
Approximate Gaussian process inference

Stephen Huan

cgdct.moe

10-624 guest lecture 2025-04-08

https://cgdct.moe


About me

Undergraduate at Georgia Tech ⇒ CMU PhD @ CSD

Research interests: generative modeling (e.g. diffusion),
statistical inference, PDEs, numerical computation

Homepage and contact: https://cgdct.moe/

1 / 36

https://cgdct.moe/


Quick links

https://cgdct.moe/projects/cholesky/

https://theoryclub.github.io/files/gp1.pdf

https://kolesky.cgdct.moe/

https://misc.cgdct.moe/papers/undergrad_thesis.pdf

Mostly covering [Huan et al. 2023]

2 / 36

https://cgdct.moe/projects/cholesky/
https://theoryclub.github.io/files/gp1.pdf
https://kolesky.cgdct.moe/
https://misc.cgdct.moe/papers/undergrad_thesis.pdf


Overview

Introduction and background

Gaussian process approximation

Sparse Cholesky factorization

Conclusion



The problem

Covariance matrices from pairwise kernel function evaluations

i.e. Θi,j = K (xi ,xj) for points {xi}Ni=1 and kernel function K

Kernel trick in machine learning

Statistical inference in Gaussian processes on y ∼ N (0,Θ)

3 / 36



The problem

Covariance matrices from pairwise kernel function evaluations

i.e. Θi,j = K (xi ,xj) for points {xi}Ni=1 and kernel function K

Kernel trick in machine learning

Statistical inference in Gaussian processes on y ∼ N (0,Θ)

3 / 36



Matérn kernel functions

Matérn family of kernels with smoothness ν and length scale ℓ

ν = 1/2 corresponds to the exponential kernel exp(−r/ℓ)

ν =∞ to the squared exponential kernel exp(−r2/(2ℓ2))

4 / 36



The problem

Gaussian process (GP) modeling f ∼ GP(µ(·),K (·, ·))

Posterior predictions

E[yPr | yTr] = µPr +ΘPr,TrΘ
−1
Tr,Tr(yTr − µTr)

Cov[yPr | yTr] = ΘPr,Pr −ΘPr,TrΘ
−1
Tr,TrΘTr,Pr

Likelihood −2 log π(x) = logdet(Θ) + xTΘ−1x + N log(2π)

Sampling x ∼ N (µ,Θ)

Direct computation scales as O(N 3), limiting data size (104)

5 / 36



The problem

Gaussian process (GP) modeling f ∼ GP(µ(·),K (·, ·))

Posterior predictions

E[yPr | yTr] = µPr +ΘPr,TrΘ
−1
Tr,Tr(yTr − µTr)

Cov[yPr | yTr] = ΘPr,Pr −ΘPr,TrΘ
−1
Tr,TrΘTr,Pr

Likelihood −2 log π(x) = logdet(Θ) + xTΘ−1x + N log(2π)

Sampling x ∼ N (µ,Θ)

Direct computation scales as O(N 3), limiting data size (104)

5 / 36



The problem

Gaussian process (GP) modeling f ∼ GP(µ(·),K (·, ·))

Posterior predictions

E[yPr | yTr] = µPr +ΘPr,TrΘ
−1
Tr,Tr(yTr − µTr)

Cov[yPr | yTr] = ΘPr,Pr −ΘPr,TrΘ
−1
Tr,TrΘTr,Pr

Likelihood −2 log π(x) = logdet(Θ) + xTΘ−1x + N log(2π)

Sampling x ∼ N (µ,Θ)

Direct computation scales as O(N 3), limiting data size (104)

5 / 36



Linear algebraic quantities

Quantities of interest
• Matrix-vector product Θx
• Linear system solve Θ−1x
• Log determinant logdet(Θ)
• Matrix square root Θ = LLT

Fast computation of the above suffices for our entire
statistical pipeline (posterior mean, likelihood, gradients, etc.)

Robust (but inefficient) computation by Cholesky factorization

6 / 36



Linear algebraic quantities

Quantities of interest
• Matrix-vector product Θx
• Linear system solve Θ−1x
• Log determinant logdet(Θ)
• Matrix square root Θ = LLT

Fast computation of the above suffices for our entire
statistical pipeline (posterior mean, likelihood, gradients, etc.)

Robust (but inefficient) computation by Cholesky factorization

6 / 36



Linear algebraic quantities

Quantities of interest
• Matrix-vector product Θx
• Linear system solve Θ−1x
• Log determinant logdet(Θ)
• Matrix square root Θ = LLT

Fast computation of the above suffices for our entire
statistical pipeline (posterior mean, likelihood, gradients, etc.)

Robust (but inefficient) computation by Cholesky factorization

6 / 36



Schur complement

Block Θ =
(

Θ1,1 Θ1,2
Θ2,1 Θ2,2

)
then perform a step of elimination,

(
Θ1,1 Θ1,2

0 Θ2,2 −Θ2,1Θ
−1
1,1Θ1,2

)
Denote the term in blue the Schur complement of Θ on Θ1,1,

Θ =

(
Id 0

Θ2,1Θ
−1
1,1 Id

)(
Θ1,1 0

0 Θ2,2|1

)(
Id Θ−1

1,1Θ1,2
0 Id

)

7 / 36



Schur complement

Block Θ =
(

Θ1,1 Θ1,2
Θ2,1 Θ2,2

)
then perform a step of elimination,

(
Θ1,1 Θ1,2

0 Θ2,2 −Θ2,1Θ
−1
1,1Θ1,2

)

Denote the term in blue the Schur complement of Θ on Θ1,1,

Θ =

(
Id 0

Θ2,1Θ
−1
1,1 Id

)(
Θ1,1 0

0 Θ2,2|1

)(
Id Θ−1

1,1Θ1,2
0 Id

)

7 / 36



Schur complement

Block Θ =
(

Θ1,1 Θ1,2
Θ2,1 Θ2,2

)
then perform a step of elimination,

(
Θ1,1 Θ1,2

0 Θ2,2 −Θ2,1Θ
−1
1,1Θ1,2

)
Denote the term in blue the Schur complement of Θ on Θ1,1,

Θ =

(
Id 0

Θ2,1Θ
−1
1,1 Id

)(
Θ1,1 0

0 Θ2,2|1

)(
Id Θ−1

1,1Θ1,2
0 Id

)

7 / 36



Cholesky factorization

Recursing finishes the construction

chol(Θ) =

(
Id 0

Θ2,1Θ
−1
1,1 Id

)(
chol(Θ1,1) 0

0 chol(Θ2,2|1)

)
=

(
chol(Θ1,1) 0

Θ2,1 chol(Θ1,1)
−T chol(Θ2,2|1)

)

Efficient blocked cache-oblivious numerical algorithm!

Statistical interpretation of Cholesky factorization

Li,j =
Cov[yi , yj | yk<j ]√

Var[yj | yk<j ]

8 / 36



Cholesky factorization

Recursing finishes the construction

chol(Θ) =

(
Id 0

Θ2,1Θ
−1
1,1 Id

)(
chol(Θ1,1) 0

0 chol(Θ2,2|1)

)
=

(
chol(Θ1,1) 0

Θ2,1 chol(Θ1,1)
−T chol(Θ2,2|1)

)
Efficient blocked cache-oblivious numerical algorithm!

Statistical interpretation of Cholesky factorization

Li,j =
Cov[yi , yj | yk<j ]√

Var[yj | yk<j ]

8 / 36



Cholesky factorization

Recursing finishes the construction

chol(Θ) =

(
Id 0

Θ2,1Θ
−1
1,1 Id

)(
chol(Θ1,1) 0

0 chol(Θ2,2|1)

)
=

(
chol(Θ1,1) 0

Θ2,1 chol(Θ1,1)
−T chol(Θ2,2|1)

)
Efficient blocked cache-oblivious numerical algorithm!

Statistical interpretation of Cholesky factorization

Li,j =
Cov[yi , yj | yk<j ]√

Var[yj | yk<j ]

8 / 36



Our desired quantities, revisited

Matrix-vector product in O(N 2)

Θx = L(LTx)

Linear system solve in O(N 2)

Θ−1x = L−T(L−1x)

Log determinant in O(N )

logdet(Θ) = 2
N∑

i=1
log(Li,i)

9 / 36



Our desired quantities, revisited

Matrix-vector product in O(N 2)

Θx = L(LTx)

Linear system solve in O(N 2)

Θ−1x = L−T(L−1x)

Log determinant in O(N )

logdet(Θ) = 2
N∑

i=1
log(Li,i)

9 / 36



Our desired quantities, revisited

Matrix-vector product in O(N 2)

Θx = L(LTx)

Linear system solve in O(N 2)

Θ−1x = L−T(L−1x)

Log determinant in O(N )

logdet(Θ) = 2
N∑

i=1
log(Li,i)

9 / 36



Moment matching
Easy to sample from z ∼ N (0, IdN )

Generalize to arbitrary Θ by affine ansatz x = Lz + µ

E[x] = E[Lz + µ] = LE[z] + µ = µ

Cov[x] = E[(x − E[x])(x − E[x])T] = E[Lz(Lz)T]

= E[LzzTLT] = LE[zzT]LT = LLT

so x ∼ N (µ,LLT). We want x ∼ N (µ,Θ), so Θ = LLT

See [J. A. Tropp 2023] for a more rigorous argument

Knothe-Rosenblatt rearrangement generalizes this idea to
sample from non-Gaussians [Katzfuss and Schäfer 2022;
Marzouk et al. 2016; Spantini, Bigoni, and Marzouk 2018]

10 / 36



Moment matching
Easy to sample from z ∼ N (0, IdN )

Generalize to arbitrary Θ by affine ansatz x = Lz + µ

E[x] = E[Lz + µ] = LE[z] + µ = µ

Cov[x] = E[(x − E[x])(x − E[x])T] = E[Lz(Lz)T]

= E[LzzTLT] = LE[zzT]LT = LLT

so x ∼ N (µ,LLT). We want x ∼ N (µ,Θ), so Θ = LLT

See [J. A. Tropp 2023] for a more rigorous argument

Knothe-Rosenblatt rearrangement generalizes this idea to
sample from non-Gaussians [Katzfuss and Schäfer 2022;
Marzouk et al. 2016; Spantini, Bigoni, and Marzouk 2018]

