
Bayesian Neural Networks
At a high level, Bayesian machine learning methods are characterized by two features that set
them apart from traditional, frequentist approaches: the ability to incorporate domain knowledge
through the use of a prior and probabilistic predictions, i.e. posterior distributions instead of point
estimates.

Unfortunately, both of these present issues when attempting to incorporate Bayesian inference into
neural networks: most kinds of prior knowledge about a particular machine learning task are not
easily translated into a prior over the parameters of a neural network and posterior inference in a
neural network is generally intractable. These notes will focus on the latter issue of how to perform
posterior inference; in practice, the issue of prior selection is usually swept under the rug and
simple, uninformative priors are used such as independent, broad Gaussian or Laplace distributions.

Neural Networks

In this lecture, we will primarily work with feedforward neural networks (although many of the
approximate inference techniques detailed below are applicable to other network structures).

A feedforward neural network is specified by its architecture, A, which consists of the number of
hidden layers in the network, the number of nodes in each layer and the nonlinearity or activation
function used between layers. An example of a (fully-connected) feedforward neural network is
shown in Figure 1.

Figure 1: A fully-connected feedforward neural network over D-dimensional inputs with two
hidden layers, two nodes in each hidden layer and an unspecified activation function represented
by

∫
, typically something like tanh or ReLU.

We will treatA as fixed hyperparameters. Although it is possible to apply a fully Bayesian treatment
to these values, this is typically not done in practice due to computational complexity. Instead, a
more common approach is to treat different settings of A as models and apply Bayesian model
selection (or averaging) when making predictions.

1



The parameters of interest in a feedforward neural network are the weights between nodes in
different layers of the network, which we will represent as a vector w. Then given some training
data, D = {X,y}, neural networks are typically trained by minimizing some error metric e.g., the
squared error:

E(w) =

N∑
i=1

(
f(xi;w)− yi)

2

where f(xi;w) denotes the output of the neural network when the given xi at the input layer and
the weights are set to w. While this is often a sufficient objective to learn with and achieve good
results, many practitioners have observed that regularizing neural networks can improve their
performance: there exist some strange forms of regularization for neural networks that are hard
to express mathematically (e.g., dropout, early termination of optimization), but it turns out that
simple L2 regularization can be applied to the weights of a neural network and have a similar effect
as when applied to linear regression (i.e., preventing overfitting). We can express this regularized
objective as

E(w;α, β) =
α

2

N∑
i=1

(
f(xi;w)− yi)

2 +
β

2

∑
wj∈w

w2
j

where the parameters α and β are tuned to set the tradeoff between model fit and model complexity.
The optimal weights,

w∗ = argmin
w

E(w;α, β)

can be (approximately) solved for using stochastic gradient descent (or other more complex methods
such as adam) where the gradient of E w.r.t. w is computed efficiently using backpropagation.

A Bayesian Interpretation

Much like we saw with Bayesian linear regression, this regularized objective can be interpreted as a
negative log likelihood for some implicit posterior that is being minimized to find the maximum a
posteriori estimate for the parameters. The first term corresponds to a (negative log) likelihood for
the data that assumes 1) the data are independent given the weights and 2) there is independent
identically distributed additive Gaussian noise with variance 1/α. The second term can be interpreted
as a prior over the weights, where each weight is an independent, identically distributed zero-mean
Gaussian with variance 1/β.

Formulated as such, we can treat the problem of setting the weights w as one of posterior inference
and apply Bayes’ rule:

p(w | D) =
p(D | w)p(w)

p(D)
=

p(D | w)p(w)∫
p(D | w)p(w) dw

.

Of course, this distribution is intractable so we will need to resort to approximate techniques.

2



Approximate Inference for Bayesian Neural Networks
A variety of approximate inference methods have been proposed for approximating the intractable
posterior associated with the weights of a Bayesian neural network, many of which we have already
seen in this course!

The Laplace Approximation for Bayesian Neural Networks

In one of the earliest works associated with Bayesian neural networks, Mackay (1992) proposed
using a simple Laplace approximation for the intractable posterior:

p(w | D) ≈ N (w;w∗,H−1)

where w∗ is the map estimate of the weights and H is the negative Hessian matrix of E(w;α, β)
evaluated at w∗.

Theoretically, this matrix is easily computed using a variant of backpropagation as all the com-
ponents of E are twice differentiable w.r.t. w. In practice, computing the Hessian is much more
computationally complex than just computing the gradient of E (which is typically all that is needed
to optimize the weights): instead of just a single forwards and backwards pass through the network,
computing the Hessian requires O(ν) forwards and backwards passes where ν is the number of
nodes in the network and each forwards and backwards pass requires O(W ) operations whereW is
the total number of weights in the network. Furthermore, writing and storing this matrix requires
O(W 2) operations and space which can be intractable for large enough networks.

