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Quick links

https://cgdct.moe/projects/cholesky/

https://theoryclub.github.io/files/gp1.pdf

https://kolesky.cgdct.moe/

https://misc.cgdct.moe/papers/undergrad_thesis.pdf

Mostly covering [Huan et al. 2023]
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Overview

Introduction and background

Gaussian process approximation

Sparse Cholesky factorization

Conclusion



The problem

Covariance matrices from pairwise kernel function evaluations

i.e. Θi,j = K (xi ,xj) for points {xi}Ni=1 and kernel function K

Kernel trick in machine learning

Statistical inference in Gaussian processes on y ∼ N (0,Θ)
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Matérn kernel functions

Matérn family of kernels with smoothness ν and length scale ℓ

ν = 1/2 corresponds to the exponential kernel exp(−r/ℓ)

ν =∞ to the squared exponential kernel exp(−r2/(2ℓ2))
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The problem

Gaussian process (GP) modeling f ∼ GP(µ(·),K (·, ·))

Posterior predictions

E[yPr | yTr] = µPr +ΘPr,TrΘ
−1
Tr,Tr(yTr − µTr)

Cov[yPr | yTr] = ΘPr,Pr −ΘPr,TrΘ
−1
Tr,TrΘTr,Pr

Likelihood −2 log π(x) = logdet(Θ) + xTΘ−1x + N log(2π)

Sampling x ∼ N (µ,Θ)

Direct computation scales as O(N 3), limiting data size (104)
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Linear algebraic quantities

Quantities of interest
• Matrix-vector product Θx
• Linear system solve Θ−1x
• Log determinant logdet(Θ)
• Matrix square root Θ = LLT

Fast computation of the above suffices for our entire
statistical pipeline (posterior mean, likelihood, gradients, etc.)

Robust (but inefficient) computation by Cholesky factorization
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Schur complement

Block Θ =
(

Θ1,1 Θ1,2
Θ2,1 Θ2,2

)
then perform a step of elimination,

(
Θ1,1 Θ1,2

0 Θ2,2 −Θ2,1Θ
−1
1,1Θ1,2

)
Denote the term in blue the Schur complement of Θ on Θ1,1,

Θ =

(
Id 0

Θ2,1Θ
−1
1,1 Id

)(
Θ1,1 0

0 Θ2,2|1

)(
Id Θ−1

1,1Θ1,2
0 Id

)
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Cholesky factorization

Recursing finishes the construction

chol(Θ) =

(
Id 0

Θ2,1Θ
−1
1,1 Id

)(
chol(Θ1,1) 0

0 chol(Θ2,2|1)

)
=

(
chol(Θ1,1) 0

Θ2,1 chol(Θ1,1)
−T chol(Θ2,2|1)

)

Efficient blocked cache-oblivious numerical algorithm!

Statistical interpretation of Cholesky factorization

Li,j =
Cov[yi , yj | yk<j ]√

Var[yj | yk<j ]
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Our desired quantities, revisited

Matrix-vector product in O(N 2)

Θx = L(LTx)

Linear system solve in O(N 2)

Θ−1x = L−T(L−1x)

Log determinant in O(N )

logdet(Θ) = 2
N∑

i=1
log(Li,i)
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Moment matching
Easy to sample from z ∼ N (0, IdN )

Generalize to arbitrary Θ by affine ansatz x = Lz + µ

E[x] = E[Lz + µ] = LE[z] + µ = µ

Cov[x] = E[(x − E[x])(x − E[x])T] = E[Lz(Lz)T]

= E[LzzTLT] = LE[zzT]LT = LLT

so x ∼ N (µ,LLT). We want x ∼ N (µ,Θ), so Θ = LLT

See [J. A. Tropp 2023] for a more rigorous argument

Knothe-Rosenblatt rearrangement generalizes this idea to
sample from non-Gaussians [Katzfuss and Schäfer 2022;
Marzouk et al. 2016; Spantini, Bigoni, and Marzouk 2018]
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Direct vs. iterative methods

Cholesky factorization example of direct method

• Numerically accurate and stable (up to floating point error)
• Requires O(N 3) time and O(N 2) memory

Conjugate gradient: prototypical iterative method for Θ−1x

• Accuracy steadily improves; can stop when desired
• Only requires matrix-vector products (“matvecs”) x 7→ Θx
• Can use approximations like fast multipole method [Fong and

Darve 2009; Wang et al. 2021] and H-matrices [Geoga,
Anitescu, and Michael L Stein 2020; Litvinenko 2019]

• Can accelerate with preconditioning: good guess for Θ−1

Plenty of great references, see
[Choi 2006; Golub and Van Loan 1996; Saad 2003]
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Sampling & determinant

CG computes Θ−1x, what about sampling and determinants?

