Sampling for Bayesian Neural Networks

Another common approach to dealing with intractable posteriors is to sample from them and
treat the samples as representative of the entire distribution. Formally, this procedure makes the
following approximation:

S

p(0° |x.0) = [bl |x'w)plw | D) Z %, w)

where wg ~ p(w | D) are samples from the intractable posterior. One interpretation of this method
is that instead of using just a single setting of the weights e.g., w*, we instead consider an ensemble
of networks, each one with a different set of weights, w.

Rejection Sampling

Unfortunately, sampling from the distribution p(w | D) is nontrivial in many settings, including
Bayesian neural networks. Consider, for example, rejection sampling, one common algorithm for
drawing exact samples from an intractable distribution. This algorithm, detailed in Algorithm 1
and depicted pictorially in Figure 1, samples a point from some proposal distribution ¢ and then
“accepts” that point with probability proportional to its likelihood under the target distribution.
Crucially, this algorithm works even if the target distribution is only known up to normalization
ie., it suffices to be able to compute p(D | w) p(w) x p(w | D), which is incredibly important
given that p(w | D) is assumed to be intractable. We do require that the proposal distribution ¢
dominates or is greater than p(D | w) p(w) ¥V w, which can be achieved via scaling.

Algorithm 1: Rejection Sampling

input :simple proposal distribution ¢(w) e.g., s a standard multivariate Gaussian N (0, 1),
scaling constant k s.t. kg(w) > p(w | D) = p(D | w)p(w) x p(w | D) Vw

output:sample from p(w | D), wy
while TRUE do

Draw a sample from ¢, w,

Draw a value uniformly at random from [0, kg(w)], us

if us < p(ws | D) then

| BREAK

end
end
RETURN w;

In his Ph.D. thesis, Radford Neal (1993) conducted a small experiment where he drew 10 samples
from the posterior of a very simple Bayesian neural network (one hidden layer with 16 nodes):
using rejection sampling to draw these 10 samples, even after tailoring the proposal distribution
and scaling constant, required 2.6 million samples from the proposal distribution!

https://ia600600.us.archive.org/7/items/mathematics_202103/Applied%20mathematics-Probabilistic%20Inference%20Using%20Markov%20Chain%20Monte%20Carlo%20Methods%20-%20R.%20Neal.pdf

- am = = -

Figure 1: A depiction of two iterations of rejection sampling. The blue curve is the proposal
distribution multiplied by a scaling constant and the green curve is proportional to the target
distribution. The first sampled point w; would be “rejected” while the second sampled point wo
would be “accepted”.

Importance Sampling

An alternative to rejection sampling, which can waste or “reject” a lot of samples, is importance
sampling. Like rejection sampling, importance sampling also leverages an easy to sample from
proposal distribution; however, instead of directly rejecting “bad” or unlikely samples, importance
sampling reweights samples according to their likelihood under the intractable posterior. Formally,
given a proposal distribution ¢, importance sampling leverages the following approximation:

[otw 15 wiptw [D)aw = [oty 1t w) 2 ID) o aw

1 * * p<w3 | D) 1 5 * *
~ = Py | X W) ——— = — Csply | X, W
5P X w)EIESS = 5 ey’ |1 w)

where w, ~ ¢(w) and ¢; = P(ws|D)/g(w,); written in this form, we can interpret importance
sampling as approximating the posterior as a weighted average of samples drawn from ¢ where the
weights are determined by plausible each sample is under p(w | D).

In the form above, importance sampling requires the ability to compute the true but intractable
posterior p(w, | D). However, much like rejection sampling, we can still use importance sampling
even when the posterior is only known up to normalization i.e., using just p(D | w) p(w):

) PWID) e L w1y PP IW) (W)
[t 12w PR gy dw = 5 ot) B2 () a

S S

1 * * p(D | WS) p(wS) 1 ~ * *

~ oo S ply |t w) PRI N by | X, ws)
SZ p q(ws) SZ p

where

S
Z:/p(D|w)p(w)dw:/wq(w)dw% IZM: 12 ..

q(w)
Substituting this result into the equation above gives the desired result:

) POV D) N B e) where g, — PO W) pws)
J 0 o P)t = 37 gl ¥ e where = P T

While less wasteful than rejection sampling, importance sampling can also struggle or be inaccurate
if the proposal distribution ¢ is very different from the true, intractable posterior. In particular, what
tends to occur is that the weight on almost all of the samples is very small and the approximation
becomes a function of just a small number of samples; in effect, it is as if we “rejected” a bunch
of samples by simply assigning them a weight near zero! In such cases, we often turn towards
approximate sampling methods as opposed to trying to draw exact samples.

Markov Chain Monte Carlo

A popular class of approximate sampling techniques are known as Markov chain Monte Carlo
(mcMmc) methods. The idea behind these methods is that we maintain a Markov chain or sequence of
samples {wy, Wa,...wy, ...} defined by a stochastic transition function from the current sample, wy,
to the next, wy, 1. If the transition function meets certain properties related to the target distribution
then eventually (i.e., after sufficiently many steps or transitions), the Markov chain will converge
to a “stationary” or “equilibrium” distribution and samples from this stationary distribution are
approximate samples from the target distribution, p(w | D).

