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1 Conjugate Priors

Suppose k has a Poisson distribution with unknown rate parameter λ

Pr(k | λ) = λke−λ

k!
k = 1, 2, . . .

The Poisson distribution is used for modeling the number of times an event occurs within a fixed time interval
given a mean occurrence rate assuming that the occurrences are independent.
Let the prior for λ be a gamma distribution with shape parameter α and rate parameter β:

p(λ | α, β) = βα

Γ(α)
λα−1e−βλ λ > 0

where Γ is the gamma function.

1. Plot the gamma distribution over the domain (0, 10] with the following parameters: (α = 1, β =
2), (α = 2, β = 2) and (α = 3, β = 2). How does increasing α affect our belief about λ?
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As α increases, our belief increasingly moves towards greater values of λ. Our prior belief is also
more spread out, and this is also shown by the fact that the mode of the distribution p(λ | α, β)
decreases as α increases.

1



2. Now, plot the gamma distribution over the domain (0, 10] with the following parameters: (α = 2, β =
0.5), (α = 2, β = 1) and (α = 2, β = 2). How does increasing β affect our belief about λ?

0 5 10
0.0

0.1

p(
,

)
alpha = 2, beta = 0.5

0 5 10
0.0

0.2

p(
,

)

alpha = 2, beta = 1

0 5 10
0.0

0.5

p(
,

)

alpha = 2, beta = 2

As β increases, our prior belief on λ moves closer to zero. The mode of the prior distribution
also becomes larger, indicating that our belief is more concentrated. The different plots are
more similar to each other when compared to those obtained by changing α.

3. Show that given an observation k, the posterior p(λ | k, α, β) is a gamma distribution with updated
parameters (α′, β′).

We have

Pr(k | λ) · p(λ | α, β) = λke−λ

k!
· βα

Γ(α)
λα−1e−βλ

=
βα

Γ(α) · k!
λα+k−1e−(β+1)λ

We observe that this resembles to a Gamma distribution with parameters α′ = α + k and
β′ = β + 1. Indeed, ∫ ∞

0

λα+k−1e−(β+1)λ =
Γ(α+ k)

(β + 1)α+k

=⇒ Pr(k | α, β) =
∫ ∞

0

Pr(k | λ) · p(λ | α, β) = βα

Γ(α) · k!
· Γ(α+ k)

(β + 1)α+k

Thus, by Bayes’ theorem,

p(λ | k, α, β) = Pr(k | λ) · p(λ | α, β)
Pr(k | α, β)

=
(β + 1)α+k

Γ(α+ k)
λα+k−1e−(β+1)λ

Thus, the posterior is a Gamma distribution with parameters α′ = α+ k and β′ = β + 1.
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4. Suppose we receive a set of n observations D = {k1, k2, . . . , kn}. We again start with a gamma prior
for λ with parameters α and β and we update our belief on λ after each observation ki ∈ D.

What is the posterior p(λ | D, α, β)? What is the posterior mean? What is the posterior mode?

Since the samples are iid, the likelihood is

Pr(D | α) =
n∏

i=1

Pr(ki | α, β)

=

n∏
i=1

λki

ki!
e−λ

=
λ
∑n

i=1 ki

K
e−nλ,

where K =
∏n

i=1 ki!. By Bayes’ theorem,

p(λ | D, α, β) ∝ Pr(D | λ) · p(λ | α, β)

=
λ
∑n

i=1 ki

K
e−nλ · βα

Γ(α)
λα−1e−βλ

=
βα

Γ(α) ·K
λα−1+

∑n
i=1 kie−(β+n)λ,

which corresponds to a Gamma distribution with updated parameters α′ = α +
∑n

i=1 ki and
β′ = β + n.
From the Wikipedia entry on Gamma distribution, we have

Posterior mean:
α+

∑n
i=1 ki

β + n

Posterior mode:
(α+

∑n
i=1 ki − 1)+
β + n

,

where (x)+ = max{x, 0}

5. In light of these results, can you give an interpretation of the prior parameters α and β? What happens
in the limit as n → ∞?

We can interpret β as the number of ‘pseudo-samples’ seen before the experiment, and α to
be the sum of the ki’s observed in those pseudo-experiments. Our prior belief is as if we have
observed some instances of the experiment beforehand.
As n → ∞, the denominator is increasingly dominated by n, and the numerator is increasingly
dominated by

∑n
i=1 ki. Thus, the posterior mean and mode both become close to the empirical

mean. Our posterior for λ tends to the empirical mean.

3

https://en.wikipedia.org/wiki/Gamma_distribution


2 Maximum likelihood - Interpretation

Short answer: Suppose you flip a coin with unknown bias θ, Pr(x = H | θ) = θ, three times and observe
the outcome HHH. What is the maximum likelihood estimator for θ? Do you think this is a good estimator?
Would you want to use it to make predictions?

Let h1, h2, h3 be the random variables for the outcomes of the three tosses. Let h1 = 1 if x1 = H and
0 otherwise. The likelihood for the coin is given by

Pr(h1, h2, h3 | θ) = θ
∑3

i=1 hi(1− θ)3−
∑3

i=1 hi

Since we obtain three heads, the likelihood of this outcome is

Pr(h1 = 1, h2 = 1, h3 = 1 | θ) = θ3

The likelihood is maximized by θ = 1, which would be our maximum likelihood estimator. This
estimator is not very trustworthy, since we have tossed the coin only thrice, and obtaining three
heads is not that unlikely. For instance, even with an unbiased coin, we can obtain three consecutive
heads with probability 1/8, which is quite significant.
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3 Beta distribution - Intuition

The PDF for a Beta distribution is given by

P (ϕ | α, β) = 1

B(α, β)
xα−1(1− x)β−1
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For α = β, we observe that the PDF is symmetric about 0.5. As α = β increases, the function becomes
more concentrated about 0.5.
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For α < β, we observe that the PDF is skewed towards lower values of ϕ, whereas for β > α, the PDF is
skewed towards higher values. As α becomes smaller and β increases, the skew to the left becomes more
prominent. A similar property holds for a skew to the right, with the skew increasing as α becomes larger
and β smaller.