Sampling
• Fast Fourier transform [Graham et al. 2018] for structured Θ
• Iterative methods: Adapt CG, Krylov subspace methods

[Chow and Saad 2014; Parker and Fox 2012]

Determinant: exploit

logdet(Θ) = trace(log(Θ))

by forming x 7→ log(Θ)x and estimating trace from matvecs
• Krylov method [T. Chen and Hallman 2022; Higham 2008]
• trace estimator [Epperly, J. A. Tropp, and Webber 2024b;

Meyer et al. 2021; Persson, Cortinovis, and Kressner 2022]
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Recap

Quantities of interest
• Matrix-vector product Θx
• Linear system solve Θ−1x
• Log determinant logdet(Θ)
• Matrix square root Θ = LLT

Compute by direct (Cholesky factor) and iterative methods

Purely linear-algebraic (with statistical interpretations)

No free lunch: cost-accuracy trade-offs abound

Goal: design algorithms at the Pareto frontier

13 / 36



Overview

Introduction and background

Gaussian process approximation

Sparse Cholesky factorization

Conclusion



Approximation strategies

Approximate the full process by partial information

For matrices, two natural ideas: low-rank and sparse

Recall (Eckart-Young-Mirsky): Singular value decomposition
optimal low-rank approximation

A∗ := min
Â
‖A− Â‖, s.t. rank(Â) ≤ r

A∗ =

r∑
i=1

σiuivT
i for SVD A = UΣV T

in both ‖·‖2 and ‖·‖F.
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Nyström method

Nyström low-rank approximation

A〈X〉 := (AX)(XTAX)−1(AX)T

A\X := A− A〈X〉 ≈ 0

y ∼ N (0,A), then y | XTy ∼ N (0,A\X).

In practice: take X =
(
Idm 0m×(N−m)

)T

⇔ A〈X〉 = A:,:mA−1
:m,:mA:m,: = L:,:mLT

:,:m for L = chol(A)
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Inducing point methods

Predictions (with noise σ2Id) implied by new low-rank kernel

E[yPr | yTr] = ΘPr,:m(Θ:m,TrΘTr,:m + σ2Θ:m,:m)−1Θ:m,TryTr

with computational complexity O(Nm2) (same as Nyström)

Same as Subset of Regressors (SR), Projected Process (PP)

Subset of Datapoints (SD) simply throws out other datapoints

E[yPr | yTr] = ΘPr,:m(Θ:m,:m + σ2Id)−1y:m

See [Krause and Hübotter 2025; Quiñonero-Candela and
Rasmussen 2005; Rasmussen and Williams 2006]
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E[yPr | yTr] = ΘPr,:m(Θ:m,:m + σ2Id)−1y:m

See [Krause and Hübotter 2025; Quiñonero-Candela and
Rasmussen 2005; Rasmussen and Williams 2006]
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How to select the inducing points?

Active set selection often information-theoretic, experimental
design [Bartels et al. 2022; Krause, Singh, and Guestrin 2008]

Can use X from equivalence to the Nyström approximation

Modern approach: randomized numerical linear algebra
[Y. Chen, Epperly, et al. 2024; Epperly, J. A. Tropp, and
Webber 2024a; Frangella, J. A. Tropp, and Udell 2021;
Martinsson and J. Tropp 2021]
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Acceleration by sparsity

Θ = LLT, L has N columns, s non-zero entries per column

Lv and L−1v both cost O(Ns)

Matrix-vector product: N 2 → Ns

Solving linear system: N 3 → Ns

Log determinant: N 3 → N

Sampling: N 3 → Ns

We will take s to be O(logd(N/ϵ))!
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Gaussian process approximation

Sparse Cholesky factorization
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Conditional selection
Numerical experiments
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Screening effect

Conditional on points near a point of interest, far away points
are almost independent [Michael L. Stein 2002]

Suggests space-covering ordering and selecting nearby points
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Statistical Cholesky factorization

