
The Gaussian distribution
Probably the most-important distribution in all of statistics is the Gaussian distribution, also
called the normal distribution. The Gaussian distribution arises in many contexts and is widely
used for modeling continuous random variables.
The probability density function of the univariate (one-dimensional) Gaussian distribution is

p(x | µ, σ2) = N (x;µ, σ2) =
1

Z
exp

(
− (x− µ)2

2σ2

)
.

The normalization constant Z is
Z =

√
2πσ2.

The parameters µ and σ2 specify the mean and variance of the distribution, respectively:

µ = E[x]; σ2 = var[x].

Figure 1 shows the probability density function for several sets of parameters (µ, σ2). The distribu-
tion is symmetric around the mean and most of the density (≈ 99.7%) is contained within ±3σ of
the mean.
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Figure 1: Examples of univariate Gaussian pdfs N (x;µ, σ2).
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We can extend the univariate Gaussian distribution to a distribution over d-dimensional vectors,
producing the multivariate analog. The probability density function of the multivariate Gaussian
distribution is

p(x | µ,Σ) = N (x;µ,Σ) =
1

Z
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
.

The normalization constant Z is

Z =
√

det(2πΣ) = (2π)
d/2(detΣ)

1/2.

Examining these equations, we can see that the multivariate density coincides with the univariate
density in the special case when Σ is the scalar σ2.
Again, the vector µ specifies the mean of the multivariate Gaussian distribution. The matrix Σ
specifies the covariance between each pair of variables in x:

Σ = cov(x,x) = E
[
(x− µ)(x− µ)⊤

]
.

Covariance matrices are necessarily symmetric and positive semidefinite, which means their
eigenvalues are nonnegative. Note that the density function above requires that Σ be positive
definite, or have strictly positive eigenvalues. A zero eigenvalue would result in a determinant of
zero, making the normalization impossible.
The dependence of the multivariate Gaussian density on x is entirely through the value of the
quadratic form

∆2 = (x− µ)⊤Σ−1(x− µ).

The value ∆ (obtained via a square root) is called the Mahalanobis distance, and can be seen as a
generalization of the Z-score (x−µ)

σ , often encountered in statistics.
To understand the behavior of the density geometrically, we can set the Mahalanobis distance to a
constant. The set of points in Rd satisfying ∆ = c for any given value c > 0 is an ellipsoid with
the eigenvectors of Σ defining the directions of the principal axes.
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Figure 2: Contour plots for example bivariate Gaussian distributions. Here µ = 0 for all examples.

Figure 2 shows contour plots of the density of three bivariate (two-dimensional) Gaussian distribu-
tions. The elliptical shape of the contours is clear.
The Gaussian distribution has a number of convenient analytic properties, some of which we
describe below.

2



Marginalization

Often we will have a set of variables x with a joint multivariate Gaussian distribution, but only be
interested in reasoning about a subset of these variables. Suppose x has a multivariate Gaussian
distribution:

p(x | µ,Σ) = N (x,µ,Σ).

Let us partition the vector into two components:

x =

[
x1

x2

]
.

We partition the mean vector and covariance matrix in the same way:

µ =

[
µ1

µ2

]
Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Now the marginal distribution of the subvector x1 has a simple form:

p(x1 | µ,Σ) = N (x1,µ1,Σ11),

so we simply pick out the entries of µ and Σ corresponding to x1.
Figure 3 illustrates the marginal distribution of x1 for the joint distribution shown in Figure 2(c).
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Figure 3: Marginalization example. (a) shows the joint density over x = [x1, x2]
⊤; this is the same

density as in Figure 2(c). (b) shows the marginal density of x1.

Conditioning

Another common scenario will be when we have a set of variables x with a joint multivariate
Gaussian prior distribution, and are then told the value of a subset of these variables. We may
then condition our prior distribution on this observation, giving a posterior distribution over the
remaining variables.
Suppose again that x has a multivariate Gaussian distribution:

p(x | µ,Σ) = N (x,µ,Σ),
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and that we have partitioned as before: x = [x1,x2]
⊤. Suppose now that we learn the exact value

of the subvector x2. Remarkably, the posterior distribution

p(x1 | x2,µ,Σ)

is a Gaussian distribution! The formula is

p(x1 | x2,µ,Σ) = N (x1;µ1|2,Σ11|2),

with

µ1|2 = µ1 +Σ12Σ
−1
22 (x2 − µ2);

Σ11|2 = Σ11 −Σ12Σ
−1
22 Σ21.

