Acquisition Functions

Previously, we introduced two relatively simple acquisition functions for Bayesian optimization:
Probability of Improvement (p1) and Expected Improvement (E1). These acquisition functions are
commonly used in practice, in part because they permit closed-form, easy-to-optimize expressions
when the underlying probabilistic model is a Gaussian process. Below, we will detail a few al-
ternatives, some of which have provable theoretical guarantees, some which result in intractable
expressions but have been shown empirically to perform well under various approximate inference
techniques. Ultimately, the choice of acquisition function is simply a model hyperparameter that
can be tuned to fit the specific task/goals of the practitioner.

For the following discussion, assume that we model the (black-box) objective function as a noiseless
Gp, f | D ~ GP(f;up,kp), where D = (X, f) is a previously gathered set of observations of f
and pp, kp are the posterior mean and covariance functions respectively.

Knowledge Gradient

An alternative interpretation of EI is that it greedily maximizes the following utility function:
/
u' (D) = max X).
(D) = max pip(x)

In our noiseless setting, up(x) = f(x) ¥V x € D so for a fixed dataset, u'(D) = maxf := f.

Using this utility function, we can then recreate the point-wise utility we had previously defined as

u(x) = o/ (D U (x, f(x))) — /(D) = max(0, f(x) — f').

Under this interpretation of 1, one might notice a bit of an oddity: why should our utility be defined
over only points we have observed, x € D? Intuitively, this would be like saying that at the end
of our budget, we are limited to returning a point in our observed dataset as our “guess” at the
optimum of the function.

We can extend 1 by instead allowing us to return any arbitrary location in the domain after our
final guess, including ones that we never observed during experimentation. This gives rise to the
knowledge gradient (xG) acquisition function. The implied utility function is

u(x) =" (D U (x, f(x)) ) = u"(D) where u” (D) = max up (x).

Notably, the dataset utility, u”, is defined over the entire domain, x € X. Let u}, = max /ip (x).
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The resulting acquisition function is
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Intuitively, this integral averages all possible updates to the posterior mean that could occur if
we were to observe the function at location x. Unfortunately, this integral is intractable in all but
a handful of degenerate cases (e.g., when the domain is discrete or one-dimensional and specific
covariance function is used). As such, numerical integration techniques must be used to approximate



this integral; we will discuss many of these at length shortly but for the sake of example, a simple
approximation would be the Monte Carlo estimate
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which simply draws (finitely many) samples from the posterior belief about f(x), treats each sample
as if it were the true observed function value and computes what the maximum of the posterior
mean would be under each sample.

Empirically, it has been found that the knowledge gradient acquisition function outperforms
E1L, particularly in settings with noise (which admittedly, we have explicitly excluded from this
discussion).

Upper confidence bound

The Bayesian optimization literature draws heavily from the work done in multi-armed bandit
settings, which can be viewed as a noisy, discrete-domain formulation of the Bayesian optimization
problem. One relatively famous acquisition function inspired by this line of research is known as
the ucs or upper confidence bound acquisition function. This acquisition function is somewhat
difficult to define in terms of an implied utility function for Bayesian decision theory (although in
certain cases, it is possible to construct one); instead, we will simply consider its functional form:

aUCB(X; B) = MD(X) + B V kD(Xv X)'

We refer to this (somewhat erroneously) as an upper confidence bound as it corresponds to an
upper bound on the a-credible interval of our posterior belief about the function’s value at x, where

a=P(p).
Similar to the ¢ parameter for p1, 3 > 0 is a parameter that controls the exploration-exploitation

tradeoff; like E1, that tradeoff can be explicitly seen in the functional form of aycy(x; 3), where the
w(x) term favors exploitation and the \/kp(x, x) prioritizes exploration.

Figure 1 shows the effect of the tradeoff parameter (in terms of « rather than J): as « increases, ucB
tends to prefer exploration over exploitation and prioritizes observations farther from previously
observed locations. We can see this in the sample run also depicted in Figure 1: relative to EI, this
acquisition function tends to space out its observations more evenly over the domain (at least for
this setting of o), even going so far as to depart from the neighborhood of the true optimal value
after discovering it (the two tick marks circled in red in Figure 1).
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Figure 1: The upper confidence bound acquisition function evaluated on the running example from
the previous notes (top), presented in terms of three different values of a, as well as the first ten
observation locations selected by this policy when o = 0.999 (middle) and the next ten observation
locations (bottom). The height of the tick marks indicates the relative order that points are selected
to be observed in, with higher tick marks being selected earlier; the thicker tick marks indicate
observations with 0.2 units of the true optimum.