Cholesky factorization ⇔ iterative conditioning of process

L = chol(Θ)

Li,j =
Cov[yi , yj | yk<j ]√

Var[yj | yk<j ]

Conditional (near)-independence ⇔ (approximate) sparsity
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Cholesky factorization recipe

Implied procedure for computing LLT ≈ Θ−1

1. Pick an ordering on the rows/columns of Θ
2. Select a sparsity pattern lower triangular w.r.t. ordering
3. Compute entries by minimizing objective over all factors

22 / 36



Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The i-th column selects points within a radius of ρℓi from xi
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Kullback-Leibler minimization

Compute entries by minimizing Kullback-Leibler divergence

L := argmin
L̂∈S

DKL

(
N (0,Θ)

∥∥∥ N (0, (L̂L̂T)−1)
)

Efficient and embarrassingly parallel closed-form solution

Lsi ,i =
Θ−1

si ,si e1√
eT

1 Θ
−1
si ,si e1

Achieves state of the art ϵ-accuracy in time complexity
O
(
N log2d (N

ϵ

))
with O

(
N logd (N

ϵ

))
nonzero entries

[Schäfer, Katzfuss, and Owhadi 2021]
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This work: KL-minimization, revisited

Plug optimal L back into the KL divergence

DKL

(
Θ
∥∥∥ (LLT)−1

)
=

N∑
i=1

[
log
(
Θi,i|si\{i}

)
− log

(
Θi,i|i+1:

)]

KL ⇔ total error over independent regression problems

Goal: minimize posterior variance of i-th prediction point by
selecting training points si most informative to that point

Variance ⇔ mutual information ⇔ mean squared error
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Conditional k-nearest neighbors

Sparse Gaussian process regression,
experimental design, active set, etc.

Naive: select k closest points

Chooses redundant information

Maximize mutual information!
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Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.
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Conditional selection
k-NN ν = 1

2

ν = 3
2 ν = 5

2
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Greedy conditional selection

Intractable to search over
(N

s
)

subsets, use greedy instead

Direct computation is O(Ns4) to select s points out of N

Maintain partial Cholesky factor for O(Ns2)
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Gaussian process regression

Recall: conditional predictions

E[yPr | yTr] = µPr +ΘPr,TrΘ
−1
Tr,Tr(yTr − µTr)

Cov[yPr | yTr] = ΘPr,Pr −ΘPr,TrΘ
−1
Tr,TrΘTr,Pr

Don’t need to approximate kernel matrices directly
E[yPr | yTr] = −L−T

Pr,PrL
T
Tr,PryTr

Cov[yPr | yTr] = L−T
Pr,PrL

−1
Pr,Pr

eT
i Cov[yPr | yTr]ej = (L−1

Pr,Prei)
T(L−1

Pr,Prej)

“Prediction points first” [Schäfer, Katzfuss, and Owhadi 2021]
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GP regression

Equivalent to Subset of Datapoints on each prediction point
independently, also called laGP [Gramacy and Apley 2014;
Gramacy and Haaland 2015]

Main differences: supernodal aggregation, handling noise
(incomplete Cholesky (ichol)) [Schäfer, Katzfuss, and Owhadi
2021; Schäfer, Sullivan, and Owhadi 2020]
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Recovery of sparse factors

Randomly generate a priori sparse Cholesky factor L

Attempt to recover L given covariance matrix Θ = LLT
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Gaussian process regression
Randomly sample 216 points uniformly from [0, 1]3

Randomly partition into 90% training and 10% prediction

Matérn kernel with smoothness ν = 5
2 and length scale ℓ = 1

Draw 103 realizations from the resulting Gaussian process
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Summary

Sparse Cholesky factorization of dense kernel matrices from
approximate conditional independence in Gaussian processes

Previous work exploits screening for ordering and sparsity

Replace pure geometry with information-theoretic criteria

More accurate factors at the same sparsity

Conditional selection is computationally efficient
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Conclusion

Computation by direct and iterative methods

Approximation by low-rank and sparse methods

Sparse Cholesky interpolates between the two in a natural way
• direct/iterative: preconditioning strength
• low-rank/sparse: ordering & sparsity pattern

Generalizes Nyström method, inducing points, laGP, . . .
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Future work
Solving elliptic PDEs and beyond, particularly for graphics
[J. Chen, Schaefer, and Desbrun 2024; J. Chen, Schäfer, et al.
2021; Y. Chen, Owhadi, and Schäfer 2023]

Sampling and inference with non-Gaussian distributions
[Katzfuss and Schäfer 2022; Marzouk et al. 2016; Spantini,
Bigoni, and Marzouk 2018]

Optimization (second-order, Hessian, natural gradient)

Computational optimal transport [Cuturi 2013]

Machine learning cf. structured computation?
• HyperAttention [Han et al. 2023], Nyströmformer [Xiong et al.

