The Kernel Trick

Consider the assumption of linear regression with an explicit feature transformation ¢: x — ¢(x):
y(x) = 6(x)Tw +e(x).

Given training data D = {(x,y) };;1 = (X,y), we first apply ¢ to each data point:

¢(X1)T

e =9(X) = :

P(xn)"

Next, we proceed as we did before by modeling the residuals €(x) as zero-mean independent,

identically distributed Gaussians with variance o%:

p(e) = N(g;0,0°T),
giving rise to the following likelihood:

p(y | @, w,0%) = N(y; @w,0’l).

In Bayesian linear regression, we further chose a multivariate Gaussian prior for w:
p(w) = N(w; p, 3).

For simplicity, in the derivations below, we will assume the prior mean for w is pt = 0.

Given these assumptions, we can derive the posterior distribution of w given the (transformed)
data D:
2
p(W ‘ DaU ) :N(W;Hw\szw\D)a

where
ip = 2@ (BED +0°T)y;
Sup =220 (22® + )O3

If we wish to use our model to predict the outputs y* associated with a set of inputs X*, we
previously derived:

ply™ | @ = ¢(X*),D,0%) = N(y*; " oy, " T p @™ + 0°T).

Examining the forms of these expressions (after plugging in the posteriors 1., and X|p, we see
that the feature expansion ¢ always appears in one of the following expressions:

30 35 1l 35k 30 % S

The entries of these matrices are always of the form ¢(x) " ¢ (x’), where x and x’ are two arbitrary
inputs. To simplify our expressions, we can define a function

K(x,x') = ¢(x) Zo(x).



Because X is positive definite, it has a “matrix square root”, "/? with the property (£"/?)2 = 3.1

If we define the function 1(x) = X"?¢(x), we can see that K is simply an inner product:
K(x,x) = 9(x) "$(x).

Such a function K is called a kernel or covariance function. Valid kernel functions are guaranteed
to always produce positive semi-definite Gram matrices: a Gram matrix is a square matrix of inner
products between pairs of elements. Formally, given a set of vectors

X1
X:
X'I’L

the Gram matrix
[K(x1,x1)  K(x1,%2) - K(x1,%p)
K(Xanl) K(X27X2) K(X2)XTL)

KX, X)= . . .

K(X'naxl) K(X'mXZ) K(X'naxn)

Y(x1) Tp(xa)  p(xa) T W(xe) oo (xa) T U(xn)
P(x2) TY(x1)  h(x2) Th(x2) oo W(x2) TY(xn)

[ 6ca) k) D) ) k) )
is positive semi-definite V sets X.

Sometimes it is possible to specify a covariance function K directly without ever computing the
feature map explicitly. With such a function, we could perform efficient Bayesian linear regression
even with a high-dimensional (or infinite dimensional) feature expansion ¢ implicitly. This idea of
computing inner products in a feature space directly is called the kernel trick and has been the
basis of a large amount of work in the machine-learning community. Effectively, any algorithm
that operates purely in terms of inner products between input vectors can be made nonlinear by
replacing normal inner products with the evaluation of a kernel.

With this definition, we may rewrite the predictive distribution for y*:
p(y. | X", D,0%) = N(y*; ty~ip, Ky ),
where
pryep = K(X*, X) (K(X,X) +0%1) y;
Kyoip = K(X*,X*) — K(X*, X)(K(X,X) + 0°T) T K(X, X*) + 0°T".

You can prove this via the singular value decomposition (svp): 3 = UDU T, where U is unitary and D is diagonal
with positive entries (because X is positive definite), then =2 =UD/?2UT as UTU =1L



Examples

Perhaps the most-commonly used kernel is the squared exponential covariance function:

_~'2
K(x,x ;A\ 0) = X exp<_||xze;(||)7

where A and ¢ are hyperparameters that control the covariance function’s behavior. The former is
simply a multiplicative scaling constant (you can think of this as an implicit scalar multiplication in
the implicit feature map ¢). The latter takes the role of a length scale; vectors separated by more
than a couple length scales will have a kernel value near zero.

An example of Bayesian linear regression using this kernel function is shown in Figure 1. We
see that the use of this kernel function allowed us to achieve nice nonlinear regression without
computing explicit basis expansions. In fact, you can show that the squared exponential kernel
corresponds to an infinite-dimensional basis expansion, where we use a Gaussian basis function
centered on every point. Such a feature expansion would be impossible to use if we attempted to
use explicit feature computation.

2 -—
1 —
(]
0 —
>
—1 4
® observations D
true function f(x)
9 Hy.|D
C+2,/diag Ky |p
T T T T T T T 1
—4 -3 -2 -1 0 1 2 3 4

Figure 1: Example of Bayesian linear regression using the squared exponential covariance function.
The true function is f = sin(x). The kernel parameters are A = ¢ = 1, and the noise variance was
set to 02 = 0.12.

Sometimes thinking in terms of the kernel can help even when you have an explicit feature expansion
on hand. As an example, imagine our inputs are binary vectors of length n (so each input x is a
subset, a member of the power set P(n)). One rather expensive feature expansion we could try
would be to enumerate every member of P(n) and define ¢(x); = s; C x, where s; is the i
element of the power set. So we represent our set x by a feature vector of length 2" indicating
every subset of x. This is a very expensive feature expansion, requiring exponential space to store
for each input. However, if we take 3 = I, we can compute the dot product as:

K(x,x') = 2'””03”/‘7

which only requires time and space linear in n!



