Hypothesis testing

We often wish to use our observed data to draw conclusions about the plausibility of various
hypotheses. Returning to our example of coin flipping, we might wish to know whether the
parameter 6 is say less than /2. The Bayesian method allows us to compute this value directly from
the posterior distribution:

1/2
Pr(f < 2| z,n,a,B) = / p(0 | z,n,a,B)dd.
0

Classical method

There is a sharp contrast between the simplicity of the approach above and the frequentist method.
The classical approach to hypothesis testing uses the likelihood as a way of generating fake datasets
of the same size as the observations. The likelihood then serves as a so-called “null hypothesis” that
allows us to generate hypothetical datasets under some condition.

From these, we compute statistics, which, like estimators, can be any function of the hypothesized
data. We then identify some critical set C' for this statistic which contains some large portion
(1 — ) of the values corresponding to the datasets generated by our null hypothesis. If the
statistic computed from the observed data falls outside this set, we reject the null hypothesis with
“confidence” a. Note that the “rejection” of the null hypothesis in classical hypothesis testing is
purely a statement about the observed data (that it looks “unusual”), and not about the plausibility
of alternative hypotheses!

Bayesian method

Suppose we are reasoning about a parameter 6 in light of data D, and wish to consider a hypothesis
of the form 6 € H, where H C © is some set of possible values for this parameter.

We have seen that the Bayesian approach to hypothesis testing is straightforward. We first derive
the posterior distribution p(f | D) and then may compute the probability of the hypothesis directly:

Pr(9€’H,|D):/ p(0| D) do.
H

Coin fairness

Let’s consider an explicit example. Suppose we are interested in the unknown bias of a coin
6 € (0,1), and begin with the uniform prior on the interval (0,1):

p(0) =U(6;0,1) = B(6;a = 1,8 =1).

Let’s collect some data to further inform our belief about . Suppose we flip the coin independently
n = 50 times and observe © = 30 heads. After gathering this data, we wish to consider the natural
question of whether the coin is fair: that is, whether 6 = 1/2.

From the results in the previous lecture, we can compute the posterior distribution easily. It is an
updated beta distribution:

p(0 | D) = B(6;31,21).
We may now compute the posterior probability of the hypothesis that the coin is fair:

1/3

Pr(0 = /2| D) = /1/ p(0 | D)do = 0.



The posterior probability of the coin being exactly fair is zero! This should not be surprising, as
suggesting that we could possibly know the bias of the coin with infinite precision is unfathomable.

We may however relax the question a bit to get some more insight. One option would be to consider
a parameterized family of hypotheses of the form

H(e) = (Y2 —&, 12+ ).

Thus a high probability of the hypothesis H(¢) corresponds to the notion that the coin is “near fair”
with an allowed error of e. We may then compute the posterior probability of these hypotheses
and consider how they vary as a function of . Figure 1 shows the results for the coin-flipping
example above. We can see that there’s approximately a 50% posterior probability that the bias of
the coin is in the interval (0.4, 0.6), corresponding to ¢ = 0.1. We also have evidence to conclude
6 € (0.25,0.75) with near certainty. These probabilities help constrain exactly how “fair” or “not
fair” we believe the coin to be in light of our evidence.
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Figure 1: The posterior probability of the hypotheses H(g) for 0 < e < /2.

The classical approach to testing this hypothesis is to create a so-called “null hypothesis” H, that
serves to define what “typical” data may look like assuming that hypothesis. For example, for
reasoning about the fairness of a coin, we may choose the natural null hypothesis Ho: 6 = /2.
Now we can use the likelihood

Pr(z | n,0 =1/2)

to reason about what observed data would look like if this hypothesis were true. This is a critical
point: the null hypothesis exists to define what sort of data we would expect to see under an
assumed value of 6.



The classical procedure would then define a statistic summarizing a given dataset s(D) in some
way. An example for coin flipping would be the sample mean s(D) = 6= @/n. This happens to be
a common estimator for 6 as well, but this is a coincidence. We now compute a so-called critical set
C'(«) with the property

Pr(s(D) € C(a) | Ho) =1 —a,

where « is called the significance level of the test. The interpretation of the critical set is that the
statistic computed from datasets generated assuming the null hypothesis “usually” have values in
this range.

Finally, we compute the statistic for a particular set of observed data and determine whether it falls
inside the critical set C(«) we have defined. If so, the dataset appears, according to the statistic,
typical for datasets generated from the null hypothesis. If not, the dataset appears unusual, in the
sense that data generated assuming the null hypothesis would have such extreme values of the
statistic only a small portion of the time (100a%). In this case, you “reject” the null hypothesis with
significance 1 — a.

What is a p-value? It must be the probability that the null hypothesis is true, right? Absolutely
not! The null hypothesis cannot be associated with a probability in the classical interpretation of
probability. A p-value is actually the minimum « for which you would reject the null hypothesis
using this procedure. That is, a p-value is not the probability that the null hypothesis is true, but
rather the probability that we would observe results as extreme as those in our dataset, as measured
by the chosen statistic, if the null hypothesis were true! The p-value is thus only a probability that is
well-defined when already assuming the null hypothesis to be true. A p-value does not say how
extreme our results would appear under alternative hypotheses.

Bayesian model selection will eventually allow us to explicitly quantify the plausibility of a collection
of models having generated the observed data.