10 / 36



Moment matching
Easy to sample from z ∼ N (0, IdN )

Generalize to arbitrary Θ by affine ansatz x = Lz + µ

E[x] = E[Lz + µ] = LE[z] + µ = µ

Cov[x] = E[(x − E[x])(x − E[x])T] = E[Lz(Lz)T]

= E[LzzTLT] = LE[zzT]LT = LLT

so x ∼ N (µ,LLT). We want x ∼ N (µ,Θ), so Θ = LLT

See [J. A. Tropp 2023] for a more rigorous argument

Knothe-Rosenblatt rearrangement generalizes this idea to
sample from non-Gaussians [Katzfuss and Schäfer 2022;
Marzouk et al. 2016; Spantini, Bigoni, and Marzouk 2018]

10 / 36



Moment matching
Easy to sample from z ∼ N (0, IdN )

Generalize to arbitrary Θ by affine ansatz x = Lz + µ

E[x] = E[Lz + µ] = LE[z] + µ = µ

Cov[x] = E[(x − E[x])(x − E[x])T] = E[Lz(Lz)T]

= E[LzzTLT] = LE[zzT]LT = LLT

so x ∼ N (µ,LLT). We want x ∼ N (µ,Θ), so Θ = LLT

See [J. A. Tropp 2023] for a more rigorous argument

Knothe-Rosenblatt rearrangement generalizes this idea to
sample from non-Gaussians [Katzfuss and Schäfer 2022;
Marzouk et al. 2016; Spantini, Bigoni, and Marzouk 2018]

10 / 36



Moment matching
Easy to sample from z ∼ N (0, IdN )

Generalize to arbitrary Θ by affine ansatz x = Lz + µ

E[x] = E[Lz + µ] = LE[z] + µ = µ

Cov[x] = E[(x − E[x])(x − E[x])T] = E[Lz(Lz)T]

= E[LzzTLT] = LE[zzT]LT = LLT

so x ∼ N (µ,LLT). We want x ∼ N (µ,Θ), so Θ = LLT

See [J. A. Tropp 2023] for a more rigorous argument

Knothe-Rosenblatt rearrangement generalizes this idea to
sample from non-Gaussians [Katzfuss and Schäfer 2022;
Marzouk et al. 2016; Spantini, Bigoni, and Marzouk 2018]

10 / 36



Direct vs. iterative methods

Cholesky factorization example of direct method

• Numerically accurate and stable (up to floating point error)
• Requires O(N 3) time and O(N 2) memory

Conjugate gradient: prototypical iterative method for Θ−1x

• Accuracy steadily improves; can stop when desired
• Only requires matrix-vector products (“matvecs”) x 7→ Θx
• Can use approximations like fast multipole method [Fong and

Darve 2009; Wang et al. 2021] and H-matrices [Geoga,
Anitescu, and Michael L Stein 2020; Litvinenko 2019]

• Can accelerate with preconditioning: good guess for Θ−1

Plenty of great references, see
[Choi 2006; Golub and Van Loan 1996; Saad 2003]

11 / 36



Direct vs. iterative methods

Cholesky factorization example of direct method
• Numerically accurate and stable (up to floating point error)

• Requires O(N 3) time and O(N 2) memory

Conjugate gradient: prototypical iterative method for Θ−1x

• Accuracy steadily improves; can stop when desired
• Only requires matrix-vector products (“matvecs”) x 7→ Θx
• Can use approximations like fast multipole method [Fong and

Darve 2009; Wang et al. 2021] and H-matrices [Geoga,
Anitescu, and Michael L Stein 2020; Litvinenko 2019]

• Can accelerate with preconditioning: good guess for Θ−1

Plenty of great references, see
[Choi 2006; Golub and Van Loan 1996; Saad 2003]

11 / 36



Direct vs. iterative methods

Cholesky factorization example of direct method
• Numerically accurate and stable (up to floating point error)
• Requires O(N 3) time and O(N 2) memory

Conjugate gradient: prototypical iterative method for Θ−1x

• Accuracy steadily improves; can stop when desired
• Only requires matrix-vector products (“matvecs”) x 7→ Θx
• Can use approximations like fast multipole method [Fong and

Darve 2009; Wang et al. 2021] and H-matrices [Geoga,
Anitescu, and Michael L Stein 2020; Litvinenko 2019]

• Can accelerate with preconditioning: good guess for Θ−1

Plenty of great references, see
[Choi 2006; Golub and Van Loan 1996; Saad 2003]

11 / 36



Direct vs. iterative methods

Cholesky factorization example of direct method
• Numerically accurate and stable (up to floating point error)
• Requires O(N 3) time and O(N 2) memory

Conjugate gradient: prototypical iterative method for Θ−1x

• Accuracy steadily improves; can stop when desired
• Only requires matrix-vector products (“matvecs”) x 7→ Θx
• Can use approximations like fast multipole method [Fong and

Darve 2009; Wang et al. 2021] and H-matrices [Geoga,
Anitescu, and Michael L Stein 2020; Litvinenko 2019]

• Can accelerate with preconditioning: good guess for Θ−1

Plenty of great references, see
[Choi 2006; Golub and Van Loan 1996; Saad 2003]

11 / 36



Direct vs. iterative methods

Cholesky factorization example of direct method
• Numerically accurate and stable (up to floating point error)
• Requires O(N 3) time and O(N 2) memory

Conjugate gradient: prototypical iterative method for Θ−1x
• Accuracy steadily improves; can stop when desired

• Only requires matrix-vector products (“matvecs”) x 7→ Θx
• Can use approximations like fast multipole method [Fong and

Darve 2009; Wang et al. 2021] and H-matrices [Geoga,
Anitescu, and Michael L Stein 2020; Litvinenko 2019]

• Can accelerate with preconditioning: good guess for Θ−1

Plenty of great references, see
[Choi 2006; Golub and Van Loan 1996; Saad 2003]

11 / 36



Direct vs. iterative methods

Cholesky factorization example of direct method
• Numerically accurate and stable (up to floating point error)
• Requires O(N 3) time and O(N 2) memory

Conjugate gradient: prototypical iterative method for Θ−1x
• Accuracy steadily improves; can stop when desired
• Only requires matrix-vector products (“matvecs”) x 7→ Θx

• Can use approximations like fast multipole method [Fong and
Darve 2009; Wang et al. 2021] and H-matrices [Geoga,
Anitescu, and Michael L Stein 2020; Litvinenko 2019]

• Can accelerate with preconditioning: good guess for Θ−1

Plenty of great references, see
[Choi 2006; Golub and Van Loan 1996; Saad 2003]

11 / 36



Direct vs. iterative methods

Cholesky factorization example of direct method
• Numerically accurate and stable (up to floating point error)
• Requires O(N 3) time and O(N 2) memory

Conjugate gradient: prototypical iterative method for Θ−1x
• Accuracy steadily improves; can stop when desired
• Only requires matrix-vector products (“matvecs”) x 7→ Θx
• Can use approximations like fast multipole method [Fong and

Darve 2009; Wang et al. 2021] and H-matrices [Geoga,
Anitescu, and Michael L Stein 2020; Litvinenko 2019]

• Can accelerate with preconditioning: good guess for Θ−1

Plenty of great references, see
[Choi 2006; Golub and Van Loan 1996; Saad 2003]

11 / 36



Direct vs. iterative methods

Cholesky factorization example of direct method
• Numerically accurate and stable (up to floating point error)
• Requires O(N 3) time and O(N 2) memory

Conjugate gradient: prototypical iterative method for Θ−1x
• Accuracy steadily improves; can stop when desired
• Only requires matrix-vector products (“matvecs”) x 7→ Θx
• Can use approximations like fast multipole method [Fong and

Darve 2009; Wang et al. 2021] and H-matrices [Geoga,
Anitescu, and Michael L Stein 2020; Litvinenko 2019]

• Can accelerate with preconditioning: good guess for Θ−1

Plenty of great references, see
[Choi 2006; Golub and Van Loan 1996; Saad 2003]

11 / 36



Direct vs. iterative methods

Cholesky factorization example of direct method
• Numerically accurate and stable (up to floating point error)
• Requires O(N 3) time and O(N 2) memory

Conjugate gradient: prototypical iterative method for Θ−1x
• Accuracy steadily improves; can stop when desired
• Only requires matrix-vector products (“matvecs”) x 7→ Θx
• Can use approximations like fast multipole method [Fong and

Darve 2009; Wang et al. 2021] and H-matrices [Geoga,
Anitescu, and Michael L Stein 2020; Litvinenko 2019]

• Can accelerate with preconditioning: good guess for Θ−1

Plenty of great references, see
[Choi 2006; Golub and Van Loan 1996; Saad 2003]

11 / 36



Sampling & determinant

CG computes Θ−1x, what about sampling and determinants?

Sampling
• Fast Fourier transform [Graham et al. 2018] for structured Θ
• Iterative methods: Adapt CG, Krylov subspace methods

[Chow and Saad 2014; Parker and Fox 2012]

Determinant: exploit

logdet(Θ) = trace(log(Θ))

by forming x 7→ log(Θ)x and estimating trace from matvecs
• Krylov method [T. Chen and Hallman 2022; Higham 2008]
• trace estimator [Epperly, J. A. Tropp, and Webber 2024b;

Meyer et al. 2021; Persson, Cortinovis, and Kressner 2022]

12 / 36



Sampling & determinant

CG computes Θ−1x, what about sampling and determinants?

Sampling
• Fast Fourier transform [Graham et al. 2018] for structured Θ
• Iterative methods: Adapt CG, Krylov subspace methods

[Chow and Saad 2014; Parker and Fox 2012]

Determinant: exploit

logdet(Θ) = trace(log(Θ))

by forming x 7→ log(Θ)x and estimating trace from matvecs
• Krylov method [T. Chen and Hallman 2022; Higham 2008]
• trace estimator [Epperly, J. A. Tropp, and Webber 2024b;

Meyer et al. 2021; Persson, Cortinovis, and Kressner 2022]

12 / 36



Sampling & determinant

CG computes Θ−1x, what about sampling and determinants?

