
Gaussian Processes and Linear Functionals
Suppose we have modeled a function f : X → R with a Gaussian process prior distribution:

p(f) = GP(f ;µ,K).

We have discussed how to perform inference about f when given (noisy) observations of the
function at a set of points X: D = (X,y). Here we are going to expand the types of observations
we may use during gp inference.

Linear functionals

Specifically, we are going to consider so-called linear functionals of f . A functional is a function
L[f ] that takes as an input a function f and returns a scalar (functionals are sometimes called
“functions of functions”). A very simple example of a functional is the point-evaluation functional:
for an arbitrary fixed point x ∈ X in the domain, the corresponding point-evaluation functional
Lx is

f 7→ Lx[f ] = f(x).

So, given a function f , the point-evaluation functional Lx simply evaluates f at x and returns the
result. This is a functional we are very accustomed to using.

A functional is said to be linear when it satisfies a simple linearity property. Specifically, let a ∈ R
be an arbitrary scalar constant and let f and g be two arbitrary functions. A functional L is linear
if the following equality always holds:

L[af + g] = aL[f ] + L[g].

It is easy to see that the point-evaluation functional Lx is linear:

Lx[af + g] = (af + g)(x) = af(x) + g(x) = aLx[f ] + Lx[g].

Two other quite-common linear functionals are definite integration against an arbitrary function
p(x):

f 7→ Ip[f ] =

∫
X
f(x)p(x) dx,

and (partial) differentiation at a point x:

f 7→ Dx,i[f ] =
∂f(z)

∂zi

∣∣∣∣
z=x

.

Conditioning on linear functionals

It turns out that we can once again exploit the closure of the Gaussian distribution under linear
transformations to condition a gp on f on the observation of any linear functional of f ! This will
allow us to both perform inference about f given observations of, for example, derivatives of f ,
and also to perform inference about linear functionals of f directly. This will provide us with a
Bayesian mechanism for estimating integrals (a task traditionally called quadrature).

Suppose we have an unknown function f : X → R with the Gaussian process prior above:

p(f) = GP(f ;µ,K),
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and let L be a linear functional. We will write ` = L[f ]. Just like Gaussian distributions are
closed under linear transformations, Gaussian processes are closed under the evaluation of linear
functionals! The prior distribution for ` is a Gaussian distribution:

p(`) = N
(
`;L[µ], L2[K]

)
where

L2[K] = L
[
L
[
K(·, x′)

]]
= L

[
L
[
K(x, ·)

]]
.

This result is essentially equivalent to the result for linear transformations of Gaussian-distributed
vectors we have been using thus far, written with different notation. Notice also that if we consider
the point-evaluation functional Lx described above, we recover a basic result:

p
(
f(x) | x

)
= N

(
f(x);Lx[µ], L

2
x[K]

)
; = N

(
f(x);µ(x),K(x, x)

)
.

Considering the integration functional, we obtain a perhaps more-interesting result:

p

(∫
f(x)p(x) dx

)
= N

(∫
f(x)p(x) dx;

∫
µ(x)p(x) dx,

∫∫
K(x, x′)p(x)p(x′) dx dx′

)
.

Therefore a Gaussian process distribution on f implies a Gaussian distribution on its integral against
an arbitrary function p(x)! Further, the problem of estimating the integral of the (perhaps quite
complicated) function f has been reduced to the perhaps simpler problem of integrating the mean
and covariance functions µ and K . This is the main idea behind Bayesian quadrature, also called
Bayesian Monte Carlo.

Given an observation of L[f ] = `, we may condition our prior on this observation in a manner
equivalent to that used to derive the posterior distribution of f . Let X be an arbitrary set of input
locations. As before, we write the joint distribution between ` and f = f(X):

p

([
f
`

]
| X

)
= N

([
f
`

]
;

[
µ

L[µ]

]
,

[
K ?
? L2[K]

])
,

where we have defined:
µ = µ(X) K = K(X,X).

To fill in the missing observations, we need to know the covariance between ` and the ith function
value fi = f(xi). Here we can exploit the linearity of covariance:

cov(fi, `) = cov
(
Lxi [f ], L[f ]

)
= Lxi

[
L
[
cov(f, f)

]]
= Lxi

[
L
[
K
]]

= L
[
K(xi, ·)

]
.

Now we have the general result

p

([
f
`

]
| X

)
= N

([
f
`

]
;

[
µ

L[µ]

]
,

[
K L

[
K(X, ·)

]
L
[
K(·,X)

]
L2[K]

])
,

Finally, we may condition this joint distribution on the observed value ` = L[f ] to find the posterior
of f, which will be an updated multivariate Gaussian distribution. Because the set of points X was
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arbitrary, we may conclude that the posterior distribution is also a Gaussian process. The posterior
mean and covariance functions are

µf |`(x) = µ(x) +
L
[
K(x, ·)

]
L2[K]

(
`− L[µ]);

Kf |`(x,x′) = K(x,x′)−
L
[
K(x, ·)

]
L
[
K(·,x′)

]
L2[K]

.

We can easily extend this result to include multiple observations of functionals and also to incorpo-
rate Gaussian noise on each of these observations.

An example is shown in Figure 1, where we condition a Gaussian process prior on the integral
observation

∫ 10

0
f(x) dx = 5.

Bayesian quadrature
Above, we conditioned a Gaussian process on an integral observation. In Bayesian quadrature,
we do the opposite: given (potentially noisy) observations of a function D = (X,y), we perform
inference about an integral of interest, for example the expectation of f under a distribution p:

Ip[f ] =

∫
f(x)p(x) dx.

The traditional method for estimating integrals of this form is Monte Carlo estimation, where we
sample some points {xs}Ss=1 from the distribution p(x) and estimate∫

f(x)p(x) dx ≈
S∑

s=1

f(xs).

In Bayesian quadrature, we place a Gaussian process prior on f , which we condition on the
observations D. Notice that the input locations X do not need to be random samples from p, but
rather can be anywhere (perhaps intelligently designed) in the domain X . The result is the posterior

p(f | D) = GP(f ;µf |D,Kf |D).

Following the above, we may also derive the posterior distribution of the expectation Ip[f ] :

p
(
Ip[f ] | D

)
= N

(
Ip[f ];

∫
µf |D(x)p(x) dx,

∫∫
Kf |D(x, x

′)p(x)p(x′) dx dx′
)
.

For some choices of the prior prior mean and covariance functions µ and K and the distribution p,
we may compute the required integrals exactly, giving a closed-form expression for the posterior
distribution of the integral of interest.

Why is this useful? The main advantages to this approach are that we may explicitly model the
structure of f via the covariance function K , and that the posterior variance of the integral may be
used to derive an active sampling scheme, revealing the most-informative points to evaluate the
function at so as to estimate the integral with the highest precision.
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Figure 1: Top: a Gaussian process prior on a function f with zero mean and squared exponen-
tial covariance. Bottom: the posterior distribution on f after conditioning on the observation∫ 10

0
f(x) dx = 5; crucially, the posterior samples all integrate to 5 over the domain.

4