There have been numerous approximations developed for the Hessian matrix associated with
neural networks, both for Bayesian inference and for just generally optimizing the weights as many
optimization methods can make use of second order partial derivatives. One common approximation
is the (empirical) Fisher information matrix or the “squared” gradients:

H ≈ ∇wE(w;α, β)∇wE(w;α, β)>

It can be shown that the Fisher information matrix is equal to the expected value of the negative
Hessian w.r.t. the posterior distribution p(w | D). The empirical gradients can be computed in just
a single forwards and backwards pass using the standard backpropagation algorithm but there is
still the problem of inverting a fullW -by-W matrix. A further simplification we can make to get
around this is to just consider the diagonal elements of this matrix, functionally treating all the
elements as independent:

H ≈ diag
(
∇wE(w;α, β)∇wE(w;α, β)>

)
where the diag operator just extracts the diagonal elements of the matrix; this approximation only
requires O(W ) time to invert.

3

http://web3.cs.columbia.edu/~blei/seminar/2020-representation/readings/MacKay1992a.pdf


Variational Inference for Bayesian Neural Networks

Perhaps the most common way to approximate p(w | D) is through variational inference: recall
that the premise of variational inference is that we approximate an intractable posterior p(w | D)
using some simple, parametrized distribution q(w; θ). The parameters θ are tuned so as to minimize
the kl divergence between the true and approximate posteriors:

θ∗ = argmin
θ

[
q(w; θ)‖p(w | D)

]
= argmin

θ

∫
q(w; θ) log

q(w; θ)

p(w | D)
dw

= argmin
θ

∫
q(w; θ) log

q(w; θ) p(D)

p(w) p(D | w)
dw

= argmin
θ

∫
q(w; θ) log

q(w; θ)

p(w) p(D | w)
dw

= argmin
θ

Eq(w;θ)

[
log q(w; θ)− log p(w)− log p(D | w)

]
.

The final expression is the negative elbo for this setting. One method commonly applied to Bayesian
neural networks is stochastic optimization, where we directly minimize the negative elbo using
gradient descent. The gradient of interest can be expressed as

∇θ

∫
q(w; θ)

(
log q(w; θ)− log p(w) p(D | w)

)
dw

=

∫
∇θq(w; θ)

(
log q(w; θ)− log p(w) p(D | w)

)
+ q(w; θ)

(
∇θ log q(w; θ)

)
dw

=

∫
∇θq(w; θ)

(
log q(w; θ)− log p(w) p(D | w)

)
dw+

∫
∇θq(w; θ) dw

where we have used the chain rule:

∇θ log q(w; θ) =
∇θq(w; θ)

q(w; θ)
→ ∇θq(w; θ) = q(w; θ)∇θ log q(w; θ).

We will use this second identity to replace the ∇θq(w; θ) in the first term above; continuing gives∫
∇θq(w; θ)

(
log q(w; θ)− log p(w) p(D | w)

)
dw+

∫
∇θq(w; θ) dw

=

∫
q(w; θ)∇θ log q(w; θ)

(
log q(w; θ)− log p(w) p(D | w)

)
dw+∇θ

∫
q(w; θ) dw

=

∫
q(w; θ)∇θ log q(w; θ)

(
log q(w; θ)− log p(w) p(D | w)

)
dw+∇θ1

=Eq(w;θ)

[
∇θ log q(w; θ)

(
log q(w; θ)− log p(w) p(D | w)

)]
+ 0

≈
S∑

s=1

∇θ log q(ws; θ)
(
log q(ws; θ)− log p(ws) p(D | ws)

)

4



where in the last line we have made a Monte Carlo approximation to the expected value using
samples w1, . . . ,wS from the distribution q(w; θ). We can use this approximate gradient for
gradient descent and given certain conditions on the step size, it has been shown that gradient
descent will converge on a local minimum for this objective. Unfortunately, the estimator above,
while unbiased, tends to have a very large variance, meaning that we either need tons of samples in
each iteration of gradient descent or tons of iterations of gradient descent in order to converge.

Various methods have been developed to decrease the variance of this estimator, the most famous of
which makes use of the so-called “re-parameterization” trick giving rise to the “Bayes-by-Backprop”
algorithm (Blundell et al., (2015)); this is effectively the same technique used to train variational
autoencoders with a key difference being that in Bayes-by-Backprop, the latent variables are the
parameters of the network as opposed to the latent codes for each data point.

5

https://arxiv.org/pdf/1505.05424

