
Ordinary Differential Equations
Differential equations are ubiquitous in engineering disciplines and the natural sciences, where
it is often easier to characterize some quantity of interest by how it changes in response to other
quantities in the system. The classic example of a differential equation is Newton’s second law of
motion which can be written as

m
d2x(t)

dt2
= F

(
x(t)

)
where m is the mass of some object, d2x(t)

dt2 is the second derivative of it’s position with respect
to time aka it’s acceleration, and F

(
x(t)

)
is the force being applied to the object, which in this

representation depends on the object’s position.

Many commonly-occurring differential equations cannot be solved exactly; intuitively, this happens
when the derivative is given by a function whose antiderivative does not exist. Many classical,
numerical techniques have been developed to approximate the solutions for such intractable
differential equations. We will present a few of the most common methods and then provide a
probabilistic alternative. Finally, we will demonstrate an interesting and insightful connection
between our probabilistic method and one of the classical methods.

For the purposes of these notes, we will restrict our focus to first-order, ordinary differential
equations (odes). Ordinary differential equations contain only a single “independent variable” i.e.,
the functions of interest and their corresponding derivatives can be expressed in terms of just one
input. This is in contrast to functions of multiple variables, which give rise to partial differential
equations (pdes); these are interesting in their own right, but solving them requires significantly
more advanced techniques that are outside the scope of this course. Notationally, it is commonplace
to represent the single independent variable as t, a convention we shall adopt below.

First-order differential equations only describe the behavior of the first-order derivatives of the
variables. In general, it is possible to rewrite higher-order odes as systems of first-order odes by
introducing intermediate variables e.g.,

d2y(t)

dt2
= f

(
t, y(t)

)
→ dy(t)

dt
= z
(
t, y(t)

)
and

dz(t)

dt
= f

(
t, y(t)

)
.

In principle, such systems of first-order odes can also be solved using extensions of the methods
presented below.

We will further limit our discussion to so-called initial-value problems (ivps). In many cases, simply
being given an expression for the derivative of a variable is not sufficient to fully determine its
functional form; an observation of the function itself is required to fully specify a unique solution.
Again, many relevant problems from scientific domains are naturally defined as ivps.

Formally, we will consider solving problems of the following form: we are given that

dy(t)

dt
= f

(
t, y(t)

)
and y(t0) = y0

for some function f and initial value (t0, y0). The goal is to find a function y(t) that satisfies the
conditions above.

1

The Euler Method

One approach for approximating the solution to these ivps relies on the finite difference approxima-
tion for a derivative:

dy(t)

dt
≈ y(t+ ε)− y(t)

ε
.

Rearranging the equation above and substituting back in the provided definition for dy(t)
dt gives the

result
y(t+ ε) ≈ y(t) + εf

(
t, y(t)

)
.

If we pick a step size ε and plug our initial value (t0, y0) into the second term, we can approximate
the function’s value at any location tn = t0 + nε for integral n.

Example (fromWikipedia)

Suppose we want to solve the (trivial) ivp:

dy(t)

dt
= y(t) and y(0) = 1.

First, observe that the unique solution is y(t) = et. If we pick a rather convenient step size of ε = 1,
we can construct the following sequence of approximations:

n tn y(tn) f
(
tn, y(tn)

)
etn approximation error

0 0 1 1 1 0

1 1 2 2 e 0.7183

2 2 4 4 e2 3.3891

3 3 8 8 e3 12.0855

4 4 16 16 e4 38.5981

Clearly, this approximation is quite poor and relatively coarse: not only does it do a bad job of
estimating the function’s value, it only generates estimates at integer locations. We can address
both of these issues by decreasing the step size. The following table shows the approximation of e4
for different values of ε, along with the corresponding error:

ε y(4) approximation error

1 16 38.5981

0.25 35.5283 19.0710

0.1 45.2593 9.3389

0.025 51.9779 2.6203

Of course, this increased accuracy is not without cost: in general, decreasing the step size requires
more computational effort as we need to take more steps to get to the desired estimates. Another
way of improving the estimate is to use a more sophisticated approximation.

2

https://en.wikipedia.org/wiki/Euler_method#First-order_example

TheMidpoint Method

One such alternative is the midpoint method, which leverages a slightly different expression for the
finite difference approximation:

dy(t+ ε/2)

dt
≈ y(t+ ε)− y(t)

ε
.

Again, solving the equation above and substituting in the given expression for dy(t)
dt gives

y(t+ ε) ≈ y(t) + εf
(
t+ ε/2, y(t+ ε/2)

)
.

Here we encounter an issue: if we want to compute y(t0 + ε), we need both y(t0), which is given
to us, and y(t0 + ε/2), which we do not have. Thus, the midpoint method makes an additional
approximation using the Euler method! Specifically, we will replace y(t+ ε/2) in the equation above
with

y(t+ ε/2) ≈ y(t) +
ε

2
f
(
t, y(t)

)
.

