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Throughout, we’ll assume Θ ∈ RN×N is (symmetric) positive semi-definite (psd).

1 Linear algebraic quantities
Matrix square root Θ = LLT. Not unique, take orthonormal Q (QTQ = QQT = Id),

(LQ)(LQ)T = L(QQT)LT = LLT = Θ,

so if L is a square root then LQ is as well. The Cholesky factor is the unique lower
triangular square root (with positive diagonal). Another convention is Θ = LL = L2.
Take eigendecomposition Θ = UΛUT, L = UΛ1/2UT suffices as

L2 = (UΛ1/2UT)(UΛ1/2UT) = UΛ1/2(UTU)Λ1/2UT = UΛ1/2Λ1/2UT = UΛUT = Θ.

But also UΛ1/2SUT works where S is a diagonal matrix with ±1 on the diagonal. There
is, however, a unique psd square root Θ = L2, which can be computed by UΛ1/2UT,
called the principle or positive square root of Θ. Note that by symmetry, Θ = L2 = LLT

so it is also a square root in the first sense.

2 Schur complement
Recall: LU factorization. Perform row operations to reduce to reduced row echelon form,
collect row operations into matrices, resulting factorization lower and upper triangular.

For Θ blocked as Θ =
(

Θ1,1 Θ1,2

Θ2,1 Θ2,2

)
, multiply the first row by −Θ2,1Θ

−1
1,1 and add to

the second row to eliminate the first entry in the second row (Θ2,1). Resulting matrix is(
Θ1,1 Θ1,2

0 Θ2,2 −Θ2,1Θ
−1
1,1Θ1,2

)
.

Now multiply the first column by −Θ−1
1,1Θ1,2 and add to the second column to eliminate

the first entry of the second column (Θ1,2). The resulting matrix is now (block) diagonal,(
Θ1,1 0
0 Θ2,2|1

)
,
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where we denote the Schur complement with the notation Θ2,2|1 := Θ2,2 −Θ2,1Θ
−1
1,1Θ1,2.

Collecting the row and column operations into lower and upper triangular matrices,

Θ =

(
Id 0

Θ2,1Θ
−1
1,1 Id

)(
Θ1,1 0
0 Θ2,2|1

)(
Id Θ−1

1,1Θ1,2

0 Id

)
which is a (block) LDLT factorization. Recursing finishes the construction,

chol(Θ) =

(
Id 0

Θ2,1Θ
−1
1,1 Id

)(
chol(Θ1,1) 0

0 chol(Θ2,2|1)

)
=

(
chol(Θ1,1) 0

Θ2,1 chol(Θ1,1)
−T chol(Θ2,2|1)

)
where we use that Θ1,1 = chol(Θ1,1) chol(Θ1,1)

T by definition of the Cholesky factor so
Θ−1

1,1 = chol(Θ1,1)
−T chol(Θ1,1)

−1, and so

(Θ2,1Θ
−1
1,1) chol(Θ1,1) = Θ2,1(chol(Θ1,1)

−T chol(Θ1,1)
−1) chol(Θ1,1) = Θ2,1 chol(Θ1,1)

−T.

3 Our desired quantities, revisited
Some quick calculations from Θ = LLT:

Θx = (LLT)x = L(LTx)

Θ−1x = (LLT)−1x = (L−TL−1)x = L−T(L−1x)

logdet(Θ) = logdet(LLT) = log
(
det(L) det

(
LT)) = 2 logdet(L) = 2

N∑
i=1

log(Li,i)

where we used associativity of matrix multiplication, the definition of the log determinant
logdet(·) := log(det(·)), the fact that the determinant of the product is the product of the
determinants, that the determinant of the transpose is the same as the original matrix,
and that the determinant of a triangular matrix is the product of its diagonal entries.

4 Sampling & determinant
How to define log of a matrix? In general, scalar functions of a matrix defined by their
Taylor series, say. For example,

exp(x) = 1 + x+
x2

2!
+

x3

3!
+ · · ·

Natural generalization to matrices via

exp(A) = Id +A+
A2

2!
+

A3

3!
+ · · ·
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as addition of matrices, product of matrices, and division by a scalar still well-defined
(with additive and multiplicative identity Id instead of 1). Another perspective is from
the theory of linear ordinary differential equations. Consider the initial value problem

dx
dt = ax, x(0) = x0.

The unique solution is
x(t) = exp(at)x0.

Generalizing to matrices, we have the multivariate problem
dx
dt = Ax, x(0) = x0

with unique solution
x(t) = exp(At)x0,

where the matrix exponential exp(At) is defined in the Taylor series sense above. Finally,
we can define the matrix logarithm as the matrix whose exponential is the original matrix.
For a psd matrix, this always exists and is unique. To show logdet(Θ) = trace(log(Θ)),
we can use Jacobi’s formula det(exp(A)) = exp(trace(A)) for any A (not necessarily psd).
Substituting A = log(Θ), we have det(exp(log(Θ))) = det(Θ) = exp(trace(log(Θ))) or
that logdet(Θ) = trace(log(Θ)) as desired. To prove Jacobi’s formula we can use the
Jordan normal form and the Taylor series definition of the matrix exponential; this
closely mirrors the simpler proof when A is diagonalizable.

5 Nyström method
Recall that the Cholesky factorization Θ = LLT looks something like the below.

Figure 1: Cholesky factorization Θ = LLT.
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The Nyström approximation takes the first |X| = m columns of L. For slightly tech-
nical reasons we will prefer to work with factors of the precision Θ−1, which effectively
reverses the order of the variables (and transposes the matrices). This is depicted below.

Figure 2: Nyström approximation Θ ≈ L:m,:L
T
:m,:.

6 Kullback-Leibler divergence

We visualize the formula Lsi,i =
Θ−1

si,si
e1√

eT
1Θ

−1
si,si

e1
, recalling that the first entry of the (sorted

list) si is i since sparsity patterns must include the diagonal to have finite KL divergence.

Figure 3: Column formed from the submatrix Θ−1
si,sie1.
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7 Gaussian process regression
Recall the conditional formulas

E[yPr | yTr] = µPr +ΘPr,TrΘ
−1
Tr,Tr(yTr − µTr)

Cov[yPr | yTr] = ΘPr,Pr −ΘPr,TrΘ
−1
Tr,Tr.ΘTr,Pr.

But we only have an efficient approximation of the Cholesky factor of psd matrices Θ.
How do we efficiently compute quantities that involve ΘPr,Tr (which is not even square)?
One slightly inefficient thing we can do would be to form a block joint covariance matrix

Θ :=

(
ΘTr,Tr ΘTr,Pr
ΘPr,Tr ΘPr,Pr

)
, ΘPr,Tr x =

(
0 Id

)
Θ

(
x
0

)
or in other words, extracts a product ΘPr,Tr x by computing a product with Θ against x
padded with zeros and reads the desired values from the output. Although this is efficient
in the sense that (approximate) products with Θ are efficient, clearly this is wasteful as
many computations are discarded. Instead, we observe that Θ already naturally encodes
the cross interactions. The natural order is to put the training points before the testing
points as a Cholesky factor conditions on the previous columns. In our inverse factors,
this corresponds to putting “prediction points first”. Indeed, under this ordering we can
efficiently read off the quantities from the Cholesky factor with no waste.

E[yPr | yTr] = −L−T
Pr,PrL

T
Tr,PryTr

Cov[yPr | yTr] = L−T
Pr,PrL

−1
Pr,Pr

eT
i Cov[yPr | yTr]ej = (L−1

Pr,Prei)
T(L−1

Pr,Prej)
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