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1 Probability Spaces, Random Variables, and Notation

Just as we can construct shapes using geometry or abstract vector spaces using linear algebra, probability
allows us to create a mathematical construct known as a “probability space”. This is composed of three
elements:

1. The sample space Ω

2. The event space A or F

3. The probability function P

Probability Axioms This space requires the following axioms in order to be valid:

• 0 ≤ P(A) ≤ 1 for all A ∈ A

• P (Ω) = 1

• P (
⋃∞

i=1 Ai) =
∑∞

i=1 P (Ai) for any collection of disjoint events in the event space A1, A2, ...,

A random variable is a function that maps from the sample space to the reals. Intuitively, this means that
it assigns a real number to each outcome in the samples space. Symbolically, we can write this X : Ω → R.

2 Discrete and Continuous Probabilities

The event space A may be either discrete or continuous, which will affect how we describe it and what a
valid probability function P might look like.

Discrete Probabilities For a discrete probability space, the probability mass function (PMF) de-
scribes the likelihood that a random variable takes on a given value:

f(x) = P (X = x)

Another way to describe the probability of a discrete random variable is through the cumulative distri-
bution function (CDF)

F (x) = P (X ≤ x) =
∑
xi≤x

P (X = xi) =
∑
xi≤x

p(xi)
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Figure 1: An example from Deisenroth et al. Chapter 6
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Figure 2: Visualization of a discrete joint distribution. Credit: Deisenroth et al, Figure 6.2

Figure 3: Examples of probability functions for continuous and discrete distributions. Credit: Deisenroth et
al, Figure 6.3

Continuous Probabilities The probability mass function of a continuous function is not defined. Instead,
we discuss the probability density function (PDF):

P (a ≤ X ≤ b) =

∫ b

a

f(x) dx ∀a ≤ b

We can also discuss the CDF of a continuous function:

F (x) = P (X ≤ x) =

∫ x

−∞
f(x) dx

Note that a continuous probability function need not be less than or equal to 1, only have an area under the
curve of 1.

3 Rules of Probability

The “addition rule” and “product rule” allow us to speak of the likelihood of two events in the same
sample space. If we want to define the likelihood that either event x OR event y occurs, we can write

P (x ∪ y) = P (x) + P (y)− P (x ∩ y) addition rule

If we want to write the likelihood that event x AND y both occur, we can write

p(x ∩ y) = p(y | x)p(x) product rule
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p(y | x) = p(x ∩ y)

p(x)
.

The notation p(y|x) describes a conditional distribution. It describes the likelihood of an event y occur-
ring once we already know that the random variable X takes on value x.

If p(y|x) = p(y), the two events x and y are considered to be independent. This allows us to write
p(x ∩ y) = p(x)p(y). Note that this is not generally true, only for independent events.

Discussing the likelihood that two events both occur is so common that we can also use the notation p(x, y)
instead of p(x ∩ y). This is known as the “joint distribution”.

If we want to obtain a marginal distribution from a joint distribution we can “marginalize out” or “sum
out” a variable:

p(x) =

{∑
y∈Y p(x, y) if Y is discrete,∫

Y p(x, y) dy if Y is continuous.

Finally, we can use the fact that p(x, y) = p(x|y)p(y) = p(y|x)p(x) to derive Bayes’ rule

p(x | y)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(y | x)

prior︷︸︸︷
p(x)

p(y)︸︷︷︸
evidence

.

4 Summary Statistics and Independence

A statistic S for a random variable X ∈ X is a deterministic function S : X → Y of the random variable.

Means and covariances The expected value of a function g : R → R of a continuous random variable
X ∼ p is

EX [g(X)] =

∫
X
g(x)p(x)dx

For a discrete random variable, the integral can be replaced by a sum:

EX [g(X)] =
∑
x∈X

g(x)p(x)

For a vector-valued random variable X = (X1, . . . , Xd)
T , the expectation is computed element-wise: E[X] =

(E[X1], . . . ,E[Xd])
T .

Other statistics: The median of a univariate statistic is that value (or set of values) where the cumulative
distribution function P (x) = P(X ≤ x) is equal to 1/2. Intuitively, it divides the domain into two sections
which have equal weight. The mode is simply the most frequently occurring value – it is the point (or set
of points) where p(x) is the highest.

