Xl).
For a two dimensional matrix, we know that

w1 1 022 —012
(011022*0%2) —012 011

We thus have

P(x;p, X) = 27r|2|1/2

= 27‘-|Z|1/2 exXp

— A
_ A A 022 012 1
27T|Z|1/2 exp ( 2 0'110'22 — 0'%2) [ ! 2] |:_Ul2 011 Ay

Aq
27T|Z|1/2 exp “onom—o%) [A1og2 — Ago1y Azorr — Ayoio] [AJ)
_ ) )
o1 |2|1/2 exp 0_110_22 — 0_%2) (A10'22 — A1Aq019 — A1Ago19 + A20—11)>

2
1 (Ao — 2A1A2012 + A3oy1)
2 (011022 — 075)

1
= 2ayiz P (‘

where A; = x; — p; for i € {1,2}.
By the marginal distribution of a Gaussian, we also have

1 (x2 — p2) 1 A3
P(xo; 1, %) = - =2 ) = S —
(an’M) ) RV4 27‘&'0’22 CxP ( 20’22 \/27‘(’0’22 CXP 2022

The conditional distribution of x; given x5 is now given as

P(x;p, X)
P(x2; 1, %)

FHI77 OXP (5[ } {AAED
( zm)

exp z [Al }
2770'22 ? AQ
exp( 1)

P(xl | $2§M»E) =

TbIEEE




Looking at the non-exponential part:

\/27’(’0’22 o 09292 - 1
27’1"E|1/2 271'(0’110’22—0’%2) 27‘(’(0’11 —0’%2/0'22)

Simplifying the exponential part:

(011022 — 03y) 022

(A%O’QQ — 2A1A20’12 =+ A%O’ll) A% ] )

Focusing on the part inside the square brackets

(Afoas — 2A1A2015 + A3o11) _ Aig

2
(011022 — 075) 022
A2o2, —2A,A A2 A2 — Ao?
K103 182012022 + A5011022 2011022 201712
- 2 2
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_ Al03, — 201 Ag012002 + Ao,
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O11 — 01y/022

Thus, the conditional distribution is

2
1 (o)
exp | —=-

P(x1 | zo;p,2) =
( 1| 2 H ) \/27'('(0’11 70’%2/0'22) 2 011_0%2/022

We observe that this is a Gaussian with mean i and variance &, where

. 012
fr =1 + (z2 — p2)—, and
022
2
~ 012
o=01] — —
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