This gives the final result:

y(t+ ε) ≈ y(t) + εf
(
t+ ε/2, y(t) +

ε

2
f
(
t, y(t)

))
.

Example Revisited

Applying the midpoint method to solve the ivp for y(t) = et with a step size of ε = 1, we get the
following, notably better sequence of approximations:

n tn y(tn) f
(
tn + ε/2, y(tn) +

ε
2f
(
tn, y(tn)

))
etn approximation error

0 0 1 1.5 1 0

1 1 2.5 3.75 e 0.2183

2 2 6.25 9.375 e2 1.1391

3 3 15.625 23.4375 e3 4.4605

4 4 39.0625 58.5938 e4 15.5357

Much as before, we can improve the quality of this approximation significantly by decreasing the
step size if we are willing to do a bit of extra computation. Figure 1 compares the midpoint method
with the Euler method for step sizes of 1 and 0.25

Runge-Kutta Methods

The Euler method and the midpoint method as described above are instances of a broader family of
algorithms for approximately solving ivps known as Runge-Kutta methods. Specifically, the Euler
method is a first-order Runge-Kutta method as its approximation error is proportional to ε1 while
the midpoint method is a second-order Runge-Kutta method as its error is proportional to ε2.

3

(a) ε = 1 (b) ε = 0.25

Figure 1: A comparison of the Euler method and the midpoint method for solving the ivp described
in the main text: the red line corresponds to the true function, y(t) = et, while the blue and green
lines correspond to the Euler method’s approximation and the midpoint method’s approximation
respectively. Both approximations improve as the step size decreases, with the midpoint method
being a nearly perfect fit for y(t) over the plotted domain.

The family of Runge-Kutta methods are defined by update rules of the following form:

y(t+ ε) = y(t) + ε

S∑
s=1

bsks where

k1 = f
(
t, y(t)

)
k2 = f

(
t+ c2ε, y(t) + (a21k1)ε

)
k3 = f

(
t+ c3ε, y(t) + (a31k1 + a32k2)ε

)
...

kS = f

(
t+ cSε, y(t) +

(
S−1∑
i=1

aSiki

)
ε

)
Intuitively, Runge-Kutta methods iteratively estimate the function at increasing intervals of ε, much
like the Euler method and the midpoint method, except instead of using a single derivative value to
determine how the function’s value changes, they use a weighted sum or average of S derivatives
(k1, k2, …, kS), also called the stages

4

Runge-Kutta methods are frequently described by so-called Butcher tableaus, which are a convenient
way of storing/presenting the relevant coefficients; a Butcher tableau for the generalized Runge-
Kutta method given by the equations above would be

0

c2 a21

c3 a31 a32
...

...
...

. . .
cS aS1 aS2 · · · aS S−1

b1 b2 · · · bS−1

bS

As an example, we can express the Euler method as a one-stage Runge-Kutta method using the
following Butcher tableau:

0

1

Similarly, the Butcher tableau for the midpoint method is defined is

0
1
2

1
2

0 1

There are many methods and/or heuristics for choosing the number of setting the coefficients; a
few commonly cited ones include:

• For a Runge-Kutta method to have order p (i.e., its approximation error is O(εp)), s must be
at least p and for p ≥ 5, s must be strictly larger than p.

• For a Runge-Kutta method to be consistent (i.e., its approximation error at each time-step
approaches 0 as ε → 0),

∑S
s=1 bs must be equal to 1.

• It is common to set ci =
∑i−1

j=1 aij although there is not theoretical justification for doing so.

The most commonly-used, higher-order Runge-Kutta method is called the “classic Runge-Kutta
method” or “RK4” as it is a 4-stage method. It is given by the following Butcher tableau:

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

5

To better interpret this method, we can convert this Butcher tableau back into an explicit update
formula as follows:

y(t+ ε) = y(t) +
ε

6
(k1 + 2k2 + 2k3 + k4) where

k1 = f
(
t, y(t)

)
k2 = f

(
t+

ε

2
, y(t) +

k1
2
ε
)

k3 = f
(
t+

ε

2
, y(t) +

k2
2
ε
)

k4 = f
(
t+ ε, y(t) + k3ε

)
Written out in this manner, we can see that “RK4” is approximating the derivatives as a weighted
average of four different derivatives measurements:

• k1, the derivative at the current location t,

• k2, the derivative at the midpoint between t and t+ ε, approximated using y(t) and k1,

• k3, the derivative at the midpoint between t and t+ ε, approximated using y(t) and k2, and

• k4, the derivative at the next location t+ ε;

the weights emphasize the derivatives at the midpoint over the derivatives at either end of the
current interval. This specific method derives its popularity from a couple of factors: it was one of
the first methods developed by Carl Runge and Wilhelm Kutta in the early 1900s and represents a
reasonable trade-off between computational cost and accuracy.

