
Bayesian model selection
In this course, we will learn about many kernel functions for probabilistic modeling. One major
question that we will need to address is how to choose a good kernel for a givenmodeling task. There
are some settings where prior knowledge can inform this decision but is there a more quantitative
way to select which kernel function to use? Even more generally, how do I select what probabilistic
model I should use to explain my data in the first place? These are questions of model selection,
and naturally there is a Bayesian approach to it.
Before we continue our discussion of model selection, we will first define the wordmodel: a model
is a parametric family of probability distributions, each of which which could explain some observed
dataset. Another way to explain the concept of a model is that if we have chosen a likelihood
p(D | θ) for our data, which depends on a parameter θ, then the model is the set of all likelihoods
(each one of which is a distribution over D) for every possible value of the parameter θ.
As an example, consider the setting of coin flipping: flipping a coin n times with an unknown bias
θ and observing the number of heads x, the model is{

p(x | n, θ)
}
=

{
Binomial(x, n, θ)

}
,

where there is a binomial distribution for every possible θ ∈ (0, 1). In the Bayesian method, we
maintain a belief over which elements in the model we consider plausible by reasoning about
p(θ | D) via Bayes’ theorem.
Suppose now that I have at my disposal a finite set of models {Mi}ni=1 that I may use to explain
my observed data D, and let us write θi for the parameters of model Mi. How do we know which
model to prefer? We can work out the posterior probability over the models via Bayes’ theorem:

Pr(Mi | D) =
p(D | Mi) Pr(Mi)∑
j p(D | Mj) Pr(Mj)

.

Here Pr(Mi) is a prior distribution over models that we have selected; a common practice is to set
this to a uniform distribution over the models. The value p(D | Mi) may also be written in a more
familiar form:

p(D | Mi) =

∫
p(D | θi,Mi)p(θi | Mi) dθi.

This is exactly the denominator when applying Bayes’ theorem to find the posterior p(θi | D,Mi)!

p(θi | D,Mi) =
p(D | θi,Mi)p(θi | Mi)∫
p(D | θi,Mi)p(θi | Mi) dθi

=
p(D | θi,Mi)p(θi | Mi)

p(D | Mi)
,

where we have made the conditioning onMi explicit. In the context of model selection, the term
p(D | Mi) is known as the model evidence or simply the evidence. One interpretation of the
model evidence is the probability that your model could have generated the observed data, under
the chosen prior belief over its parameters θi.
If we have only two models for the observed data that we wish to compare, M1 and M2, it is
easiest to compute the posterior odds or the ratio of the models’ probabilities given the data:

Pr(M1 | D)

Pr(M2 | D)
=

Pr(M1)p(D | M1)

Pr(M2)p(D | M2)
=

Pr(M1)
∫
p(D | θ1,M1)p(θ1 | M1) dθ1

Pr(M2)
∫
p(D | θ2,M2)p(θ2 | M2) dθ2

,

which is simply the prior odds multiplied by the ratio of the evidence for each model. The latter
quantity is also called the Bayes factor in favor ofM1. Publishing Bayes factors allows another
practitioner to easily substitute their own model priors and derive their own conclusions about the
models being considered.
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Example (fromWikipedia’s article on Bayes factor)

Suppose I am presented with a coin and want to compare two models for explaining its behavior.
The first model,M1, assumes that the heads probability is fixed to 1/2 (this model does not have any
parameters). The second model,M2, assumes that the heads probability is fixed to an unknown
value θ ∈ (0, 1), with a uniform prior on θ: p(θ | M2) = 1 (this is equivalent to a beta prior on θ
with α = β = 1). For simplicity, we choose a uniform model prior: Pr(M1) = Pr(M2) = 1/2.
Suppose we flip the coin n = 200 times and observe x = 115 heads. Which model should we prefer
in light of this data? We compute the model evidence for each model. The model evidence for M1

is quite straightforward, as it has no parameters:

Pr(x | n,M1) = Binomial(n, x, 1/2) =

(
200

115

)
1

2200
≈ 0.005956.

The model evidence forM2 requires integrating over the parameter θ:

Pr(x | n,M2) =

∫
Pr(x | n, θ,M2)p(θ | M2) dθ

=

∫ 1

0

(
200

115

)
θ115(1− θ)200−115 dθ =

1

201
≈ 0.004975.

The Bayes factor in favor of M1 is approximately 1.2, so the data give very weak evidence in favor
of the simpler modelM1.
An interesting aside here is that a frequentist hypothesis test would reject the null hypothesis
θ = 1

2 at the α = 0.05 level. The probability of generating at least 115 heads under modelM1 is
approximately 0.02 and similarly, the probability of generating at least 115 tails is also 0.02, so a
two-sided test would give a p-value of approximately 4%.

Occam’s razor

One spin on Bayesian decision theory is that it automatically gives a preference towards simpler
models, in line with Occam’s razor. One way to see this is to consider the model evidence p(D | M)
as a probability distribution over datasets D. More complex models can explain more datasets, so
the support of this distribution is wider in the sample space. But note that the distribution must
normalize over the sample space as well, so we pay a price for generality. When moving from a
simpler model to a more complex model, the probability of some datasets that are well explained by
the simpler model must inevitably decrease to “give up” probability mass for the newly explained
datasets in the widened support of the more-complex model. The model selection process then
drives us to select the model that is “just complex enough” to explain the data at hand.
In the coin flipping example above, modelM1 can only explain datasets with empirical heads prob-
ability reasonably near 1/2. An observation of 200 heads, for example, would have astronomically
small probability under this model. The second modelM2 can explain any set of observations by
selecting an appropriate θ. The price for this generality, though, is that datasets with a roughly
equal number of heads and tails have a smaller prior probability under the model than before.
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Bayesian Model Averaging
Note that a “fully Bayesian” approach to models would eschew model selection entirely. Instead,
when making predictions, we should theoretically use the sum rule to marginalize the unknown
model, giving rise to the model-marginal predictive distribution:

p(y∗ | x∗,D) =
∑
i

p(y∗ | x∗,D,Mi) Pr(Mi | D).

Such an approach is called Bayesian model averaging. Although this is sometimes seen, model
selection is much more common because the computational overhead of using a single model is
much lower than having to continually retrain multiple models. Also, the model-marginal predictive
distribution tends to have annoying analytic properties, which can make it difficult to work with.
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