So we adjust the mean by an amount dependent on: (1) the covariance between x1 and x2, Σ12,
(2) the prior uncertainty in x2, Σ22, and (3) the deviation of the observation from the prior mean,
(x2 − µ2). Similarly, we reduce the uncertainty in x1, Σ11, by an amount dependent on (1) and (2).
Notably, the reduction of the covariance matrix does not depend on the values we observe.
Notice that if x1 and x2 are independent, then Σ12 = 0, and the conditioning operation does not
change the distribution of x1, as expected.
Figure 4 illustrates the conditional distribution of x1 for the joint distribution shown in Figure 2(c),
after observing x2 = 2.
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Figure 4: Conditioning example. (a) shows the joint density over x = [x1, x2]

⊤, along with the
observation value x2 = 2; this is the same density as in Figure 2(c). (b) shows the conditional
density of x1 given x2 = 2.
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Affine transformations

Consider a d-dimensional vector x with a multivariate Gaussian distribution:

p(x | µ,Σ) = N (x,µ,Σ).

Suppose we wish to reason about an affine transformation of x into RD , y = Ax + b, where
A ∈ RD×d and b ∈ RD . Then y has a D-dimensional Gaussian distribution:

p(y | µ,Σ,A,b) = N (y,Aµ+ b,AΣA⊤).

Figure 5 illustrates an affine transformation of the vector x with the joint distribution shown in
Figure 2(c), for the values

A =

[
1/5 −3/5
1/2 3/10

]
; b =

[
1
−1

]
.
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(b) p(y | µ,Σ,A,b)

Figure 5: Affine transformation example. (a) shows the joint density over x = [x1, x2]
⊤; this is the

same density as in Figure 2(c). (b) shows the density of y = Ax+ b. The values ofA and b are
given in the text. The density of the transformed vector is another Gaussian.

The density has been rotated and translated, but remains a Gaussian.

Pointwise multiplication

Another remarkable fact about multivariate Gaussian density functions is that pointwise multipli-
cation gives another (unnormalized) Gaussian pdf:

N (x;µ,Σ)N (x;ν,P) =
1

Z
N (x;ω,T),

where

T = (Σ−1 +P−1)−1

ω = T(Σ−1µ+P−1ν)

Z−1 = N (µ;ν,Σ+P) = N (ν;µ,Σ+P).
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Convolutions

Gaussian probability density functions are closed under convolutions. Let x and y be d-dimensional
vectors, with distributions

p(x | µ,Σ) = N (x;µ,Σ); p(y | ν,P) = N (y;ν,P).

Then the convolution of their density functions is another Gaussian pdf:

f(y) =

∫
N (y − x;ν,P)N (x;µ,Σ) dx = N (y;µ+ ν,Σ+P),

where the mean and covariances add in the result.
If we assume that x and y are independent, then the distribution of their sum z = x + y will
also have a multivariate Gaussian distribution, whose density is precisely the convolution of the
individual densities:

p(z | µ,ν,Σ,P) = N (z;µ+ ν,Σ+P).

These results will often come in handy.

Selecting parameters
The d-dimensional multivariate Gaussian distribution is specified by the parameters µ and Σ.
Without any further restrictions, specifying µ requires d parameters and specifying Σ requires
a further

(
d
2

)
= d(d−1)

2 parameters. The number of parameters therefore grows quadratically in
the dimension, which can sometimes cause difficulty. For this reason, we sometimes restrict the
covariance matrix Σ in some way to reduce the number of parameters.
Common choices are to setΣ = diag τ , where τ is a vector of marginal variances, andΣ = σ2I, a
constant diagonal matrix. Both of these options assume independence between the variables in x.
The former case is more flexible, allowing a different scale parameter for each entry, whereas the
latter assumes an equal marginal variance of σ2 for each variable. Geometrically, the densities are
axis-aligned, as in Figure 2(a), and in the latter case, the isoprobability contours are spherical (also
as in Figure 2(a)).
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