To interpret the above procedure in the frequency interpretation of probability, the critical sets are
constructed by reasoning about the following experiment:

« generate D assuming Ho;
- compute s(D);

« state s(D) € C(w).

In the limit of infinitely many repetitions of this experiment, the final claim will be true exactly
100(1 — @)% of the time. Recall this is the definition of probability in this context: the frequency of
occurrence in the limit of infinitely many trials. Note that the experiment we repeat here includes
generating data from the null hypothesis as its first step! This is not the experiment we are conducting,
since we have a dataset in front of us that we want to analyze, which may have been generated in
any number of ways.



Summarizing Distributions

In the Bayesian method, the posterior distribution p(6 | D) is the main object of interest and
contains all relevant information about 6 in light of the observations D. A natural task is to provide
a summary of the posterior distribution, for example to efficiently convey its relevant properties.

In the next lecture we will consider point estimation, which is one common summarization method.
Another commonly considered problem is interval summarization, where we provide an interval
(¢,u) indicating plausible values of the parameter 6 in light of the observed data. Classical interval
estimates are known as confidence intervals, and we will discuss them in more detail shortly.

The Bayesian approach to interval estimation is straightforward. Again we use the posterior
distribution p(# | D) to guide the construction of an interval summary. If we can find an interval
(¢, u) such that the posterior probability that § € (¢, ) is “large” (say, has probability «):

Pr(6 € (¢,u) | D) :/eup(HD)dﬂza,

then we call (£, u) an a-credible interval for 6. Note the parallel in this definition to our treatment
of hypothesis testing above! Effectively, an a-credible interval is simply a hypothesis that has
posterior probability equal to a and happens to take the form of an interval.

Examining our coin flipping example from before, we can construct some credible intervals im-
mediately from the data in Figure 1. We have that H(¢ = 0.1) = (0.4,0.6) is a 50%-credible
interval for the bias of the coin, and H (e = 0.2) = (0.3,0.7) is a 95%-credible interval. The slightly
wider interval H(e = 0.25) = (0.25,0.75) represents a very high probability credible interval,
corresponding to « > 99%.

It is clear from the definition that multiple intervals (in fact, often uncountably many) can serve
as a credible interval for a particular value of a.. Exactly which interval should we construct to
summarize a given distribution? This is a question for which we will need to develop Bayesian
decision theory before we can continue, which we will discuss in the next lecture. In short, we will
first need to quantify how “desirable” a given credible interval is in some way, then select the one
maximizing this measure. For example, we may want to construct the narrowest possible interval,
or we may wish it to be centered on a particular point (such as the posterior mean, median, or
mode), or we may wish the interval to have some other property.

The classical approach to interval summarization is to construct a so-called confidence interval for
the parameter of interest §. Again a confidence interval is described in terms of repeating a particular
experiment infinitely many times. The experiment we consider will proceed as follows. First we
are going to define a function CI(D) that will map a given dataset D to an interval (¢, u) = CI(D).
Now we consider repeating the following experiment:

« collect data D
« compute the interval (¢,u) = CI(D)
. state 0 € (¢, u).
In the limit of infinitely many repetitions of this experiment, if the final statement is true with

probability «, then the procedure CI(D) is called an a-confidence interval procedure, and we will
write CI(D; «) to indicate the confidence level o when required.



This might sound like exactly the same definition as a Bayesian credible interval. For example, if
we have an a-confidence interval procedure available, then when we plug in a given dataset D, we
must have

Pr(6 € CI(D; ) | D) = a, (*)

right? No! This interpretation is widespread, but it is wrong. This conclusion is sometimes known
as the fundamental confidence fallacy,’ and confuses the nature of prior information with
that of posterior information. Namely, note that the experiment we consider when defining the
confidence interval procedure includes gathering a random dataset as its first step. All we know is
that if we repeat the confidence interval procedure on infinitely many datasets, that it will succeed
with probability o. However, we usually have only one particular dataset in front of us to analyze
that we care about, and we cannot say anything about the interval produced for this dataset in
isolation.

Here is a simple example that shows how this erroneous conclusion can go wrong. Suppose we are
going to observe two values z1, z2 € R generated independently from some unknown distribution
p(z) and wish to construct a confidence interval for the mean of the distribution generating the
data, 8 = E[z]. Consider the following procedure:

_ (700,00) T < T2
CI(D) = {@ g > 20,

Obviously this trivial map is a 50%-confidence interval procedure! Because the values are generated
independently, x; will be the lesser value exactly 50% of the time. In this case, the absurdly large
interval produced will definitely contain 6. The other 50% of the time, the interval will be empty, and
definitely will not contain 6. Therefore the procedure succeeds exactly 50% of the time. However, in
half the cases, the posterior probability that 6 is inside the interval produced is 100%, and otherwise
this probability is 0%. In no case is this probability equal to the confidence level.

Another fallacy in the interpretation of confidence intervals is the so called precision fallacy, that
shorter confidence intervals indicate the data provide more precise information about 6. A striking
illustration of this fallacy is provided by the “lost submarine” example provided by Morey, et al. in
the reference given below. I encourage you to read this paper and reflect!

!See the following reference for some excellent extended discussion on confidence intervals: Richard D. Morey, et al.
(2015). The fallacy of placing confidence in confidence intervals. Psychonomic Bulletin & Review 23(1): 103-123