Regret Bounds

One major advantage of this acquisition function is that it enjoys strong theoretical guarantees
under certain assumptions about the quality of the Gp’s fit to the underlying objective function.
These theoretical guarantees are defined in terms of the regret of an acquisition function:

T

Rr = Zf(X*) — f(xt)

t=1
where T is our budget of observations, f(x*) is the optimal objective function value, and x; is the
t™h observation selected by the acquisition function.

Srinivas et al. (2010) proved that the regret of the ucB acquisition function is bounded according to

p(RT < O*(\/W)) >1-6

for some ¢ € (0,1), where O* is equivalent to O-notation with polylogarithmic factors suppressed.
The bound above holds if the following conditions are satisfied; the conditions are somewhat
technical if rigorously defined so we provide an intuitive description of the conditions instead:

« the domain X is compact and convex,
« the objective function is “well-modeled” by the Gp belief,
« B follows a schedule that increases as ¢ increases and/or J decreases,

« ; is some measure of how “informative” point-wise observations of the function are about
the function as a whole.

Thompson Sampling

Another acquisition function with its roots in the multi-armed bandit literature is known as Thomp-
son sampling (Ts). Unlike the other acquisition functions we will consider, Ts is an inherently
stochastic policy.’

We can define the Ts acquisition function as

ars(x) = g(x) where g ~ GP(f; up, kp).-
In words, Thompson sampling simply operates by drawing a sample path from the posterior Gp
belief on the objective function and observing the location where the sample is maximized.
While seemingly straightforward, exactly optimizing a sample path from a Gp belief is non-trivial.
Two common approaches are described below.
“Brute-force” or Exhaustive Sampling

For sufficiently low-dimensional (or ideally, discrete) domains, a reasonable approximation is to
sample from the Gp belief at a dense grid of locations, typically evenly spaced according to some
low-discrepancy sequence, and then observe the location with the highest sampled function value.
This amounts to simply sampling from a multivariate Gaussian distribution, which can be done

!Some of the approximations we will introduce for the intractable acquisition functions introduce randomness in the
approximation but the functions we are approximately are themselves deterministic quantities.


https://las.inf.ethz.ch/files/srinivas10gaussian.pdf

efficiently for a small-ish number of locations (i.e., < 100, 000) but high-dimensional domains or
objective functions with very short relative length-scales, this may not give sufficient coverage of
the possible inputs to accurately estimate the sample path’s maximum.

Figure 2 shows the (approximate) distribution of the optimal location to observe,

p(z* | D) where z* = arg max f(x),
reX

on our 1-dimensional running example.
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Figure 2: Thompson sampling used to approximate the distribution of the objective function’s
arg max: to generate the distribution (middle), 100 sample paths were drawn from the posterior Gp
belief (top) over a grid of 1000 evenly spaced locations; the location of the arg max of each sample
path is shown as well (bottom).

On-demand Sampling

If exhaustive sampling is prohibitively expensive, we can rely on iterative optimization algorithms
(e.g., gradient descent) which only query a single point from our sample path at a time. Whenever
our optimizer requires a new observation from our sample path, we simply draw a univariate
sample from the Gaussian posterior belief at the requested location, conditioned on all the previous
samples. It turns out that with our Gp belief, it is even possible to sample a gradient of our sample
path at any given location!

We will discuss this property and its implications at a later point but one key consideration is that
incorporating gradient samples can significantly increase computational costs as we are effectively
going from a single Gaussian sample in each iteration to d+ 1 samples, where d is the dimensionality
of the domain (recall that the gradient contains an element for each dimension of the input).