Linearity of expectation: If f(x) = ag(x) + bh(x), where a, b ∈ R and x ∈ Rd, then

EX [f(X)] = aEX [g(X)] + bEX [h(X)]
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Covariance: The covariance between two random variables X,Y ∈ R is given by

Cov[X,Y ] = EX,Y [(X − EX [X])(Y − EY [Y ])] = Cov[Y,X]

We also have the useful relation Cov[X,Y ] = EX,Y [XY ] − EX [X]EY [Y ]. The variance of X is simply its
covariance with itself, and Cov[X,Y ] ∈ R(d×d).

In multiple dimensions, we have the covariance between X,Y ∈ Rd as:

Cov[X,Y ] = EX,Y

[
(X − EX [X])(Y − EY [Y ])T

]
= Cov[Y,X]T

The covariance matrix is the covariance of X with itself:

V[X] = Cov[X,X] = EX

[
(X − EX [X])(X − EX [X])T

]
= EX [XXT ]− EX [X]EX [X]T

A quantity related to univariate covariance is the correlation (also called the correaltion coefficient):

corr[X,Y ] =
Cov[X,Y ]√

Cov[X,X] · Cov[Y, Y ]
∈ [−1, 1]

Empirical means and covariances The above statistics (mean and covariance) are defined over the
underlying distribution p(x); they are also called the population statistics. We also have the empirical
versions of these statistics computed over data x1, . . . ,xN ∈ Rd:

Empirical mean : x =
1

N

N∑
i=1

xi

Empirical covariance matrix : Σ =
1

N

n∑
i=1

(xi − x)(xi − x)T

We note that Σ is also symmetric and positive semi-definite.

Three expressions for the variance: The variance of a single univariate random variable X can be
expressed in various ways:

1. Standard definition:

VX [X] := EX [(X − µ)2], where µ = EX [X]

2. Raw score formula:

VX [X] := EX [X2]− µ2, where µ = EX [X]

3. Sum of squared differences: The empirical covariance can be written as

Σ =
1

N

N∑
i=1

(
Xi −X

)2
=

1

N

N∑
i=1

(
X2

i +X
2 − 2XiX

)
=

1

N

(
N∑
i=1

X2
i +

N∑
i=1

X
2 − 2

N∑
i=1

XiX

)
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=
1

N

(
N∑
i=1

X2
i +NX

2 − 2NX
2

)

=
1

N

(
N∑
i=1

X2
i −NX

2

)

=
1

N

 N∑
i=1

X2
i − 1

N

(
N∑
i=1

Xi

)2


=
1

N

 N∑
i=1

X2
i − 1

N

∑
i,j

XiXj


=

1

2N2

2N

N∑
i=1

X2
i − 2

∑
i,j

XiXj


=

1

2N2

N
N∑
i=1

X2
i +N

N∑
j=1

X2
j − 2

∑
i,j

XiXj


=

1

2N2

∑
i,j

X2
i +N

∑
i,j

X2
j − 2

∑
i,j

XiXj


=

1

2N2

∑
i,j

(Xi −Xj)
2

Statistical independence Two random variables X,Y are independent if and only if p(x, y) = p(x)p(y).
If X,Y are independent, then

• p(y | x) = p(y), and p(x | y) = p(x)

• Cov[X,Y ] = 0

• V[X + Y ] = V[X] + V[Y ] = V[X − Y ]

Conditional independence: Two random variables x, y are conditionally independent given z, if

p(x, y | z) = p(x | z)p(y | z)
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More Useful Identities For two random variables X,Y , we have

V[X + Y ] = V[X] + V[Y ] + Cov[X,Y ] + Cov[Y,X]

V[X − Y ] = V[X] + V[Y ]− Cov[X,Y ]− Cov[Y,X]

For a deterministic affine transformation y = Ax+ b, we have

EX [y] = AEX [X] + b

V[X] = EX

[
(AX −AEX [X])(AX −AEX [X])T

]
= EX

[
A(X − EX [X])(X − EX [X])TAT

]
= AEX

[
(X − EX [X])(X − EX [X])T

]
AT = AV[X]AT

5 Citations
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