2021], State space models [Dao and Gu 2024]
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Thank You!
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Cholesky factorization

For a numerical algorithm (up-, down-, left-, right-)looking
https://theoryclub.github.io/files/cholesky_presentation.pdf

• up-looking: i-th iteration builds chol(Θ:i,:i) in time O(i2)
• left-looking: i-th iteration builds chol(Θ):,:i in time O(Ni)
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Computing the Cholesky Factorization
Down-looking

Like LU; Gaussian elimination downwards
def down_cholesky(theta: np.ndarray) -> np.ndarray:

n = len(theta)
M = np.copy(theta)
L = np.identity(n)
for i in range(n):

for j in range(i + 1, n):
L[j, i] = M[j, i] / M[i, i]
# zero out everything below
M[j] -= L[j, i] * M[i]

# update L
L[:, i] *= np.sqrt(M[i, i])

return L
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Computing the Cholesky Factorization
Up-looking

Let L′ be blocked according to

L′L′T =

(
L 0
rT d

)(
LT r
0T d

)
=

(
LLT Lr
rTLT rTr + d2

)
So if we have a Cholesky factor for a principle submatrix of Θ,
we can extend it inductively by reading off appropriate data!(

LLT Lr
rTLT rTr + d2

)
=

(
Θ c
cT D

)
r = L−1c

d =
√

D − rTr
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Computing the Cholesky Factorization
Up-looking

def L_solve(L: np.ndarray, y: np.ndarray) -> np.ndarray:
"""Solves L x = y for lower triangular L."""
n = len(y)
x = np.zeros(n)
for i in range(n):

x[i] = (y[i] - np.dot(L[i, :i], x[:i])) / L[i, i]
return x

def up_cholesky(theta: np.ndarray) -> np.ndarray:
n = len(theta)
L = np.zeros((n, n))
for i in range(n):

row = L_solve(L, theta[:i, i])
L[i, :i] = row
L[i, i] = np.sqrt(theta[i, i] - np.dot(row, row))

return L
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Computing the Cholesky Factorization
Right-looking

Write L in terms of its columns

LLT =
(
l1 · · · lN

)lT
1
...

lT
N

 = l1lT
1 + · · ·+ lN lT

N = Θ

From lower triangularity, nested submatrices!
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Computing the Cholesky Factorization
Right-looking

Read off first column

l1lT
1 + l2lT

2 + · · ·+ lN lT
N = Θ

l1lT
1 = Θ:,1

l2
1,1 = Θ1,1; l1,1 =

√
Θ1,1

l1 =
Θ:,1
l1,1

=
Θ:,1√
Θ1,1

l2lT
2 + · · ·+ lN lT

N = Θ−

(
Θ:,1√
Θ1,1

)(
Θ:,1√
Θ1,1

)T

= Θ−
Θ:,1Θ

T
:,1

Θ1,1

Proceed inductively on rank-one update
42 / 36



Computing the Cholesky Factorization
Right-looking

def right_cholesky(theta: np.ndarray) -> np.ndarray:
n = len(theta)
M = np.copy(theta)
L = np.zeros((n, n))
for i in range(n):

L[:, i] = M[:, i] / np.sqrt(M[i, i])
M -= np.outer(L[:, i], L[:, i])

return L
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Computing the Cholesky Factorization
Left-looking

Recall l1lT
1 ++ · · ·+ lN lT

N = Θ; look at li lT
i

li,i li =
(
Θ− (l1lT

1 + · · ·+ li−1lT
i−1)

)
ei

= Θ:,i − (l1,i l1 + · · ·+ li−1,i li−1)

= Θ:,i −
(
l1 · · · li−1

) l1,i
...