As a simple example, suppose we are trying to approximate a discrete distribution over three
possible values or states:

s
Il
(SIS [V

Consider the transition matrix

T = where T;; = the probability of transitioning from state 4 to state j.

O[O |- [N
N O N
O 0=

We will say that p* is an invariant distribution of T" as T'p* = p*. In addition, p* is the equilibrium
distribution of T" as

1 0 0
TN 10| ~ TN [1| =~ TV |0| ~ p* for sufficiently large N.
0 0 1

Our goal in this context will be to develop transition functions such that a) the equilibrium distribu-
tion is a good approximation for the true, intractable posterior and b) the number of steps needed
to converge to the equilibrium distribution is low.

The various mcMmc methods differ in how they compute the transitions from one sample to the next;
we will explore a few of the commonly-used Mmcmc algorithms below.

Metropolis-Hastings

One of the simplest mcMmc methods is known as the Metropolis-Hastings algorithm. At a high-level,
it looks and behaves a lot like rejection sampling: we use a simple proposal distribution to generate
potential next samples and then, with some probability related to the likelihood under the true,
intractable posterior, we either transition to the proposed next sample or “reject” it and remain at
our current sample. The full algorithm is detailed in Algorithm 2.

Algorithm 2: Metropolis-Hastings

input :initial value wy, proposal variance o2,

burn-in or number of samples the Markov chain needs to converge, T’
output:sample from p(w | D), wr

fort=1,...,T do

Draw a sample from a simple conditional proposal distribution g(w | w;_1) e.g.,
N(w;wi_1,0%0), w

Calculate the acceptance ratio

_ Pwa D) p(D | wip(ws)
Bwi1 [D) ~ p(D [wi1)p(wi1)

Draw a value uniformly at random from [0, 1], u;
if u; < o then

| Wy = Wy
else
| Wi =W¢_q
end
end
RETURN wr

Under certain assumptions about the proposal distribution g, it can be shown that the posterior
distribution, p(w | D), is the invariant distribution of this transition function. Metropolis-Hastings is
predictably quite sensitive to the choice of proposal distribution: for the simple Gaussian distribution
used in Algorithm 2, if o2 is too large, we can end up rejecting almost all of the proposed samples
and if o2 is too small, it can take a long time to converge to the true posterior.

Gibbs Sampling

An alternative to Metropolis-Hastings that does not waste samples is Gibbs sampling. In Gibbs
sampling, given a joint distribution over a set of variables, p(w | D) = p(w1, ws, ..., wp | D), we
generate subsequent samples one dimension or one variable at a time, keeping the other D — 1
fixed. The full algorithm is detailed in Algorithm 3.

Of course, the key issue in Gibbs sampling is drawing samples from the nightmarish conditional
distribution p (wg | D, w1, wa, ..., W4—1, W41, --.,wp), which is almost certainly intractable.
Fortunately, we can leverage the fact that this is inherently a univariate distribution and thus, is
(potentially) easier to sample from than the full joint. If necessary, we can nest something like
rejection sampling or Metropolis-Hastings within Gibbs sampling to draw exact or approximate
samples from this conditional distribution respectively; the latter is known as “Metropolis-within-
Gibbs” sampling.

Algorithm 3: Gibbs Sampling

T
input :initial value w(®) = [wgo) wéo) e w(DO) ,

burn-in or number of samples the Markov chain needs to converge, 17'D
output:sample from p(w | D), wr

fort=1,...,T do
ford=1,...,D do
Draw a sample from the true conditional distribution over wgy, conditioned on the
current values for all other variables in w:

w((it) ~plwg | D, wgt), wét), . ,wétll,wétll), . ,wg_l))
Update the corresponding entry of w*) with the new sample
end
end
RETURN wr

Hamiltonian Monte Carlo

The problem with many of the simpler mcmc algorithms is that it can take them a long time to
reach a true stationary distribution. Furthermore, even once they have reached the equilibrium
distribution, consecutive samples (while still technically approximating the target distribution) tend
to be highly correlated, so it may be necessary to draw and discard many intermediate samples to
get independent samples from the intractable posterior.

One powerful mcmc method that tends to converge quickly is known as Hamiltonian Monte Carlo
(umc) (this is also sometimes referred to as “hybrid” Monte Carlo), which was proposed by Neal,
again in his Ph.D. thesis. HMC uses the gradient of the target distribution (again, easily computable
for Bayesian neural networks): the resulting Markov chains tend to converge faster and explore
more of the domain instead of getting stuck in local maxima of the posterior, which some other
mcMc methods have a tendency of doing.

At a high-level, HMc methods apply ideas from Hamiltonian dynamics for physical systems to
simulate a path or trajectory through the posterior distribution. The next sample is determined
based on the “potential energy” or gravitational pull on a ball rolling through the negated, log
posterior.

https://ia600600.us.archive.org/7/items/mathematics_202103/Applied%20mathematics-Probabilistic%20Inference%20Using%20Markov%20Chain%20Monte%20Carlo%20Methods%20-%20R.%20Neal.pdf

