The Gaussian distribution

Probably the most-important distribution in all of statistics is the **Gaussian distribution**, also called the **normal distribution**. The Gaussian distribution arises in many contexts and is widely used for modeling continuous random variables.

The probability density function of the univariate (one-dimensional) Gaussian distribution is

$$p(x \mid \mu, \sigma^2) = \mathcal{N}(x; \mu, \sigma^2) = \frac{1}{Z} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right).$$

The normalization constant Z is

$$Z = \sqrt{2\pi\sigma^2}.$$

The parameters μ and σ^2 specify the mean and variance of the distribution, respectively:

$$\mu = \mathbb{E}[x]; \qquad \sigma^2 = \text{var}[x].$$

Figure 1 shows the probability density function for several sets of parameters (μ, σ^2) . The distribution is symmetric around the mean and most of the density ($\approx 99.7\%$) is contained within $\pm 3\sigma$ of the mean.

Figure 1: Examples of univariate Gaussian PDFs $\mathcal{N}(x;\mu,\sigma^2)$.

We can extend the univariate Gaussian distribution to a distribution over d-dimensional vectors, producing the multivariate analog. The probability density function of the multivariate Gaussian distribution is

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{Z} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right).$$

The normalization constant Z is

$$Z = \sqrt{\det(2\pi\Sigma)} = (2\pi)^{d/2} (\det \Sigma)^{1/2}.$$

Examining these equations, we can see that the multivariate density coincides with the univariate density in the special case when Σ is the scalar σ^2 .

Again, the vector μ specifies the mean of the multivariate Gaussian distribution. The matrix Σ specifies the **covariance** between each pair of variables in \mathbf{x} :

$$\Sigma = \text{cov}(\mathbf{x}, \mathbf{x}) = \mathbb{E}[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\top}].$$

Covariance matrices are necessarily symmetric and **positive semidefinite**, which means their eigenvalues are nonnegative. Note that the density function above requires that Σ be **positive definite**, or have strictly positive eigenvalues. A zero eigenvalue would result in a determinant of zero, making the normalization impossible.

The dependence of the multivariate Gaussian density on ${\bf x}$ is entirely through the value of the quadratic form

$$\Delta^2 = (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}).$$

The value Δ (obtained via a square root) is called the **Mahalanobis distance**, and can be seen as a generalization of the Z-score $\frac{(x-\mu)}{\sigma}$, often encountered in statistics.

To understand the behavior of the density geometrically, we can set the Mahalanobis distance to a constant. The set of points in \mathbb{R}^d satisfying $\Delta = c$ for any given value c > 0 is an ellipsoid with the eigenvectors of Σ defining the directions of the principal axes.

Figure 2: Contour plots for example bivariate Gaussian distributions. Here $\mu=0$ for all examples.

Figure 2 shows contour plots of the density of three bivariate (two-dimensional) Gaussian distributions. The elliptical shape of the contours is clear.

The Gaussian distribution has a number of convenient analytic properties, some of which we describe below.

Marginalization

Often we will have a set of variables \mathbf{x} with a joint multivariate Gaussian distribution, but only be interested in reasoning about a subset of these variables. Suppose \mathbf{x} has a multivariate Gaussian distribution:

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\Sigma}).$$

Let us partition the vector into two components:

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$$
.

We partition the mean vector and covariance matrix in the same way:

$$oldsymbol{\mu} = egin{bmatrix} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{bmatrix} \qquad oldsymbol{\Sigma} = egin{bmatrix} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{bmatrix}.$$

Now the marginal distribution of the subvector \mathbf{x}_1 has a simple form:

$$p(\mathbf{x}_1 \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{x}_1, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11}),$$

so we simply pick out the entries of μ and Σ corresponding to x_1 .

Figure 3 illustrates the marginal distribution of x_1 for the joint distribution shown in Figure 2(c).

Figure 3: Marginalization example. (a) shows the joint density over $\mathbf{x} = [x_1, x_2]^{\top}$; this is the same density as in Figure 2(c). (b) shows the marginal density of x_1 .

Conditioning

Another common scenario will be when we have a set of variables \mathbf{x} with a joint multivariate Gaussian prior distribution, and are then told the value of a subset of these variables. We may then condition our prior distribution on this observation, giving a posterior distribution over the remaining variables.

Suppose again that x has a multivariate Gaussian distribution:

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\Sigma}),$$

and that we have partitioned as before: $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2]^{\top}$. Suppose now that we learn the exact value of the subvector \mathbf{x}_2 . Remarkably, the posterior distribution

$$p(\mathbf{x}_1 \mid \mathbf{x}_2, \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

is a Gaussian distribution! The formula is

$$p(\mathbf{x}_1 \mid \mathbf{x}_2, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{x}_1; \boldsymbol{\mu}_{1|2}, \boldsymbol{\Sigma}_{11|2}),$$

with

$$egin{aligned} m{\mu}_{1|2} &= m{\mu}_1 + m{\Sigma}_{12} m{\Sigma}_{22}^{-1} (\mathbf{x}_2 - m{\mu}_2); \ m{\Sigma}_{11|2} &= m{\Sigma}_{11} - m{\Sigma}_{12} m{\Sigma}_{22}^{-1} m{\Sigma}_{21}. \end{aligned}$$

So we adjust the mean by an amount dependent on: (1) the covariance between \mathbf{x}_1 and \mathbf{x}_2 , Σ_{12} , (2) the prior uncertainty in \mathbf{x}_2 , Σ_{22} , and (3) the deviation of the observation from the prior mean, $(\mathbf{x}_2 - \boldsymbol{\mu}_2)$. Similarly, we reduce the uncertainty in \mathbf{x}_1 , Σ_{11} , by an amount dependent on (1) and (2). Notably, the reduction of the covariance matrix does *not* depend on the values we observe.