Sampling
• Fast Fourier transform [Graham et al. 2018] for structured Θ
• Iterative methods: Adapt CG, Krylov subspace methods

[Chow and Saad 2014; Parker and Fox 2012]

Determinant: exploit

logdet(Θ) = trace(log(Θ))

by forming x 7→ log(Θ)x and estimating trace from matvecs
• Krylov method [T. Chen and Hallman 2022; Higham 2008]
• trace estimator [Epperly, J. A. Tropp, and Webber 2024b;

Meyer et al. 2021; Persson, Cortinovis, and Kressner 2022]

12 / 36



Recap

Quantities of interest
• Matrix-vector product Θx
• Linear system solve Θ−1x
• Log determinant logdet(Θ)
• Matrix square root Θ = LLT

Compute by direct (Cholesky factor) and iterative methods

Purely linear-algebraic (with statistical interpretations)

No free lunch: cost-accuracy trade-offs abound

Goal: design algorithms at the Pareto frontier

13 / 36



Overview

Introduction and background

Gaussian process approximation

Sparse Cholesky factorization

Conclusion



Approximation strategies

Approximate the full process by partial information

For matrices, two natural ideas: low-rank and sparse

Recall (Eckart-Young-Mirsky): Singular value decomposition
optimal low-rank approximation

A∗ := min
Â
‖A− Â‖, s.t. rank(Â) ≤ r

A∗ =

r∑
i=1

σiuivT
i for SVD A = UΣV T

in both ‖·‖2 and ‖·‖F.

14 / 36



Approximation strategies

Approximate the full process by partial information

For matrices, two natural ideas: low-rank and sparse

Recall (Eckart-Young-Mirsky): Singular value decomposition
optimal low-rank approximation

A∗ := min
Â
‖A− Â‖, s.t. rank(Â) ≤ r

A∗ =

r∑
i=1

σiuivT
i for SVD A = UΣV T

in both ‖·‖2 and ‖·‖F.

14 / 36



Approximation strategies

Approximate the full process by partial information

For matrices, two natural ideas: low-rank and sparse

Recall (Eckart-Young-Mirsky): Singular value decomposition
optimal low-rank approximation

A∗ := min
Â
‖A− Â‖, s.t. rank(Â) ≤ r

A∗ =

r∑
i=1

σiuivT
i for SVD A = UΣV T

in both ‖·‖2 and ‖·‖F.

14 / 36



Approximation strategies

Approximate the full process by partial information

For matrices, two natural ideas: low-rank and sparse

Recall (Eckart-Young-Mirsky): Singular value decomposition
optimal low-rank approximation

A∗ := min
Â
‖A− Â‖, s.t. rank(Â) ≤ r

A∗ =

r∑
i=1

σiuivT
i for SVD A = UΣV T

in both ‖·‖2 and ‖·‖F.

14 / 36



Nyström method

Nyström low-rank approximation

A〈X〉 := (AX)(XTAX)−1(AX)T

A\X := A− A〈X〉 ≈ 0

y ∼ N (0,A), then y | XTy ∼ N (0,A\X).

In practice: take X =
(
Idm 0m×(N−m)

)T

⇔ A〈X〉 = A:,:mA−1
:m,:mA:m,: = L:,:mLT

:,:m for L = chol(A)

15 / 36



Nyström method

Nyström low-rank approximation

A〈X〉 := (AX)(XTAX)−1(AX)T

A\X := A− A〈X〉 ≈ 0

y ∼ N (0,A), then y | XTy ∼ N (0,A\X).

In practice: take X =
(
Idm 0m×(N−m)

)T

⇔ A〈X〉 = A:,:mA−1
:m,:mA:m,: = L:,:mLT

:,:m for L = chol(A)

15 / 36



Nyström method

Nyström low-rank approximation

A〈X〉 := (AX)(XTAX)−1(AX)T

A\X := A− A〈X〉 ≈ 0

y ∼ N (0,A), then y | XTy ∼ N (0,A\X).

In practice: take X =
(
Idm 0m×(N−m)

)T

⇔ A〈X〉 = A:,:mA−1
:m,:mA:m,: = L:,:mLT

:,:m for L = chol(A)

15 / 36



Inducing point methods

Predictions (with noise σ2Id) implied by new low-rank kernel

E[yPr | yTr] = ΘPr,:m(Θ:m,TrΘTr,:m + σ2Θ:m,:m)−1Θ:m,TryTr

with computational complexity O(Nm2) (same as Nyström)

Same as Subset of Regressors (SR), Projected Process (PP)

Subset of Datapoints (SD) simply throws out other datapoints

E[yPr | yTr] = ΘPr,:m(Θ:m,:m + σ2Id)−1y:m

See [Krause and Hübotter 2025; Quiñonero-Candela and
Rasmussen 2005; Rasmussen and Williams 2006]

16 / 36



Inducing point methods

Predictions (with noise σ2Id) implied by new low-rank kernel

E[yPr | yTr] = ΘPr,:m(Θ:m,TrΘTr,:m + σ2Θ:m,:m)−1Θ:m,TryTr

with computational complexity O(Nm2) (same as Nyström)

Same as Subset of Regressors (SR), Projected Process (PP)

Subset of Datapoints (SD) simply throws out other datapoints

E[yPr | yTr] = ΘPr,:m(Θ:m,:m + σ2Id)−1y:m

See [Krause and Hübotter 2025; Quiñonero-Candela and
Rasmussen 2005; Rasmussen and Williams 2006]

16 / 36



Inducing point methods

Predictions (with noise σ2Id) implied by new low-rank kernel

E[yPr | yTr] = ΘPr,:m(Θ:m,TrΘTr,:m + σ2Θ:m,:m)−1Θ:m,TryTr

with computational complexity O(Nm2) (same as Nyström)

Same as Subset of Regressors (SR), Projected Process (PP)

Subset of Datapoints (SD) simply throws out other datapoints

E[yPr | yTr] = ΘPr,:m(Θ:m,:m + σ2Id)−1y:m

See [Krause and Hübotter 2025; Quiñonero-Candela and
Rasmussen 2005; Rasmussen and Williams 2006]

16 / 36



Inducing point methods

Predictions (with noise σ2Id) implied by new low-rank kernel

E[yPr | yTr] = ΘPr,:m(Θ:m,TrΘTr,:m + σ2Θ:m,:m)−1Θ:m,TryTr

with computational complexity O(Nm2) (same as Nyström)

Same as Subset of Regressors (SR), Projected Process (PP)

Subset of Datapoints (SD) simply throws out other datapoints

E[yPr | yTr] = ΘPr,:m(Θ:m,:m + σ2Id)−1y:m

See [Krause and Hübotter 2025; Quiñonero-Candela and
Rasmussen 2005; Rasmussen and Williams 2006]

16 / 36



How to select the inducing points?

Active set selection often information-theoretic, experimental
design [Bartels et al. 2022; Krause, Singh, and Guestrin 2008]

Can use X from equivalence to the Nyström approximation

Modern approach: randomized numerical linear algebra
[Y. Chen, Epperly, et al. 2024; Epperly, J. A. Tropp, and
Webber 2024a; Frangella, J. A. Tropp, and Udell 2021;
Martinsson and J. Tropp 2021]

17 / 36



How to select the inducing points?

Active set selection often information-theoretic, experimental
design [Bartels et al. 2022; Krause, Singh, and Guestrin 2008]

Can use X from equivalence to the Nyström approximation

Modern approach: randomized numerical linear algebra
[Y. Chen, Epperly, et al. 2024; Epperly, J. A. Tropp, and
Webber 2024a; Frangella, J. A. Tropp, and Udell 2021;
Martinsson and J. Tropp 2021]

17 / 36



How to select the inducing points?

Active set selection often information-theoretic, experimental
design [Bartels et al. 2022; Krause, Singh, and Guestrin 2008]

Can use X from equivalence to the Nyström approximation

Modern approach: randomized numerical linear algebra
[Y. Chen, Epperly, et al. 2024; Epperly, J. A. Tropp, and
Webber 2024a; Frangella, J. A. Tropp, and Udell 2021;
Martinsson and J. Tropp 2021]

17 / 36



Acceleration by sparsity

Θ = LLT, L has N columns, s non-zero entries per column

Lv and L−1v both cost O(Ns)

Matrix-vector product: N 2 → Ns

Solving linear system: N 3 → Ns

Log determinant: N 3 → N

Sampling: N 3 → Ns

We will take s to be O(logd(N/ϵ))!

18 / 36



Acceleration by sparsity

Θ = LLT, L has N columns, s non-zero entries per column

Lv and L−1v both cost O(Ns)

Matrix-vector product: N 2 → Ns

Solving linear system: N 3 → Ns

Log determinant: N 3 → N

Sampling: N 3 → Ns

We will take s to be O(logd(N/ϵ))!

18 / 36



Acceleration by sparsity

Θ = LLT, L has N columns, s non-zero entries per column

Lv and L−1v both cost O(Ns)

Matrix-vector product: N 2 → Ns

Solving linear system: N 3 → Ns

Log determinant: N 3 → N

Sampling: N 3 → Ns

We will take s to be O(logd(N/ϵ))!

18 / 36



Acceleration by sparsity

Θ = LLT, L has N columns, s non-zero entries per column

Lv and L−1v both cost O(Ns)

Matrix-vector product: N 2 → Ns

Solving linear system: N 3 → Ns

Log determinant: N 3 → N

Sampling: N 3 → Ns

We will take s to be O(logd(N/ϵ))!

18 / 36



Acceleration by sparsity

Θ = LLT, L has N columns, s non-zero entries per column

Lv and L−1v both cost O(Ns)

Matrix-vector product: N 2 → Ns

Solving linear system: N 3 → Ns

Log determinant: N 3 → N

Sampling: N 3 → Ns

We will take s to be O(logd(N/ϵ))!

18 / 36



Acceleration by sparsity

Θ = LLT, L has N columns, s non-zero entries per column

Lv and L−1v both cost O(Ns)

Matrix-vector product: N 2 → Ns

Solving linear system: N 3 → Ns

Log determinant: N 3 → N

Sampling: N 3 → Ns

We will take s to be O(logd(N/ϵ))!

