Gaussian Processes and Linear Functionals

Suppose we have modeled a function f: & — R with a Gaussian process prior distribution:

p(f) =GP (f;u, K).

We have discussed how to perform inference about f when given (noisy) observations of the
function at a set of points X: D = (X, y). Here we are going to expand the types of observations
we may use during Gp inference.

Linear functionals

Specifically, we are going to consider so-called linear functionals of f. A functional is a function
L[f] that takes as an input a function f and returns a scalar (functionals are sometimes called
“functions of functions”). A very simple example of a functional is the point-evaluation functional:
for an arbitrary fixed point z € X in the domain, the corresponding point-evaluation functional
L, is

So, given a function f, the point-evaluation functional L, simply evaluates f at x and returns the
result. This is a functional we are very accustomed to using.

A functional is said to be linear when it satisfies a simple linearity property. Specifically, let a € R
be an arbitrary scalar constant and let f and g be two arbitrary functions. A functional L is linear
if the following equality always holds:

Llaf +g] = aL[f] + Lg].
It is easy to see that the point-evaluation functional L, is linear:
Lolaf + 9] = (af + 9)(z) = af () + g(x) = aLa[f] + La[g]-

Two other quite-common linear functionals are definite integration against an arbitrary function
p(x):
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and (partial) differentiation at a point z:
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Conditioning on linear functionals

It turns out that we can once again exploit the closure of the Gaussian distribution under linear
transformations to condition a Gp on f on the observation of any linear functional of f! This will
allow us to both perform inference about f given observations of, for example, derivatives of f,
and also to perform inference about linear functionals of f directly. This will provide us with a
Bayesian mechanism for estimating integrals (a task traditionally called quadrature).

Suppose we have an unknown function f: X — R with the Gaussian process prior above:

p(f) =GP(f;u, K),



and let L be a linear functional. We will write £ = L[f]. Just like Gaussian distributions are
closed under linear transformations, Gaussian processes are closed under the evaluation of linear
functionals! The prior distribution for ¢ is a Gaussian distribution:

p(¢) = N (¢; L[], L*[K])

where

LY[K] = L[L[K(~,x’)]} - L[L [K (=, -)]]

This result is essentially equivalent to the result for linear transformations of Gaussian-distributed
vectors we have been using thus far, written with different notation. Notice also that if we consider
the point-evaluation functional L, described above, we recover a basic result:

p(f(2) | #) = N (f(2); Lalp), LK]); = N (f (2); (), K (2, 2)).

Considering the integration functional, we obtain a perhaps more-interesting result:
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Therefore a Gaussian process distribution on f implies a Gaussian distribution on its integral against
an arbitrary function p(z)! Further, the problem of estimating the integral of the (perhaps quite
complicated) function f has been reduced to the perhaps simpler problem of integrating the mean
and covariance functions ¢ and K. This is the main idea behind Bayesian quadrature, also called
Bayesian Monte Carlo.

Given an observation of L[f] = ¢, we may condition our prior on this observation in a manner
equivalent to that used to derive the posterior distribution of f. Let X be an arbitrary set of input
locations. As before, we write the joint distribution between ¢ and f = f(X):
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where we have defined:
p=pX) K=KXX).

To fill in the missing observations, we need to know the covariance between ¢ and the ™ function
value f; = f(x;). Here we can exploit the linearity of covariance:

cov(fi, ) = cov(Ly, [f], LIf]) = Lu, [L [cov(f, f)]} = Ly, [L [K]] = L[K(x;,")].

Now we have the general result
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Finally, we may condition this joint distribution on the observed value £ = L[f] to find the posterior
of f, which will be an updated multivariate Gaussian distribution. Because the set of points X was



arbitrary, we may conclude that the posterior distribution is also a Gaussian process. The posterior
mean and covariance functions are
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We can easily extend this result to include multiple observations of functionals and also to incorpo-
rate Gaussian noise on each of these observations.

An example is shown in Figure 1, where we condition a Gaussian process prior on the integral
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observation [, f(x)dz = 5.

Bayesian quadrature

Above, we conditioned a Gaussian process on an integral observation. In Bayesian quadrature,
we do the opposite: given (potentially noisy) observations of a function D = (X,y), we perform
inference about an integral of interest, for example the expectation of f under a distribution p:

1,(f] = / f(@)p(z) de.

The traditional method for estimating integrals of this form is Monte Carlo estimation, where we
sample some points {x,}5_, from the distribution p(z) and estimate
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In Bayesian quadrature, we place a Gaussian process prior on f, which we condition on the
observations D. Notice that the input locations X do not need to be random samples from p, but
rather can be anywhere (perhaps intelligently designed) in the domain X. The result is the posterior

p(f | D) =GP(f;psp, Kyp)-

Following the above, we may also derive the posterior distribution of the expectation I,,[f] :

p(I,[f]1| D) —N<Ip[f];/,ufp(x)p(x) dw,/ Kyp(z, 2" )p(x)p(a’) dxdm’).

For some choices of the prior prior mean and covariance functions p and K and the distribution p,
we may compute the required integrals exactly, giving a closed-form expression for the posterior
distribution of the integral of interest.

Why is this useful? The main advantages to this approach are that we may explicitly model the
structure of f via the covariance function K, and that the posterior variance of the integral may be
used to derive an active sampling scheme, revealing the most-informative points to evaluate the
function at so as to estimate the integral with the highest precision.
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Figure 1: Top: a Gaussian process prior on a function f with zero mean and squared exponen-
tial covariance. Bottom: the posterior distribution on f after conditioning on the observation
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o f(x)dx = 5; crucially, the posterior samples all integrate to 5 over the domain.