Gaussian Processes for IVPs
We now turn our attention to a probabilistic alternative to the classical, numerical methods in-
troduced above. Specifically, we will consider how to apply Gaussian processes (gps) to infer the
function of interest in ivps, y. At first glance, this appears to be trivial: as we have previously seen,
gp beliefs can be conditioned on derivative or gradient observations in effectively the same way we
would condition on function observations directly.

However, the key limitation of ivps is that we are only given a single function evaluation, the initial
value (t0, y0). We can use this initial value to (exactly) compute the derivative at t0 but beyond that,
all other observations must be approximated. The classical methods presented above implicitly rely
on linear extrapolations based on the finite difference approximation of a derivative to iteratively
build up a set of observations. Inspired by this approach, similar ideas have been developed for
iteratively constructing a set of data points to condition the gp belief with.

Given a step size, ε, the high-level approach is as follows:

1. Place a (typically zero-mean) gp prior on y: y ∼ GP(0, k).

2. Condition the prior belief on the initial value and derivative, y(t0) = y0 and dy(t0)
dt =

f(t0, y0); let the union of these observations be D0.

• These observations are typically treated as exact or noiseless: σ2
0 = 02.

6

3. Compute the posterior mean and variance of y(t + ε), µD0(t + ε) and kD0(t + ε, t + ε)
respectively.

4. Derive an estimate of y(t+ ε) := y1 using the posterior belief above; two common ways of
doing so are

(a) Sample a value the posterior distribution: y1 ∼ N
(
µD0(t+ ε), kD0(t+ ε, t+ ε)

)
(b) Simply use the posterior mean: y1 = µD0

(t+ ε)

5. Use y1 to compute the derivative: dy(t+ε)
dt ≈ f(t+ ε, y1).

6. Note that both y1 and dy(t+ε)
dt are approximations and so rather than treating them as noiseless,

the typical approach is to assume heteroscedastic noise or a noise variance that is not constant
across observations. A reasonable choice for the noise variance in this setting is the posterior
variance dy(t+ε)

dt implied by the gp belief: d
dx |t+ε

(
d

dx′ |t+ε kD0(x, x
′)
)
:= σ2

1 .

• Conditioning a gp belief on independent heteroscedastic noise is easy: simply add the
observation-specific noise variance to the corresponding diagonal element of the gram
matrix i.e., instead of adding a fixed σ2 to each diagonal entry, add σ2

i to the ith element.
• Of course, it is reasonable to question whether or not the noise variances are truly
independent across steps but for the sake of feasibility, we will assume that this is a
reasonable approximation.

7. Discard y1 and add the (approximate) derivative observation to the dataset: D1 = D0 ∪(
dy(t+ε)

dt ≈ f(t+ ε, y1)
)
.

8. Repeat the process above until some desired location t+ nε has been reached.

Figure 2 from Barber (2014) shows the result of applying the method described above on the ivp

dy(t)

dt
= −y(t) + sin(2t) and y(0) = −1.

In general, the true function (left) and it’s derivative (right) are both well-modeled by the gp belief
but the quality of fit noticeably decreases as we move further from the initial value.

(a) y(t) (b) dy(t)
dt

Figure 2: gp inference for approximating the solution to the ivp described in the main text: the red
line shows the true function y(t) while the solid blue line is the posterior gp mean and the dotted
blue lines represent a 2-standard deviation credible interval about the mean. A step size of ε = 0.25
was used to derive intermediate observations.

Multiple extensions/variants of the simple routine above have been proposed and explored in the
literature including:

7

https://arxiv.org/pdf/1408.3807

• Limiting the number of previous derivative observations that are conditioned on; this is
largely done for computational purposes as decreasing the step size has an out-sized impact
on the runtime of gp inference given it’s cubic dependence on the number of data points.

• Refining the belief at y(t+ cε) by resampling a new value at that location after conditioning
on the derivative dy(t+cε)

dt ≈ f(t+ cε, yc).

• Constraining the belief at intermediate steps y(t+ cε) to (approximately) respect the obser-
vation dy(t+cε)

dt = f(t+ cε, yc) using ep instead of heteroscedastic noise.

Relationship to Runge-Kutta Methods

Finally, observe that Runge-Kutta methods result in a piecewise linear approximation for the
function y(t). It is a well-known fact that gps are capable of learning piecewise linear posterior
means given the right choice of kernel e.g., Ornstein-Uhlenbeck processes which use covariance
functions of the form k(x, x′) = exp

(
− |x−x′|

`

)
.

Inspired by this observation, Schober et al. (2014) showed that all first-, second- and third-order
Runge-Kutta methods can be exactly recreated as the posterior mean of a gp when conditioned
on the same set of locations that are visited by the Runge-Kutta methods. This gives rise to a
probabilistic interpretation of Runge-Kutta methods which can be used to evaluate model choices
and perform robust uncertainty quantification of the approximations.

8

https://arxiv.org/pdf/1406.2582