18 / 36



Acceleration by sparsity

Θ = LLT, L has N columns, s non-zero entries per column

Lv and L−1v both cost O(Ns)

Matrix-vector product: N 2 → Ns

Solving linear system: N 3 → Ns

Log determinant: N 3 → N

Sampling: N 3 → Ns

We will take s to be O(logd(N/ϵ))!

18 / 36



Overview

Introduction and background

Gaussian process approximation

Sparse Cholesky factorization
Previous work
Conditional selection
Numerical experiments

Conclusion



Collaborators

Joe Guinness,
Cornell

Matthias Katzfuß,
Texas A&M

Houman Owhadi,
Caltech

Florian Schäfer,
Gatech

19 / 36



Screening effect

Conditional on points near a point of interest, far away points
are almost independent [Michael L. Stein 2002]

Suggests space-covering ordering and selecting nearby points

20 / 36



Screening effect

Conditional on points near a point of interest, far away points
are almost independent [Michael L. Stein 2002]

Suggests space-covering ordering and selecting nearby points

20 / 36



Statistical Cholesky factorization

Cholesky factorization ⇔ iterative conditioning of process

L = chol(Θ)

Li,j =
Cov[yi , yj | yk<j ]√

Var[yj | yk<j ]

Conditional (near)-independence ⇔ (approximate) sparsity

21 / 36



Statistical Cholesky factorization

Cholesky factorization ⇔ iterative conditioning of process

L = chol(Θ)

Li,j =
Cov[yi , yj | yk<j ]√

Var[yj | yk<j ]

Conditional (near)-independence ⇔ (approximate) sparsity

21 / 36



Cholesky factorization recipe

Implied procedure for computing LLT ≈ Θ−1

1. Pick an ordering on the rows/columns of Θ
2. Select a sparsity pattern lower triangular w.r.t. ordering
3. Compute entries by minimizing objective over all factors

22 / 36



Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The i-th column selects points within a radius of ρℓi from xi

23 / 36



Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The i-th column selects points within a radius of ρℓi from xi

23 / 36



Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The i-th column selects points within a radius of ρℓi from xi

23 / 36



Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The i-th column selects points within a radius of ρℓi from xi

23 / 36



Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The i-th column selects points within a radius of ρℓi from xi

23 / 36



Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The i-th column selects points within a radius of ρℓi from xi

23 / 36



Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The i-th column selects points within a radius of ρℓi from xi

23 / 36



Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The i-th column selects points within a radius of ρℓi from xi

23 / 36



Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The i-th column selects points within a radius of ρℓi from xi

23 / 36



Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The i-th column selects points within a radius of ρℓi from xi

23 / 36



Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The i-th column selects points within a radius of ρℓi from xi

23 / 36



Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The i-th column selects points within a radius of ρℓi from xi

23 / 36



Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The i-th column selects points within a radius of ρℓi from xi

23 / 36



Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The i-th column selects points within a radius of ρℓi from xi

23 / 36



Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The i-th column selects points within a radius of ρℓi from xi

23 / 36



Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The i-th column selects points within a radius of ρℓi from xi

23 / 36



Kullback-Leibler minimization

Compute entries by minimizing Kullback-Leibler divergence

L := argmin
L̂∈S

DKL

(
N (0,Θ)

∥∥∥ N (0, (L̂L̂T)−1)
)

Efficient and embarrassingly parallel closed-form solution

Lsi ,i =
Θ−1

si ,si e1√
eT

1 Θ
−1
si ,si e1

Achieves state of the art ϵ-accuracy in time complexity
O
(
N log2d (N

ϵ

))
with O

(
N logd (N

ϵ

))
nonzero entries

[Schäfer, Katzfuss, and Owhadi 2021]

24 / 36



Kullback-Leibler minimization

Compute entries by minimizing Kullback-Leibler divergence

L := argmin
L̂∈S

DKL

(
N (0,Θ)

∥∥∥ N (0, (L̂L̂T)−1)
)

Efficient and embarrassingly parallel closed-form solution

Lsi ,i =
Θ−1

si ,si e1√
eT

1 Θ
−1
si ,si e1

Achieves state of the art ϵ-accuracy in time complexity
O
(
N log2d (N

ϵ

))
with O

(
N logd (N

ϵ

))
nonzero entries

[Schäfer, Katzfuss, and Owhadi 2021]

24 / 36



Kullback-Leibler minimization

Compute entries by minimizing Kullback-Leibler divergence

L := argmin
L̂∈S

DKL

(
N (0,Θ)

∥∥∥ N (0, (L̂L̂T)−1)
)

Efficient and embarrassingly parallel closed-form solution

Lsi ,i =
Θ−1

si ,si e1√
eT

1 Θ
−1
si ,si e1

Achieves state of the art ϵ-accuracy in time complexity
O
(
N log2d (N

ϵ

))
with O

(
N logd (N

ϵ

))
nonzero entries

[Schäfer, Katzfuss, and Owhadi 2021]

24 / 36



This work: KL-minimization, revisited

Plug optimal L back into the KL divergence

DKL

(
Θ
∥∥∥ (LLT)−1

)
=

N∑
i=1

[
log
(
Θi,i|si\{i}

)
− log

(
Θi,i|i+1:

)]

KL ⇔ total error over independent regression problems

Goal: minimize posterior variance of i-th prediction point by
selecting training points si most informative to that point

Variance ⇔ mutual information ⇔ mean squared error

25 / 36



This work: KL-minimization, revisited

Plug optimal L back into the KL divergence

DKL

(
Θ
∥∥∥ (LLT)−1

)
=

N∑
i=1

[
log
(
Θi,i|si\{i}

)
− log

(
Θi,i|i+1:

)]
KL ⇔ total error over independent regression problems

Goal: minimize posterior variance of i-th prediction point by
selecting training points si most informative to that point

Variance ⇔ mutual information ⇔ mean squared error

25 / 36



This work: KL-minimization, revisited

Plug optimal L back into the KL divergence

DKL

(
Θ
∥∥∥ (LLT)−1

)
=

N∑
i=1

[
log
(
Θi,i|si\{i}

)
− log

(
Θi,i|i+1:

)]
KL ⇔ total error over independent regression problems

Goal: minimize posterior variance of i-th prediction point by
selecting training points si most informative to that point

Variance ⇔ mutual information ⇔ mean squared error

25 / 36



Conditional k-nearest neighbors

Sparse Gaussian process regression,
experimental design, active set, etc.

Naive: select k closest points

Chooses redundant information

Maximize mutual information!

26 / 36



Conditional k-nearest neighbors

Sparse Gaussian process regression,
experimental design, active set, etc.

Naive: select k closest points

Chooses redundant information

Maximize mutual information!

26 / 36



Conditional k-nearest neighbors

Sparse Gaussian process regression,
experimental design, active set, etc.

Naive: select k closest points

Chooses redundant information

Maximize mutual information!

26 / 36



Conditional k-nearest neighbors

Sparse Gaussian process regression,
experimental design, active set, etc.

Naive: select k closest points

Chooses redundant information

Maximize mutual information!

26 / 36



Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

27 / 36



Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

27 / 36



Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

27 / 36



Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

27 / 36



Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

27 / 36



Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

27 / 36



Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

27 / 36



Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

27 / 36



Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

27 / 36



Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

27 / 36



Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

27 / 36



Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

27 / 36



Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

27 / 36



Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

27 / 36



Conditional selection
k-NN ν = 1

2

ν = 3
2 ν = 5

2

28 / 36



Greedy conditional selection

Intractable to search over
(N

s
)

subsets, use greedy instead

Direct computation is O(Ns4) to select s points out of N

Maintain partial Cholesky factor for O(Ns2)

29 / 36



Greedy conditional selection

Intractable to search over
(N

s
)

subsets, use greedy instead

Direct computation is O(Ns4) to select s points out of N

Maintain partial Cholesky factor for O(Ns2)

29 / 36



Greedy conditional selection

Intractable to search over
(N

s
)

subsets, use greedy instead

Direct computation is O(Ns4) to select s points out of N

Maintain partial Cholesky factor for O(Ns2)

29 / 36



Gaussian process regression

Recall: conditional predictions

E[yPr | yTr] = µPr +ΘPr,TrΘ
−1
Tr,Tr(yTr − µTr)

Cov[yPr | yTr] = ΘPr,Pr −ΘPr,TrΘ
−1
Tr,TrΘTr,Pr

Don’t need to approximate kernel matrices directly
E[yPr | yTr] = −L−T

Pr,PrL
T
Tr,PryTr

Cov[yPr | yTr] = L−T
Pr,PrL

−1
Pr,Pr

eT
i Cov[yPr | yTr]ej = (L−1

Pr,Prei)
T(L−1

Pr,Prej)

“Prediction points first” [Schäfer, Katzfuss, and Owhadi 2021]

30 / 36



Gaussian process regression

Recall: conditional predictions

E[yPr | yTr] = µPr +ΘPr,TrΘ
−1
Tr,Tr(yTr − µTr)

Cov[yPr | yTr] = ΘPr,Pr −ΘPr,TrΘ
−1
Tr,TrΘTr,Pr

Don’t need to approximate kernel matrices directly
E[yPr | yTr] = −L−T

Pr,PrL
T
Tr,PryTr

Cov[yPr | yTr] = L−T
Pr,PrL

−1
Pr,Pr

eT
i Cov[yPr | yTr]ej = (L−1

Pr,Prei)
T(L−1

Pr,Prej)

“Prediction points first” [Schäfer, Katzfuss, and Owhadi 2021]

30 / 36



GP regression

Equivalent to Subset of Datapoints on each prediction point
independently, also called laGP [Gramacy and Apley 2014;
Gramacy and Haaland 2015]

Main differences: supernodal aggregation, handling noise
(incomplete Cholesky (ichol)) [Schäfer, Katzfuss, and Owhadi
2021; Schäfer, Sullivan, and Owhadi 2020]

31 / 36



GP regression

Equivalent to Subset of Datapoints on each prediction point
independently, also called laGP [Gramacy and Apley 2014;
Gramacy and Haaland 2015]

Main differences: supernodal aggregation, handling noise
(incomplete Cholesky (ichol)) [Schäfer, Katzfuss, and Owhadi
2021; Schäfer, Sullivan, and Owhadi 2020]

31 / 36



Recovery of sparse factors

Randomly generate a priori sparse Cholesky factor L

Attempt to recover L given covariance matrix Θ = LLT

0 200 400 600 800 1,0000

0.2

0.4

0.6

0.8

1

N

Ac
cu

ra
cy

(IO
U)

0 50 100 150 200 2500

0.2

0.4

0.6

0.8

1

s

rand.
k-NN
corr.