li,i−1


= Θ:,i − L:,:iLi,:i

Don’t need to store modified Θ in memory!
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Computing the Cholesky Factorization
Left-looking

def left_cholesky(theta: np.ndarray) -> np.ndarray:
n = len(theta)
L = np.zeros((n, n))
for i in range(n):

L[:, i] = theta[:, i] - L[:, :i] @ L[i, :i]
L[:, i] /= np.sqrt(L[i, i])

return L
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Conjugate gradient

Solve Ax∗ = b, initial guess x0 and residual r0 := b − Ax0

Optimization perspective: minimizing ‖x − x∗‖A equivalent to

L(x) = 1
2
〈x,x〉A − 〈b,x〉 =

1
2

xTAx − bTx

Like gradient descent (∇L(x) = Ax − b), but pick directions
(and learning rate) optimally, i.e. without any backtracking

xk := min
p∈Kk(A,r0)

L(x0 + p)

for Krylov subspace Kk(A, r0) := span{r0,Ar0, . . . ,Ak−1r0}

Hence residuals rk orthogonal and directions pk A-conjugate
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The polynomial perspective

Why pick Krylov subspace for search directions?

pk ∈ Kk(A, r0) := span{r0,Ar0, . . . ,Ak−1r0}

Want Kk+1(A, r0) to include xk and gradient rk = b − Axk ,

b − A(x0 + pk︸ ︷︷ ︸
=xk

) = b − Ax0︸ ︷︷ ︸
=r0

− Apk︸︷︷︸
∈Kk+1(A,r0)

∈ Kk+1(A, r0)

Naturally associated to (matrix) polynomials as

pk ∈ Kk(A, r0) ⇐⇒ pk = φ(A)r0

for some degree k − 1 polynomial φ
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User’s notes on conjugate gradient
Convergence rate bounded by condition number

κ(A) := ‖A‖2‖A−1‖2 =
λmax(A)

λmin(A)

Rate of convergence ≈ (
√

κ(A)− 1)/(
√

κ(A) + 1), number
of iterations to ε accuracy ≈

√
κ(A) log(‖e0‖A/ε)

• Convergence in n iterations only guaranteed in exact arithmetic
• Does not depend on full spectrum of A! (e.g. κ(A) = κ(A−1))

Often Kaporin condition number [Kaporin 1990, 1994]

B(A) :=
trace(A)/N
det(A)1/N

gives more accurate predictions of empirical progress
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Preconditioning

As previously seen, rates depend critically on condition number

Idea: introduce preconditioner M s.t. κ(M−1A)� κ(A)
• Caveat: need to be able to apply M−1 efficiently

CG on M = FFT, solve (F−1AF−T)y = F−1b, x = F−Ty

Happens all implicitly, don’t need factored M , just need psd!

Jacobi, incomplete Cholesky, FSAI. . .

Randomized stopping to remove bias
[Potapczynski et al. 2021]
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Conjugate residual

CG only works for symmetric + positive definite matrices

Conjugate residual/MINRES: only requires symmetry
• Minimize residual ‖b − Axk‖2 instead of energy ‖x∗ − xk‖A
• Residuals conjugate and search directions orthogonal

Non-symmetric: GMRES, QMR, BiCG, CGS, BiCGSTAB
CGNR, CGNE, LSQR, LSMR
• Square the condition or re-orthogonalize
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Practical implementation

Basic Linear Algebra Subprograms (BLAS) hierarchy
• Level 1: vector operations, e.g. axpy
O(n) memops, O(n) flops

• Level 2: matrix-vector operations, e.g. gemv
O(n2) memops, O(n2) flops

• Level 3: matrix-matrix operations, e.g. gemm
O(n2) memops, O(n3) flops

“Kernel”-style programming especially important for GPUs
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GPs on GPU

Ongoing line of work leveraging GPUs [Charlier et al. 2021]

Based on
• low-rank approximations [Abedsoltan, Belkin, and Pandit 2023;

Gardner et al. 2021; Rudi, Carratino, and Rosasco 2018],
• gradient descent [Abedsoltan, Belkin, and Pandit 2023],
• conjugate gradient [Gardner et al. 2021; Rudi, Carratino, and

Rosasco 2018]

52 / 36



Statistical Cholesky factorization
Factor covariance matrix Θ or precision matrix Q = Θ−1?