Notice that if \mathbf{x}_1 and \mathbf{x}_2 are independent, then $\Sigma_{12} = \mathbf{0}$, and the conditioning operation does not change the distribution of \mathbf{x}_1 , as expected.

Figure 4 illustrates the conditional distribution of x_1 for the joint distribution shown in Figure 2(c), after observing $x_2 = 2$.

Figure 4: Conditioning example. (a) shows the joint density over $\mathbf{x} = [x_1, x_2]^{\top}$, along with the observation value $x_2 = 2$; this is the same density as in Figure 2(c). (b) shows the conditional density of x_1 given $x_2 = 2$.

Affine transformations

Consider a d-dimensional vector \mathbf{x} with a multivariate Gaussian distribution:

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\Sigma}).$$

Suppose we wish to reason about an affine transformation of \mathbf{x} into \mathbb{R}^D , $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{b}$, where $\mathbf{A} \in \mathbb{R}^{D \times d}$ and $\mathbf{b} \in \mathbb{R}^D$. Then \mathbf{y} has a D-dimensional Gaussian distribution:

$$p(\mathbf{y} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}, \mathbf{A}, \mathbf{b}) = \mathcal{N}(\mathbf{y}, \mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\top}).$$

Figure 5 illustrates an affine transformation of the vector \mathbf{x} with the joint distribution shown in Figure 2(c), for the values

$$\mathbf{A} = \begin{bmatrix} 1/5 & -3/5 \\ 1/2 & 3/10 \end{bmatrix}; \qquad \mathbf{b} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

Figure 5: Affine transformation example. (a) shows the joint density over $\mathbf{x} = [x_1, x_2]^{\top}$; this is the same density as in Figure 2(c). (b) shows the density of $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{b}$. The values of \mathbf{A} and \mathbf{b} are given in the text. The density of the transformed vector is another Gaussian.

The density has been rotated and translated, but remains a Gaussian.

Pointwise multiplication

Another remarkable fact about multivariate Gaussian density functions is that pointwise multiplication gives another (unnormalized) Gaussian PDF:

$$\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) \, \mathcal{N}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) = \frac{1}{Z} \mathcal{N}(\mathbf{x}; \boldsymbol{\omega}, \mathbf{T}),$$

where

$$\begin{split} \mathbf{T} &= (\mathbf{\Sigma}^{-1} + \mathbf{P}^{-1})^{-1} \\ \boldsymbol{\omega} &= \mathbf{T}(\mathbf{\Sigma}^{-1} \boldsymbol{\mu} + \mathbf{P}^{-1} \boldsymbol{\nu}) \\ Z^{-1} &= \mathcal{N}(\boldsymbol{\mu}; \boldsymbol{\nu}, \mathbf{\Sigma} + \mathbf{P}) = \mathcal{N}(\boldsymbol{\nu}; \boldsymbol{\mu}, \mathbf{\Sigma} + \mathbf{P}). \end{split}$$

Convolutions

Gaussian probability density functions are closed under convolutions. Let \mathbf{x} and \mathbf{y} be d-dimensional vectors, with distributions

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}); \qquad p(\mathbf{y} \mid \boldsymbol{\nu}, \mathbf{P}) = \mathcal{N}(\mathbf{y}; \boldsymbol{\nu}, \mathbf{P}).$$

Then the convolution of their density functions is another Gaussian PDF:

$$f(\mathbf{y}) = \int \mathcal{N}(\mathbf{y} - \mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) \, \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) \, d\mathbf{x} = \mathcal{N}(\mathbf{y}; \boldsymbol{\mu} + \boldsymbol{\nu}, \boldsymbol{\Sigma} + \mathbf{P}),$$

where the mean and covariances add in the result.

If we assume that \mathbf{x} and \mathbf{y} are independent, then the distribution of their sum $\mathbf{z} = \mathbf{x} + \mathbf{y}$ will also have a multivariate Gaussian distribution, whose density is precisely the convolution of the individual densities:

$$p(\mathbf{z} \mid \boldsymbol{\mu}, \boldsymbol{\nu}, \boldsymbol{\Sigma}, \mathbf{P}) = \mathcal{N}(\mathbf{z}; \boldsymbol{\mu} + \boldsymbol{\nu}, \boldsymbol{\Sigma} + \mathbf{P}).$$

These results will often come in handy.

Selecting parameters

The d-dimensional multivariate Gaussian distribution is specified by the parameters μ and Σ . Without any further restrictions, specifying μ requires d parameters and specifying Σ requires a further $\binom{d}{2} = \frac{d(d-1)}{2}$ parameters. The number of parameters therefore grows quadratically in the dimension, which can sometimes cause difficulty. For this reason, we sometimes restrict the covariance matrix Σ in some way to reduce the number of parameters.

Common choices are to set $\Sigma = \operatorname{diag} \tau$, where τ is a vector of marginal variances, and $\Sigma = \sigma^2 \mathbf{I}$, a constant diagonal matrix. Both of these options assume independence between the variables in \mathbf{x} . The former case is more flexible, allowing a different scale parameter for each entry, whereas the latter assumes an equal marginal variance of σ^2 for each variable. Geometrically, the densities are axis-aligned, as in Figure 2(a), and in the latter case, the isoprobability contours are spherical (also as in Figure 2(a)).