Ck-NN

32 / 36



Gaussian process regression
Randomly sample 216 points uniformly from [0, 1]3

Randomly partition into 90% training and 10% prediction

Matérn kernel with smoothness ν = 5
2 and length scale ℓ = 1

Draw 103 realizations from the resulting Gaussian process

2 4 6 8

10−5

10−4

10−3

10−2

10−1

100

ρ

lo
g

10
RM

SE

101 102 103 104 105

10−5

10−4

10−3

10−2

10−1

100

log10 Time (seconds)

KL
KL (agg.)

select
select (agg.)

33 / 36



Summary

Sparse Cholesky factorization of dense kernel matrices from
approximate conditional independence in Gaussian processes

Previous work exploits screening for ordering and sparsity

Replace pure geometry with information-theoretic criteria

More accurate factors at the same sparsity

Conditional selection is computationally efficient

34 / 36



Overview

Introduction and background

Gaussian process approximation

Sparse Cholesky factorization

Conclusion



Conclusion

Computation by direct and iterative methods

Approximation by low-rank and sparse methods

Sparse Cholesky interpolates between the two in a natural way
• direct/iterative: preconditioning strength
• low-rank/sparse: ordering & sparsity pattern

Generalizes Nyström method, inducing points, laGP, . . .

35 / 36



Conclusion

Computation by direct and iterative methods

Approximation by low-rank and sparse methods

Sparse Cholesky interpolates between the two in a natural way
• direct/iterative: preconditioning strength
• low-rank/sparse: ordering & sparsity pattern

Generalizes Nyström method, inducing points, laGP, . . .

35 / 36



Conclusion

Computation by direct and iterative methods

Approximation by low-rank and sparse methods

Sparse Cholesky interpolates between the two in a natural way
• direct/iterative: preconditioning strength
• low-rank/sparse: ordering & sparsity pattern

Generalizes Nyström method, inducing points, laGP, . . .

35 / 36



Conclusion

Computation by direct and iterative methods

Approximation by low-rank and sparse methods

Sparse Cholesky interpolates between the two in a natural way
• direct/iterative: preconditioning strength
• low-rank/sparse: ordering & sparsity pattern

Generalizes Nyström method, inducing points, laGP, . . .

35 / 36



Future work
Solving elliptic PDEs and beyond, particularly for graphics
[J. Chen, Schaefer, and Desbrun 2024; J. Chen, Schäfer, et al.
2021; Y. Chen, Owhadi, and Schäfer 2023]

Sampling and inference with non-Gaussian distributions
[Katzfuss and Schäfer 2022; Marzouk et al. 2016; Spantini,
Bigoni, and Marzouk 2018]

Optimization (second-order, Hessian, natural gradient)

Computational optimal transport [Cuturi 2013]

Machine learning cf. structured computation?
• HyperAttention [Han et al. 2023], Nyströmformer [Xiong et al.

2021], State space models [Dao and Gu 2024]

36 / 36



Future work
Solving elliptic PDEs and beyond, particularly for graphics
[J. Chen, Schaefer, and Desbrun 2024; J. Chen, Schäfer, et al.
2021; Y. Chen, Owhadi, and Schäfer 2023]

Sampling and inference with non-Gaussian distributions
[Katzfuss and Schäfer 2022; Marzouk et al. 2016; Spantini,
Bigoni, and Marzouk 2018]

Optimization (second-order, Hessian, natural gradient)

Computational optimal transport [Cuturi 2013]

Machine learning cf. structured computation?
• HyperAttention [Han et al. 2023], Nyströmformer [Xiong et al.

2021], State space models [Dao and Gu 2024]

36 / 36



Future work
Solving elliptic PDEs and beyond, particularly for graphics
[J. Chen, Schaefer, and Desbrun 2024; J. Chen, Schäfer, et al.
2021; Y. Chen, Owhadi, and Schäfer 2023]

Sampling and inference with non-Gaussian distributions
[Katzfuss and Schäfer 2022; Marzouk et al. 2016; Spantini,
Bigoni, and Marzouk 2018]

Optimization (second-order, Hessian, natural gradient)

Computational optimal transport [Cuturi 2013]

Machine learning cf. structured computation?
• HyperAttention [Han et al. 2023], Nyströmformer [Xiong et al.

2021], State space models [Dao and Gu 2024]

36 / 36



Future work
Solving elliptic PDEs and beyond, particularly for graphics
[J. Chen, Schaefer, and Desbrun 2024; J. Chen, Schäfer, et al.
2021; Y. Chen, Owhadi, and Schäfer 2023]

Sampling and inference with non-Gaussian distributions
[Katzfuss and Schäfer 2022; Marzouk et al. 2016; Spantini,
Bigoni, and Marzouk 2018]

Optimization (second-order, Hessian, natural gradient)

Computational optimal transport [Cuturi 2013]

Machine learning cf. structured computation?
• HyperAttention [Han et al. 2023], Nyströmformer [Xiong et al.

2021], State space models [Dao and Gu 2024]

36 / 36



Future work
Solving elliptic PDEs and beyond, particularly for graphics
[J. Chen, Schaefer, and Desbrun 2024; J. Chen, Schäfer, et al.
2021; Y. Chen, Owhadi, and Schäfer 2023]

Sampling and inference with non-Gaussian distributions
[Katzfuss and Schäfer 2022; Marzouk et al. 2016; Spantini,
Bigoni, and Marzouk 2018]

Optimization (second-order, Hessian, natural gradient)

Computational optimal transport [Cuturi 2013]

Machine learning cf. structured computation?
• HyperAttention [Han et al. 2023], Nyströmformer [Xiong et al.

2021], State space models [Dao and Gu 2024]

36 / 36



Thank You!



References I

Abedsoltan, Amirhesam, Mikhail Belkin, and Parthe Pandit
(June 20, 2023). Toward Large Kernel Models. doi:
10.48550/arXiv.2302.02605. arXiv: 2302.02605 [cs].
url: http://arxiv.org/abs/2302.02605. Pre-published.
Bartels, Simon et al. (Feb. 23, 2022). “Adaptive Cholesky
Gaussian Processes”. arXiv: 2202.10769 [cs]. url:
http://arxiv.org/abs/2202.10769.
Charlier, Benjamin et al. (Apr. 8, 2021). Kernel Operations on
the GPU, with Autodiff, without Memory Overflows. doi:
10.48550/arXiv.2004.11127. arXiv: 2004.11127 [cs].
url: http://arxiv.org/abs/2004.11127. Pre-published.

https://doi.org/10.48550/arXiv.2302.02605
https://arxiv.org/abs/2302.02605
http://arxiv.org/abs/2302.02605
https://arxiv.org/abs/2202.10769
http://arxiv.org/abs/2202.10769
https://doi.org/10.48550/arXiv.2004.11127
https://arxiv.org/abs/2004.11127
http://arxiv.org/abs/2004.11127


References II

Chen, Jiong, Florian Schaefer, and Mathieu Desbrun (July 19,
2024). “Lightning-Fast Method of Fundamental Solutions”. In:
ACM Transactions on Graphics 43.4, pp. 1–16. issn:
0730-0301, 1557-7368. doi: 10.1145/3658199. url:
https://dl.acm.org/doi/10.1145/3658199.
Chen, Jiong, Florian Schäfer, et al. (July 19, 2021). “Multiscale
Cholesky Preconditioning for Ill-Conditioned Problems”. In:
ACM Transactions on Graphics 40.4, 81:1–81:13. issn:
0730-0301. doi: 10.1145/3450626.3459851. url:
https://doi.org/10.1145/3450626.3459851.
Chen, Tyler and Eric Hallman (Nov. 10, 2022). Krylov-Aware
Stochastic Trace Estimation. Version 2. doi:
10.48550/arXiv.2205.01736. arXiv: 2205.01736 [math].
url: http://arxiv.org/abs/2205.01736. Pre-published.

https://doi.org/10.1145/3658199
https://dl.acm.org/doi/10.1145/3658199
https://doi.org/10.1145/3450626.3459851
https://doi.org/10.1145/3450626.3459851
https://doi.org/10.48550/arXiv.2205.01736
https://arxiv.org/abs/2205.01736
http://arxiv.org/abs/2205.01736


References III

Chen, Yifan, Ethan N. Epperly, et al. (Oct. 22, 2024).
Randomly Pivoted Cholesky: Practical Approximation of a
Kernel Matrix with Few Entry Evaluations. doi:
10.48550/arXiv.2207.06503. arXiv: 2207.06503 [math].
url: http://arxiv.org/abs/2207.06503. Pre-published.
Chen, Yifan, Houman Owhadi, and Florian Schäfer (Apr. 3,
2023). Sparse Cholesky Factorization for Solving Nonlinear
PDEs via Gaussian Processes. arXiv: 2304.01294 [cs, math,
stat]. url: http://arxiv.org/abs/2304.01294.
Pre-published.
Choi, Sou-Cheng (Dec. 2006). “Iterative Methods for Singular
Linear Equations and Least-Squares Problems”. url:
https://www-
leland.stanford.edu/group/SOL/dissertations/sou-
cheng-choi-thesis.pdf.

https://doi.org/10.48550/arXiv.2207.06503
https://arxiv.org/abs/2207.06503
http://arxiv.org/abs/2207.06503
https://arxiv.org/abs/2304.01294
https://arxiv.org/abs/2304.01294
http://arxiv.org/abs/2304.01294
https://www-leland.stanford.edu/group/SOL/dissertations/sou-cheng-choi-thesis.pdf
https://www-leland.stanford.edu/group/SOL/dissertations/sou-cheng-choi-thesis.pdf
https://www-leland.stanford.edu/group/SOL/dissertations/sou-cheng-choi-thesis.pdf