Θi,i = Var[yi ] Q−1
i,i = Var[yi | yk ̸=i ]

Θi,j = Cov[yi , yj ]
−Qi,j√
Qi,iQj,j

= Corr[yi , yj | yk ̸=i,j ]

Cholesky factorization ⇔ iterative conditioning of process

L = chol(Θ) R = chol(Q)

Li,j =
Cov[yi , yj | yk<j ]√

Var[yj | yk<j ]
−Ri,j

Rj,j
=

Cov[yi , yj | yk>j,k ̸=i ]

Var[yj | yk>j,k ̸=i ]

Covariance matrix encodes marginal independence

Precision matrix encodes conditional independence

Prefer precision matrix to attenuate density
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Mutual information objective

Define mutual information or information gain

I[yPr;yTr] = H[yPr]−H[yPr | yTr]

Entropy increasing with log determinant of covariance

Information-theoretic EV-VE identity

H[yPr] = H[yPr | yTr] + I[yPr;yTr]

Var[yPr] = E[Var[yPr | yTr]] + Var[E[yPr | yTr]]
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Orthogonal matching pursuit
Conditional selection can be seen as orthogonal matching
pursuit in covariance rather than feature space

Θ = FTF
where F ’s columns Fi are vectors in feature space and

Θi,j = 〈Fi ,Fj〉
Suppose F has QR factorization

F = QR
for Q orthonormal and R upper triangular. Then

Θ = FTF = (QR)T(QR)

= RTQTQR
= RTR

so RT is a lower triangular Cholesky factor of Θ.
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Fast conditional selection
Selecting candidate k is rank-one downdate to covariance Θ

Θ:,:|I ,k = Θ:,:|I − uuT u =
Θ:,k|I√
Θk,k|I

Corresponding decrease in posterior variance is

u2
Pr =

Cov[yPr, yk | I ]2

Var[yk | I ]
= Var[yPr | I ]Corr[yPr, yk | I ]2

Compute u as next column of (partial) Cholesky factor

Replace O(N 2) update with O(Ns) by “left-looking”

L:,i ← Θ:,k − L:,:i−1LT
k,:i−1

L:,i ←
L:,i√
Lk,i
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Multiple prediction points

Select candidate for multiple prediction points jointly

Try to take advantage of “two birds with one stone”

Flipped objective allows efficient algorithm by single selection

logdet(ΘPr,Pr|I ,k)− logdet(ΘPr,Pr|I ) = log(Θk,k|I ,Pr)− log(Θk,k|I )

O(Ns2 + Nm2 + m3) to select s points out of N candidates
for m targets, essentially m times faster than single selection
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Partial selection
In aggregated (supernodal) Cholesky factorization, “partial”
addition of candidates if candidate is between grouped targets

Conditional structure of partially conditioned covariance

Cov[y∥k ] =

(
L:pLT

:p L:pL′T
p+1:

L′
p+1:LT

:p L′
p+1:L′T

p+1:

)
=

(
L:p

L′
p+1:

)(
L:p

L′
p+1:

)T

Efficient inductive algorithm matches complexity of
multiple-target selection algorithm using rank-one downdating

Θi,i|:i−1 = L2
i,i

Θj,i|:i−1 = Lj,i · Li,i

Θi,i|:i−1,j = Θi,i|:i−1 −Θ2
j,i|:i−1/Θj,j|:i−1

Θj,j|:i−1,i = Θj,j|:i−1 −Θ2
j,i|:i−1/Θi,i|:i−1 = Θj,j|:i

58 / 36



Partial selection

= ·

Figure: Cholesky factorization of a partially conditioned covariance
matrix. Here grey denotes fully unconditional, blue denotes fully
conditional, and the mixed color denotes interaction between the two.
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Allocating nonzeros by global selection

It matters how many nonzeros each columns receives,
especially for inhomogeneous geometries

Distributing evenly maximizes computational efficiency

To maximize accuracy, maintain global priority queue that
determines both the next candidate to select and its column

Priority queue implemented as array-backed binary heap, e.g.
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k-nearest neighbors

Image classification by mode label of k-“nearest” neighbors

MNIST database of handwritten digits [Lecun et al. 1998]

Matérn kernel with smoothness ν = 3
2 and length scale 210
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Cholesky factorization

Randomly sample N = 216 points uniformly from [0, 1]3

Matérn kernel with smoothness ν = 5
2 and length scale ℓ = 1
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