Entropy search

Finally, a recently proposed class of acquisitions functions leverages the notion of mutual information
to guide the selection of observations; these are typically called some variant of the phrase entropy
search. Entropy search acquisition functions seek to minimize the uncertainty we have about some
quantity of interest. In the context of Bayesian optimization, there are two obvious quantities that
we might wish to gain information about:



1. the optimal objective function value f* = max, fx)
X €

2. the location of the optimal objective function value x* = arg max f(x)
xe X

Entropy search treats these quantities as random variables and seeks to evaluate points so as to
maximize the mutual information between them and the selected observations. Recall that the
mutual information between two random variables, X and Y, is given by

[(X;Y) = H(X) —Ey [H(X | V)]

where H(X) = Ex[log(X)] is the entropy of X. One key property of mutual information that we
exploit shortly is symmetry: I(X;Y) = I(Y; X).

Let w be either of the two quantities of interest above. The implied utility function of these
acquisition functions is then
(D) = H(w) — H(w | D)

which gives rise to the point-wise utility function
u(x) = By [0/(D U (%, f(0)| = /(D)
=H(w|D) - Ef {H(w | D U (x,f(x)))} = I(w;f(x) | X7D).

Figure 3 compares these two acquisition functions for both w = x* and w = f*.
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Figure 3: Entropy search for mutual information with respect to x* (middle) and f* (bottom).
Note the dips in the Esy+ acquisition function at the boundary: these dips are absent in all of the
acquisition functions we’ve explored to date. This indicates that Esy~ is less interested in observing
the boundary because it can only decrease our uncertainty about the optimal location “in one
direction”; observations further from the boundary reduce the uncertainty over a larger portion of
the domain.

Unfortunately, this acquisition function is intractable for both x* and f*; instead, a somewhat
complicated sequence of approximations must be made in either case to estimate these acqui-
sition functions. For brevity, we will present just an (abridged) approximation for Esy~; many
corresponding approximations for sy« follow a similar structure to the one presented below.



Mutual Information with x*

Instead of computing I (x*; f(x), D), we will instead consider approximating the equivalent

I(f(x);x* \X,D) = H(f(x) |X,D) — Ey- [H(f(x) | X*,X,D)].

Luckily, the first term is simple under the Gp belief:
1
H(f(x)|x,D) = 3 log (2we kp(x,x)).

The second term is harder to approximate. We begin by approximating the expectation via Monte
Carlo integration:

S
Ey- [H( (x) | x*, xD} Z | x%,x, D) where x} ~ p(x* | D).

The necessary samples of x* can be drawn using Thompson sampling as detailed above.

The distribution p( f(x) | x*,x, D) is a strange one: intuitively, this distribution poses the question
“how would knowing the location of the objective function’s optimum affect my belief about the
functions value at some other location?”

If we could approximate this distribution to be Gaussian,
p(f(x) | X", x,D) = N(f(x);m", ™),

then we would once again have a simple expression for the entropy in question:
1
H(f(x)|x:,x,D)~ 3 log (2me 02*)

Putting this together with the previous term gives the final approximation for the Esy~ acquisition
function:

S

aESNflog(27rekpxx Z g (2me 07) = log<\/kpxx>— Zlog

Of course, the key unanswered question is how to approximate p( f(x) | x*,x, D) as a Gaussian.
Hernéndez-Lobato et al. (2014) proposed using expectation propagation (p) to do so, which gives
rise to the predictive entropy search or PEs acquisition function.

At a high level, their proposed Ep approximation begins with p(f(x) | x, D) as the “prior”, po(f(x)).
They then multiply this prior by a sequence of “likelihood” terms which correspond to enforcing
that x* satisfies certain properties of a global maximum. At a high level, there is

« aterm that enforces the gradient at x* is 0,
« aterm that enforces the Hessian at x* is negative semi-definite,

. aterm that enforces f* > f’ (recall that f’ is the maximum observed function value in D),
and

- aterm that enforces f* > f(x).


https://arxiv.org/pdf/1406.2541

The first two terms correspond to x* being a local maximum whereas the second two terms loosely
enforce that x* is globally optimal: they are necessary but not sufficient conditions although given
that this is already an approximation, the somewhat loose correspondence can be forgiven.

Figure 4 shows the EP approximated posterior of f using this set of implied constraints: the effect is
minimal to non-existent at locations far from x* but the (approximate) conditioning on x* has a
clear impact on the posterior belief of nearby function values.
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Figure 4: The approximate posterior belief on the objective function after using the PEs EP approxi-
mation. The location being conditioned on was sampled using Thompson sampling.