References IV

Chow, Edmond and Yousef Saad (Jan. 2014). “Preconditioned
Krylov Subspace Methods for Sampling Multivariate Gaussian
Distributions”. In: SIAM Journal on Scientific Computing 36.2,
A588–A608. issn: 1064-8275. doi: 10.1137/130920587. url:
https://epubs.siam.org/doi/abs/10.1137/130920587.
Cuturi, Marco (2013). “Sinkhorn Distances: Lightspeed
Computation of Optimal Transport”. In: Advances in Neural
Information Processing Systems. Vol. 26. Curran Associates,
Inc. url:
https://proceedings.neurips.cc/paper/2013/hash/
af21d0c97db2e27e13572cbf59eb343d-Abstract.html.

https://doi.org/10.1137/130920587
https://epubs.siam.org/doi/abs/10.1137/130920587
https://proceedings.neurips.cc/paper/2013/hash/af21d0c97db2e27e13572cbf59eb343d-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/af21d0c97db2e27e13572cbf59eb343d-Abstract.html


References V

Dao, Tri and Albert Gu (May 31, 2024). Transformers Are
SSMs: Generalized Models and Efficient Algorithms Through
Structured State Space Duality. doi:
10.48550/arXiv.2405.21060. arXiv: 2405.21060 [cs].
url: http://arxiv.org/abs/2405.21060. Pre-published.
Epperly, Ethan N., Joel A. Tropp, and Robert J. Webber
(Oct. 4, 2024a). Embrace Rejection: Kernel Matrix
Approximation by Accelerated Randomly Pivoted Cholesky.
doi: 10.48550/arXiv.2410.03969. arXiv: 2410.03969. url:
http://arxiv.org/abs/2410.03969. Pre-published.

https://doi.org/10.48550/arXiv.2405.21060
https://arxiv.org/abs/2405.21060
http://arxiv.org/abs/2405.21060
https://doi.org/10.48550/arXiv.2410.03969
https://arxiv.org/abs/2410.03969
http://arxiv.org/abs/2410.03969


References VI

Epperly, Ethan N., Joel A. Tropp, and Robert J. Webber
(Mar. 31, 2024b). “XTrace: Making the Most of Every Sample
in Stochastic Trace Estimation”. In: SIAM Journal on Matrix
Analysis and Applications 45.1, pp. 1–23. issn: 0895-4798,
1095-7162. doi: 10.1137/23M1548323. arXiv: 2301.07825
[math]. url: http://arxiv.org/abs/2301.07825.
Fong, William and Eric Darve (Dec. 2009). “The Black-Box
Fast Multipole Method”. In: Journal of Computational Physics
228.23, pp. 8712–8725. issn: 0021-9991. doi:
10.1016/j.jcp.2009.08.031.
Frangella, Zachary, Joel A. Tropp, and Madeleine Udell
(Dec. 17, 2021). Randomized Nyström Preconditioning. doi:
10.48550/arXiv.2110.02820. arXiv: 2110.02820 [cs,
math]. url: http://arxiv.org/abs/2110.02820.
Pre-published.

https://doi.org/10.1137/23M1548323
https://arxiv.org/abs/2301.07825
https://arxiv.org/abs/2301.07825
http://arxiv.org/abs/2301.07825
https://doi.org/10.1016/j.jcp.2009.08.031
https://doi.org/10.48550/arXiv.2110.02820
https://arxiv.org/abs/2110.02820
https://arxiv.org/abs/2110.02820
http://arxiv.org/abs/2110.02820


References VII

Gardner, Jacob R. et al. (June 29, 2021). GPyTorch: Blackbox
Matrix-Matrix Gaussian Process Inference with GPU
Acceleration. arXiv: 1809.11165 [cs, stat]. url:
http://arxiv.org/abs/1809.11165. Pre-published.
Geoga, Christopher J, Mihai Anitescu, and Michael L Stein
(2020). “Scalable Gaussian process computations using
hierarchical matrices”. In: Journal of Computational and
Graphical Statistics 29.2, pp. 227–237.
Golub, Gene H. and Charles F. Van Loan (1996). Matrix
Computations. 3rd ed. Johns Hopkins Studies in the
Mathematical Sciences. Baltimore: Johns Hopkins University
Press. 694 pp. isbn: 978-0-8018-5413-2 978-0-8018-5414-9.

https://arxiv.org/abs/1809.11165
http://arxiv.org/abs/1809.11165


References VIII

Graham, Ivan G. et al. (Mar. 20, 2018). Analysis of Circulant
Embedding Methods for Sampling Stationary Random Fields.
doi: 10.48550/arXiv.1710.00751. arXiv: 1710.00751
[math]. url: http://arxiv.org/abs/1710.00751.
Pre-published.
Gramacy, Robert B. and Daniel W. Apley (Oct. 10, 2014).
Local Gaussian Process Approximation for Large Computer
Experiments. arXiv: 1303.0383 [stat]. url:
http://arxiv.org/abs/1303.0383. Pre-published.
Gramacy, Robert B. and Benjamin Haaland (Jan. 5, 2015).
Speeding up Neighborhood Search in Local Gaussian Process
Prediction. arXiv: 1409.0074 [stat]. url:
http://arxiv.org/abs/1409.0074. Pre-published.

https://doi.org/10.48550/arXiv.1710.00751
https://arxiv.org/abs/1710.00751
https://arxiv.org/abs/1710.00751
http://arxiv.org/abs/1710.00751
https://arxiv.org/abs/1303.0383
http://arxiv.org/abs/1303.0383
https://arxiv.org/abs/1409.0074
http://arxiv.org/abs/1409.0074


References IX

Guinness, Joseph (Oct. 2, 2018). “Permutation and Grouping
Methods for Sharpening Gaussian Process Approximations”. In:
Technometrics 60.4, pp. 415–429. issn: 0040-1706, 1537-2723.
doi: 10.1080/00401706.2018.1437476. arXiv: 1609.05372
[stat]. url: http://arxiv.org/abs/1609.05372.
Han, Insu et al. (Dec. 1, 2023). HyperAttention: Long-context
Attention in Near-Linear Time. arXiv: 2310.05869 [cs]. url:
http://arxiv.org/abs/2310.05869. Pre-published.
Higham, Nicholas J. (Jan. 2008). Functions of Matrices. Other
Titles in Applied Mathematics. Society for Industrial and
Applied Mathematics. 431 pp. isbn: 978-0-89871-646-7. doi:
10.1137/1.9780898717778. url: https:
//epubs.siam.org/doi/book/10.1137/1.9780898717778.

https://doi.org/10.1080/00401706.2018.1437476
https://arxiv.org/abs/1609.05372
https://arxiv.org/abs/1609.05372
http://arxiv.org/abs/1609.05372
https://arxiv.org/abs/2310.05869
http://arxiv.org/abs/2310.05869
https://doi.org/10.1137/1.9780898717778
https://epubs.siam.org/doi/book/10.1137/1.9780898717778
https://epubs.siam.org/doi/book/10.1137/1.9780898717778


References X

Huan, Stephen et al. (July 21, 2023). Sparse Cholesky
Factorization by Greedy Conditional Selection. doi:
10.48550/arXiv.2307.11648. arXiv: 2307.11648 [cs,
math, stat]. url: http://arxiv.org/abs/2307.11648.
Pre-published.
Kaporin, I. E. (1990). “An Alternative Approach to Estimating
the Convergence Rate of the CG Method”. In: Numerical
Methods and Software, Yu. A. Kuznetsov, ed., Dept. of
Numerical Mathematics, USSR Academy of Sciences, Moscow,
pp. 55–72.

https://doi.org/10.48550/arXiv.2307.11648
https://arxiv.org/abs/2307.11648
https://arxiv.org/abs/2307.11648
http://arxiv.org/abs/2307.11648


References XI

Kaporin, I. E. (1994). “New Convergence Results and
Preconditioning Strategies for the Conjugate Gradient
Method”. In: Numerical Linear Algebra with Applications 1.2,
pp. 179–210. issn: 1099-1506. doi:
10.1002/nla.1680010208. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/nla.1680010208.
Katzfuss, Matthias and Florian Schäfer (Feb. 28, 2022).
“Scalable Bayesian Transport Maps for High-Dimensional
Non-Gaussian Spatial Fields”. arXiv: 2108.04211 [stat].
url: http://arxiv.org/abs/2108.04211.
Krause, Andreas and Jonas Hübotter (Feb. 7, 2025).
Probabilistic Artificial Intelligence. doi:
10.48550/arXiv.2502.05244. arXiv: 2502.05244 [cs].
url: http://arxiv.org/abs/2502.05244. Pre-published.

https://doi.org/10.1002/nla.1680010208
https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.1680010208
https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.1680010208
https://arxiv.org/abs/2108.04211
http://arxiv.org/abs/2108.04211
https://doi.org/10.48550/arXiv.2502.05244
https://arxiv.org/abs/2502.05244
http://arxiv.org/abs/2502.05244


References XII

Krause, Andreas, Ajit Singh, and Carlos Guestrin (June 1,
2008). “Near-Optimal Sensor Placements in Gaussian
Processes: Theory, Efficient Algorithms and Empirical Studies”.
In: The Journal of Machine Learning Research 9, pp. 235–284.
issn: 1532-4435.
Lecun, Y. et al. (Nov. 1998). “Gradient-Based Learning Applied
to Document Recognition”. In: Proceedings of the IEEE 86.11,
pp. 2278–2324. issn: 1558-2256. doi: 10.1109/5.726791.
Litvinenko, Alexander (May 2019). HLIBCov: Parallel
Hierarchical Matrix Approximation of Large Covariance
Matrices and Likelihoods with Applications in Parameter
Identification. doi: 10.48550/arXiv.1709.08625. arXiv:
1709.08625 [stat].

https://doi.org/10.1109/5.726791
https://doi.org/10.48550/arXiv.1709.08625
https://arxiv.org/abs/1709.08625


References XIII

Martinsson, Per-Gunnar and Joel Tropp (Mar. 15, 2021).
Randomized Numerical Linear Algebra: Foundations &
Algorithms. arXiv: 2002.01387 [cs, math]. url:
http://arxiv.org/abs/2002.01387. Pre-published.
Marzouk, Youssef et al. (2016). “An Introduction to Sampling
via Measure Transport”. doi:
10.1007/978-3-319-11259-6_23-1. arXiv: 1602.05023
[math, stat]. url: http://arxiv.org/abs/1602.05023.
Meyer, Raphael A. et al. (June 10, 2021). Hutch++: Optimal
Stochastic Trace Estimation. arXiv: 2010.09649 [cs, math].
url: http://arxiv.org/abs/2010.09649. Pre-published.