Intuition about α and β. What does a Beta prior for the bias θ of a coin mean? Here, the bias of the
coin is simply taken to be the probability of obtaining heads. A Beta prior B(α, β) is like having information
about α + β ‘pseudo’ coin tosses, out of which α were obtained to be heads and the remaining were tails.
Indeed, a smaller α and larger β moves our prior belief about the bias towards lower probabilities. On the
other hand, larger α and β means that our belief is skewed towards a high probability of obtaining heads.
Let us now take a look at some pathological cases of (α, β):
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We observe that for α < 1 or β < 1, the distribution is highly skewed. If both α and β are less than 1, the
distribution is bimodal, with very concentrated modes at zero and one.
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4 Conditional Distribution for 2-dimensional Gaussian distribu-
tion

Consider a multivariate Gaussian distribution in two variables. That is, we have

X ∼ N (µ,Σ),

with X,µ ∈ R2, and Σ ∈ R2×2. Let

µ =

[
µ1

µ2

]
, and Σ =

[
σ11 σ12

σ12 σ22

]
Here, σ11 = V(X1), σ22 = V(X2), σ12 = Cov(X1, X2) = Cov(X2, X1).
For a two dimensional matrix, we know that

Σ−1 =
1

(σ11σ22 − σ2
12)

[
σ22 −σ12

−σ12 σ11

]
We thus have

P (x;µ,Σ) =
1

2π|Σ|1/2
exp

(
−1

2

[
x1 − µ1

x2 − µ2

]T
Σ−1

[
x1 − µ1

x2 − µ2

])

=
1

2π|Σ|1/2
exp

(
−1

2

[
∆1

∆2

]T
Σ−1

[
∆1

∆2

])

=
1

2π|Σ|1/2
exp

(
− 1

2(σ11σ22 − σ2
12)

[
∆1 ∆2

] [ σ22 −σ12

−σ12 σ11

] [
∆1

∆2

])
=

1

2π|Σ|1/2
exp

(
− 1

2(σ11σ22 − σ2
12)

[
∆1σ22 −∆2σ12 ∆2σ11 −∆1σ12

] [∆1

∆2

])
=

1

2π|Σ|1/2
exp

(
− 1

2(σ11σ22 − σ2
12)

(
∆2

1σ22 −∆1∆2σ12 −∆1∆2σ12 +∆2
2σ11

))
=

1

2π|Σ|1/2
exp

(
−1

2
·
(
∆2

1σ22 − 2∆1∆2σ12 +∆2
2σ11

)
(σ11σ22 − σ2

12)

)
where ∆i = xi − µi for i ∈ {1, 2}.
By the marginal distribution of a Gaussian, we also have

P (x2;µ,Σ) =
1√

2πσ22
exp

(
− (x2 − µ2)

2

2σ22

)
=

1√
2πσ22

exp

(
− ∆2

2

2σ22

)
The conditional distribution of x1 given x2 is now given as

P (x1 | x2;µ,Σ) =
P (x;µ,Σ)

P (x2;µ,Σ)

=

1
2π|Σ|1/2 exp

(
− 1

2

[
∆1

∆2

]T
Σ−1

[
∆1

∆2

])
1√

2πσ22
exp

(
− ∆2

2

2σ22

)

=

√
2πσ22

2π|Σ|1/2
·
exp

(
− 1

2

[
∆1

∆2

]T
Σ−1

[
∆1

∆2

])
exp

(
− ∆2

2

2σ22

)
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Looking at the non-exponential part:

√
2πσ22

2π|Σ|1/2
=

√
σ22

2π(σ11σ22 − σ2
12)

=

√
1

2π(σ11 − σ2
12/σ22)

Simplifying the exponential part:

exp

(
− 1

2

[
∆1

∆2

]T
Σ−1

[
∆1

∆2

])
exp

(
− ∆2

2

2σ22

)
= exp

(
−1

2

[(
∆2

1σ22 − 2∆1∆2σ12 +∆2
2σ11

)
(σ11σ22 − σ2

12)
− ∆2

2

σ22

])

Focusing on the part inside the square brackets(
∆2

1σ22 − 2∆1∆2σ12 +∆2
2σ11

)
(σ11σ22 − σ2

12)
− ∆2

2

σ22

=
∆2

1σ
2
22 − 2∆1∆2σ12σ22 +∆2

2σ11σ22

(σ11σ22 − σ2
12)σ22

− ∆2
2σ11σ22 −∆2

2σ
2
12

(σ11σ22 − σ2
12)σ22

=
∆2

1σ
2
22 − 2∆1∆2σ12σ22 +∆2

2σ
2
12

(σ11σ22 − σ2
12)σ22

=
(∆1σ22 −∆2σ12)

2

(σ11σ22 − σ2
12)σ22

=
(∆1 −∆2σ12/σ22)

2

σ11 − σ2
12/σ22

Thus, the conditional distribution is

P (x1 | x2;µ,Σ) =
1√

2π(σ11 − σ2
12/σ22)

exp

−1

2
·

(
x1 −

{
µ1 + (x2 − µ2)

σ12

σ22

})2
σ11 − σ2

12/σ22


We observe that this is a Gaussian with mean µ̃ and variance σ̃, where

µ̃ = µ1 + (x2 − µ2)
σ12

σ22
, and

σ̃ = σ11 −
σ2
12

σ22
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