https://arxiv.org/abs/2002.01387
http://arxiv.org/abs/2002.01387
https://doi.org/10.1007/978-3-319-11259-6_23-1
https://arxiv.org/abs/1602.05023
https://arxiv.org/abs/1602.05023
http://arxiv.org/abs/1602.05023
https://arxiv.org/abs/2010.09649
http://arxiv.org/abs/2010.09649


References XIV

Parker, Albert and Colin Fox (Jan. 2012). “Sampling Gaussian
Distributions in Krylov Spaces with Conjugate Gradients”. In:
SIAM Journal on Scientific Computing 34.3, B312–B334. issn:
1064-8275. doi: 10.1137/110831404. url:
https://epubs.siam.org/doi/10.1137/110831404.
Persson, David, Alice Cortinovis, and Daniel Kressner (May 6,
2022). Improved Variants of the Hutch++ Algorithm for Trace
Estimation. arXiv: 2109.10659 [cs, math]. url:
http://arxiv.org/abs/2109.10659. Pre-published.
Potapczynski, Andres et al. (June 28, 2021). Bias-Free Scalable
Gaussian Processes via Randomized Truncations. arXiv:
2102.06695 [cs, stat]. url:
http://arxiv.org/abs/2102.06695. Pre-published.

https://doi.org/10.1137/110831404
https://epubs.siam.org/doi/10.1137/110831404
https://arxiv.org/abs/2109.10659
http://arxiv.org/abs/2109.10659
https://arxiv.org/abs/2102.06695
http://arxiv.org/abs/2102.06695


References XV

Quiñonero-Candela, Joaquin and Carl Edward Rasmussen
(2005). “A Unifying View of Sparse Approximate Gaussian
Process Regression”. In: Journal of Machine Learning Research
6.65, pp. 1939–1959. issn: 1533-7928. url: http:
//jmlr.org/papers/v6/quinonero-candela05a.html.
Rasmussen, Carl Edward and Christopher K. I. Williams
(2006). Gaussian Processes for Machine Learning. Adaptive
Computation and Machine Learning. Cambridge, Mass: MIT
Press. 248 pp. isbn: 978-0-262-18253-9.
Rudi, Alessandro, Luigi Carratino, and Lorenzo Rosasco
(Jan. 31, 2018). FALKON: An Optimal Large Scale Kernel
Method. doi: 10.48550/arXiv.1705.10958. arXiv:
1705.10958 [stat]. url:
http://arxiv.org/abs/1705.10958. Pre-published.

http://jmlr.org/papers/v6/quinonero-candela05a.html
http://jmlr.org/papers/v6/quinonero-candela05a.html
https://doi.org/10.48550/arXiv.1705.10958
https://arxiv.org/abs/1705.10958
http://arxiv.org/abs/1705.10958


References XVI

Saad, Yousef (Jan. 2003). Iterative Methods for Sparse Linear
Systems. Second. Society for Industrial and Applied
Mathematics. isbn: 978-0-89871-534-7 978-0-89871-800-3.
doi: 10.1137/1.9780898718003. url: http:
//epubs.siam.org/doi/book/10.1137/1.9780898718003.
Schäfer, Florian, Matthias Katzfuss, and Houman Owhadi
(Oct. 22, 2021). “Sparse Cholesky Factorization by
Kullback-Leibler Minimization”. arXiv: 2004.14455 [cs,
math, stat]. url: http://arxiv.org/abs/2004.14455.
Schäfer, Florian, T. J. Sullivan, and Houman Owhadi (Oct. 30,
2020). “Compression, Inversion, and Approximate PCA of
Dense Kernel Matrices at near-Linear Computational
Complexity”. arXiv: 1706.02205 [cs, math]. url:
http://arxiv.org/abs/1706.02205.

https://doi.org/10.1137/1.9780898718003
http://epubs.siam.org/doi/book/10.1137/1.9780898718003
http://epubs.siam.org/doi/book/10.1137/1.9780898718003
https://arxiv.org/abs/2004.14455
https://arxiv.org/abs/2004.14455
http://arxiv.org/abs/2004.14455
https://arxiv.org/abs/1706.02205
http://arxiv.org/abs/1706.02205


References XVII

Spantini, Alessio, Daniele Bigoni, and Youssef Marzouk (July 1,
2018). Inference via Low-Dimensional Couplings. doi:
10.48550/arXiv.1703.06131. arXiv: 1703.06131 [stat].
url: http://arxiv.org/abs/1703.06131. Pre-published.
Stein, Michael L. (Feb. 2002). “The Screening Effect in
Kriging”. In: The Annals of Statistics 30.1, pp. 298–323. issn:
0090-5364, 2168-8966. doi: 10.1214/aos/1015362194. url:
https://projecteuclid.org/journals/annals-of-
statistics/volume-30/issue-1/The-screening-effect-
in-Kriging/10.1214/aos/1015362194.full.
Tropp, Joel A. (Dec. 14, 2023). “CMS/ACM 117: Probability
Theory & Computational Mathematics”. Version Accepted. In:
doi: 10.7907/Q75SZ-E1E79. url: https:
//authors.library.caltech.edu/doi/10.7907/q75sz-
e1e79.

https://doi.org/10.48550/arXiv.1703.06131
https://arxiv.org/abs/1703.06131
http://arxiv.org/abs/1703.06131
https://doi.org/10.1214/aos/1015362194
https://projecteuclid.org/journals/annals-of-statistics/volume-30/issue-1/The-screening-effect-in-Kriging/10.1214/aos/1015362194.full
https://projecteuclid.org/journals/annals-of-statistics/volume-30/issue-1/The-screening-effect-in-Kriging/10.1214/aos/1015362194.full
https://projecteuclid.org/journals/annals-of-statistics/volume-30/issue-1/The-screening-effect-in-Kriging/10.1214/aos/1015362194.full
https://doi.org/10.7907/Q75SZ-E1E79
https://authors.library.caltech.edu/doi/10.7907/q75sz-e1e79
https://authors.library.caltech.edu/doi/10.7907/q75sz-e1e79
https://authors.library.caltech.edu/doi/10.7907/q75sz-e1e79


References XVIII

Wang, Ruoxi et al. (Aug. 2021). “PBBFMM3D: A Parallel
Black-Box Algorithm for Kernel Matrix-Vector Multiplication”.
In: Journal of Parallel and Distributed Computing 154,
pp. 64–73. issn: 07437315. doi:
10.1016/j.jpdc.2021.04.005. arXiv: 1903.02153 [cs].
Xiong, Yunyang et al. (Mar. 31, 2021). Nyströmformer: A
Nyström-Based Algorithm for Approximating Self-Attention.
doi: 10.48550/arXiv.2102.03902. arXiv: 2102.03902 [cs].
url: http://arxiv.org/abs/2102.03902. Pre-published.

https://doi.org/10.1016/j.jpdc.2021.04.005
https://arxiv.org/abs/1903.02153
https://doi.org/10.48550/arXiv.2102.03902
https://arxiv.org/abs/2102.03902
http://arxiv.org/abs/2102.03902


Cholesky factorization

For a numerical algorithm (up-, down-, left-, right-)looking
https://theoryclub.github.io/files/cholesky_presentation.pdf

• up-looking: i-th iteration builds chol(Θ:i,:i) in time O(i2)
• left-looking: i-th iteration builds chol(Θ):,:i in time O(Ni)

37 / 36

https://theoryclub.github.io/files/cholesky_presentation.pdf


Computing the Cholesky Factorization
Down-looking

Like LU; Gaussian elimination downwards
def down_cholesky(theta: np.ndarray) -> np.ndarray:

n = len(theta)
M = np.copy(theta)
L = np.identity(n)
for i in range(n):

for j in range(i + 1, n):
L[j, i] = M[j, i] / M[i, i]
# zero out everything below
M[j] -= L[j, i] * M[i]

# update L
L[:, i] *= np.sqrt(M[i, i])

return L

38 / 36



Computing the Cholesky Factorization
Up-looking

Let L′ be blocked according to

L′L′T =

(
L 0
rT d

)(
LT r
0T d

)
=

(
LLT Lr
rTLT rTr + d2

)
So if we have a Cholesky factor for a principle submatrix of Θ,
we can extend it inductively by reading off appropriate data!(

LLT Lr
rTLT rTr + d2

)
=

(
Θ c
cT D

)
r = L−1c

d =
√

D − rTr

39 / 36



Computing the Cholesky Factorization
Up-looking

def L_solve(L: np.ndarray, y: np.ndarray) -> np.ndarray:
"""Solves L x = y for lower triangular L."""
n = len(y)
x = np.zeros(n)
for i in range(n):

x[i] = (y[i] - np.dot(L[i, :i], x[:i])) / L[i, i]
return x

def up_cholesky(theta: np.ndarray) -> np.ndarray:
n = len(theta)
L = np.zeros((n, n))
for i in range(n):

row = L_solve(L, theta[:i, i])
L[i, :i] = row
L[i, i] = np.sqrt(theta[i, i] - np.dot(row, row))

return L

40 / 36



Computing the Cholesky Factorization
Right-looking

Write L in terms of its columns

LLT =
(
l1 · · · lN

)lT
1
...

lT
N

 = l1lT
1 + · · ·+ lN lT

N = Θ

From lower triangularity, nested submatrices!

41 / 36



Computing the Cholesky Factorization
Right-looking

Read off first column

l1lT
1 + l2lT

2 + · · ·+ lN lT
N = Θ

l1lT
1 = Θ:,1

l2
1,1 = Θ1,1; l1,1 =

√
Θ1,1

l1 =
Θ:,1
l1,1

=
Θ:,1√
Θ1,1

l2lT
2 + · · ·+ lN lT

N = Θ−

(
Θ:,1√
Θ1,1

)(
Θ:,1√
Θ1,1

)T

= Θ−
Θ:,1Θ

T
:,1

Θ1,1

Proceed inductively on rank-one update
42 / 36



Computing the Cholesky Factorization
Right-looking

def right_cholesky(theta: np.ndarray) -> np.ndarray:
n = len(theta)
M = np.copy(theta)
L = np.zeros((n, n))
for i in range(n):

L[:, i] = M[:, i] / np.sqrt(M[i, i])
M -= np.outer(L[:, i], L[:, i])

return L

43 / 36



Computing the Cholesky Factorization
Left-looking

Recall l1lT
1 ++ · · ·+ lN lT

N = Θ; look at li lT
i

li,i li =
(
Θ− (l1lT

1 + · · ·+ li−1lT
i−1)

)
ei

= Θ:,i − (l1,i l1 + · · ·+ li−1,i li−1)

= Θ:,i −
(
l1 · · · li−1

) l1,i
...

li,i−1


= Θ:,i − L:,:iLi,:i

Don’t need to store modified Θ in memory!

44 / 36



Computing the Cholesky Factorization
Left-looking

def left_cholesky(theta: np.ndarray) -> np.ndarray:
n = len(theta)
L = np.zeros((n, n))
for i in range(n):

L[:, i] = theta[:, i] - L[:, :i] @ L[i, :i]
L[:, i] /= np.sqrt(L[i, i])

return L

45 / 36



Conjugate gradient

Solve Ax∗ = b, initial guess x0 and residual r0 := b − Ax0

Optimization perspective: minimizing ‖x − x∗‖A equivalent to

L(x) = 1
2
〈x,x〉A − 〈b,x〉 =

1
2

xTAx − bTx

Like gradient descent (∇L(x) = Ax − b), but pick directions
(and learning rate) optimally, i.e. without any backtracking

xk := min
p∈Kk(A,r0)

L(x0 + p)

for Krylov subspace Kk(A, r0) := span{r0,Ar0, . . . ,Ak−1r0}

Hence residuals rk orthogonal and directions pk A-conjugate

46 / 36



The polynomial perspective

Why pick Krylov subspace for search directions?

pk ∈ Kk(A, r0) := span{r0,Ar0, . . . ,Ak−1r0}

Want Kk+1(A, r0) to include xk and gradient rk = b − Axk ,

b − A(x0 + pk︸ ︷︷ ︸
=xk

) = b − Ax0︸ ︷︷ ︸
=r0

− Apk︸︷︷︸
∈Kk+1(A,r0)

∈ Kk+1(A, r0)

Naturally associated to (matrix) polynomials as

pk ∈ Kk(A, r0) ⇐⇒ pk = φ(A)r0

for some degree k − 1 polynomial φ

47 / 36



User’s notes on conjugate gradient
Convergence rate bounded by condition number

κ(A) := ‖A‖2‖A−1‖2 =
λmax(A)

λmin(A)

Rate of convergence ≈ (
√

κ(A)− 1)/(
√

κ(A) + 1), number
of iterations to ε accuracy ≈

√
κ(A) log(‖e0‖A/ε)

• Convergence in n iterations only guaranteed in exact arithmetic
• Does not depend on full spectrum of A! (e.g. κ(A) = κ(A−1))

Often Kaporin condition number [Kaporin 1990, 1994]

B(A) :=
trace(A)/N
det(A)1/N

gives more accurate predictions of empirical progress

48 / 36



Preconditioning

As previously seen, rates depend critically on condition number

Idea: introduce preconditioner M s.t. κ(M−1A)� κ(A)
• Caveat: need to be able to apply M−1 efficiently

CG on M = FFT, solve (F−1AF−T)y = F−1b, x = F−Ty

Happens all implicitly, don’t need factored M , just need psd!

Jacobi, incomplete Cholesky, FSAI. . .

Randomized stopping to remove bias
[Potapczynski et al. 2021]

49 / 36



Conjugate residual

CG only works for symmetric + positive definite matrices

Conjugate residual/MINRES: only requires symmetry
• Minimize residual ‖b − Axk‖2 instead of energy ‖x∗ − xk‖A
• Residuals conjugate and search directions orthogonal

Non-symmetric: GMRES, QMR, BiCG, CGS, BiCGSTAB
CGNR, CGNE, LSQR, LSMR
• Square the condition or re-orthogonalize

50 / 36



Practical implementation

Basic Linear Algebra Subprograms (BLAS) hierarchy
• Level 1: vector operations, e.g. axpy
O(n) memops, O(n) flops

• Level 2: matrix-vector operations, e.g. gemv
O(n2) memops, O(n2) flops

• Level 3: matrix-matrix operations, e.g. gemm
O(n2) memops, O(n3) flops

“Kernel”-style programming especially important for GPUs

51 / 36



GPs on GPU

Ongoing line of work leveraging GPUs [Charlier et al. 2021]

Based on
• low-rank approximations [Abedsoltan, Belkin, and Pandit 2023;

Gardner et al. 2021; Rudi, Carratino, and Rosasco 2018],
• gradient descent [Abedsoltan, Belkin, and Pandit 2023],
• conjugate gradient [Gardner et al. 2021; Rudi, Carratino, and

Rosasco 2018]

52 / 36



Statistical Cholesky factorization
Factor covariance matrix Θ or precision matrix Q = Θ−1?

Θi,i = Var[yi ] Q−1
i,i = Var[yi | yk ̸=i ]

Θi,j = Cov[yi , yj ]
−Qi,j√
Qi,iQj,j

= Corr[yi , yj | yk ̸=i,j ]

Cholesky factorization ⇔ iterative conditioning of process

L = chol(Θ) R = chol(Q)

Li,j =
Cov[yi , yj | yk<j ]√

Var[yj | yk<j ]
−Ri,j

Rj,j
=

Cov[yi , yj | yk>j,k ̸=i ]

Var[yj | yk>j,k ̸=i ]

Covariance matrix encodes marginal independence

Precision matrix encodes conditional independence

Prefer precision matrix to attenuate density
53 / 36



Mutual information objective

Define mutual information or information gain

I[yPr;yTr] = H[yPr]−H[yPr | yTr]

Entropy increasing with log determinant of covariance

Information-theoretic EV-VE identity

H[yPr] = H[yPr | yTr] + I[yPr;yTr]

Var[yPr] = E[Var[yPr | yTr]] + Var[E[yPr | yTr]]

54 / 36



Orthogonal matching pursuit
Conditional selection can be seen as orthogonal matching
pursuit in covariance rather than feature space

Θ = FTF
where F ’s columns Fi are vectors in feature space and

Θi,j = 〈Fi ,Fj〉
Suppose F has QR factorization

F = QR
for Q orthonormal and R upper triangular. Then

Θ = FTF = (QR)T(QR)

= RTQTQR
= RTR

so RT is a lower triangular Cholesky factor of Θ.

55 / 36



Fast conditional selection
Selecting candidate k is rank-one downdate to covariance Θ

Θ:,:|I ,k = Θ:,:|I − uuT u =
Θ:,k|I√
Θk,k|I

Corresponding decrease in posterior variance is

u2
Pr =

Cov[yPr, yk | I ]2

Var[yk | I ]
= Var[yPr | I ]Corr[yPr, yk | I ]2

Compute u as next column of (partial) Cholesky factor

Replace O(N 2) update with O(Ns) by “left-looking”

L:,i ← Θ:,k − L:,:i−1LT
k,:i−1

L:,i ←
L:,i√
Lk,i

56 / 36



Multiple prediction points

Select candidate for multiple prediction points jointly

Try to take advantage of “two birds with one stone”

Flipped objective allows efficient algorithm by single selection

logdet(ΘPr,Pr|I ,k)− logdet(ΘPr,Pr|I ) = log(Θk,k|I ,Pr)− log(Θk,k|I )

O(Ns2 + Nm2 + m3) to select s points out of N candidates
for m targets, essentially m times faster than single selection

57 / 36



Partial selection
In aggregated (supernodal) Cholesky factorization, “partial”
addition of candidates if candidate is between grouped targets

Conditional structure of partially conditioned covariance

Cov[y∥k ] =

(
L:pLT

:p L:pL′T
p+1:

L′
p+1:LT

:p L′
p+1:L′T

p+1:

)
=

(
L:p

L′
p+1:

)(
L:p

L′
p+1:

)T

Efficient inductive algorithm matches complexity of
multiple-target selection algorithm using rank-one downdating

Θi,i|:i−1 = L2
i,i

Θj,i|:i−1 = Lj,i · Li,i

Θi,i|:i−1,j = Θi,i|:i−1 −Θ2
j,i|:i−1/Θj,j|:i−1

Θj,j|:i−1,i = Θj,j|:i−1 −Θ2
j,i|:i−1/Θi,i|:i−1 = Θj,j|:i

58 / 36



Partial selection

= ·

Figure: Cholesky factorization of a partially conditioned covariance
matrix. Here grey denotes fully unconditional, blue denotes fully
conditional, and the mixed color denotes interaction between the two.

59 / 36



Allocating nonzeros by global selection

It matters how many nonzeros each columns receives,
especially for inhomogeneous geometries

Distributing evenly maximizes computational efficiency

To maximize accuracy, maintain global priority queue that
determines both the next candidate to select and its column

Priority queue implemented as array-backed binary heap, e.g.

60 / 36



k-nearest neighbors

Image classification by mode label of k-“nearest” neighbors

MNIST database of handwritten digits [Lecun et al. 1998]

Matérn kernel with smoothness ν = 3
2 and length scale 210

0 10 20 30 40 50

0.8

0.85

0.9

k

Ac
cu

ra
cy

(%
)

0 10 20 30 40 50

0

0.5

1

1.5

k

Ti
m

e
(s

ec
on

ds
)

k-NN
Ck-NN

61 / 36



Cholesky factorization

Randomly sample N = 216 points uniformly from [0, 1]3

Matérn kernel with smoothness ν = 5
2 and length scale ℓ = 1

2 4 6 8

103

104

105

106

ρ

lo
g

10
K

L
di

ve
rg

en
ce

101 102 103 104 105

103

104

105

106

log10 Time (seconds)

KL
KL (agg.)

k-NN
select

select (agg.)

62 / 36


	Introduction and background
	Gaussian process approximation
	Sparse Cholesky factorization
	Previous work
	Conditional selection
	Numerical experiments

	Conclusion
	References
	Appendix

