
Bayesian Experimental Design
Many problems that arise in scientific discovery and design share the following properties:

• the design space or the space of viable candidates is massive,

• the percentage of relevant or desirable observations is low, and

• the act of discovery or exploring the space is inherently slow.

As amotivating example, consider the problem of crop breeding: agricultural scientists are interested
in predicting (and often, maximizing) the yield of some crop but there are infinitely many possible
genetic varieties or strains, most are not viable or will not outperform current commercial strains
and crucially, gathering the relevant yield data requires a full growth cycle i.e., it takes months
or even years before it can be determined whether or not some strain was a success. Similar
problems arise in drug and material discovery, robotics and reinforcement learning settings, and
many engineering disciplines.

The Bayesian approach to solving such experimental design problems has been found to be very
powerful in terms of accelerating and improving the discovery process. One particularly notable
success story is “AutoML” or automated hyperparameter optimization, which also fits neatly into
this paradigm: the search space of possible hyperparameter settings is massive, especially as the
number of hyperparameters in the models grows. Yet most hyperparameter settings perform quite
poorly and the only way to evaluate some setting of the hyperparameters requires training (or
partially training) the model, which could take days or weeks on expensive, specialized hardware.
Famously, the hyperparameters of AlphaGo, the Go playing agent that beat top human experts,
were tuned in part using a technique known as Bayesian optimization.1

At a high-level, the Bayesian approach to experimental design combines a variety of tools we have
already developed in this course:

• We assume the existence of some unknown function that maps elements of the design space to
some performance metric or property of interest. This function is typically, but not necessarily,
modeled with a Gaussian process.

• We query some oracle (e.g., by running an experiment or gathering data) to refine/improve our
model. The location of this query is determined by specifying an objective (or equivalently, a
loss) and applying Bayesian decision theory.

• We update our model using Bayesian inference and repeat until some notion of convergence
has been achieved or an allocated budget of queries has been expended.

Figure 1 depicts an outline of an experimental design pipeline.

The exact nature of the loss function used to define the query selection will depend on our inference
goal. We will explore a variety of inference tasks in the following weeks that broadly fall under
the umbrella of probabilistic numerics. Probabilistic numerics treats intractable or unknowable
quantities as random variables to be estimated, commonly using Bayesian inference techniques.
The next few lectures will focus on one such numerical analysis task: optimization.

1https://arxiv.org/pdf/1812.06855

1

Figure 1: A high-level overview of the Bayesian approach to experimental design. Note the
iterative, sequential nature of the problem: new observations are fed back into the model, which is
subsequently used to gather more observations.

Bayesian Optimization
Suppose we have a function f : X → R that we wish to maximize on some domain X ⊆ X . That
is, we wish to find

x∗ = argmax
x∈X

f(x).

In numerical analysis, this problem is typically called (global) optimization and has been the
subject of decades of study. We draw a distinction between global optimization, where we seek
the absolute optimum in X , and local optimization, where we seek to find a local optimum in the
neighborhood of a given initial point x0.

If an exact functional form for f is not available (that is, f behaves as a “black box”), what can we
do? Bayesian optimization proceeds by maintaining a probabilistic belief about f and designing
a so-called acquisition function to determine where to evaluate the function next. Bayesian
optimization is particularly well-suited to global optimization problems where f is an expensive
black-box function; for example, evaluating f might require running an expensive simulation or
training a large, machine learning model.

Although not strictly required, Bayesian optimization almost always reasons about f by choosing
an appropriate Gaussian process prior:

p(f) = GP(f ;µ,K).

Given observations D = (X, f),2 we can condition our distribution on D as usual:

p(f | D) = GP(f ;µf |D,Kf |D).

We have already developed the machinery to perform this modeling and updating. The key question
becomes, given this set of observations, how do we select where to observe the function next?

The meta-approach in Bayesian optimization is to design an acquisition function, a(x). The
acquisition function is typically an inexpensive function that can be evaluated at a given point
that is commensurate with how desirable evaluating f at x is expected to be for the maximization

2We will assume these observations to be noiseless here, but we could extend the methods here to the noisy case without
difficulty.

2

problem. We then optimize the acquisition function to select the location of the next observation.
Of course, we have merely replaced our original optimization problem with another optimization
problem, but on a much-cheaper, easier to optimize function a(x).

Exploration vs. Exploitation

A key consideration in designing an acquisition function for Bayesian optimization is navigating
the tradeoff between exploration and exploitation. Exploration is when we use our queries to learn
more about the function at places where we are uncertain about its behavior in order to set up
potential future gains. Exploitation is when we use our queries to for short-term gain by improving
our belief around locations we currently believe to be high yield. This tradeoff is illustrated in
Figure 2 for the Bayesian optimization context, where “high yield” is defined in terms having a
higher target function value.

Figure 2: A depiction of the exploration-exploitation tradeoff in the context of Bayesian optimization:
exploration (top) prioritizes exploring regions far from the observations, where the behavior of
the function is most unknown, while exploitation (bottom) would query locations near where the
model currently believes the highest function value to be.

We will see that many acquisition functions for Bayesian optimization naturally and elegantly
navigate this trade-off, seamlessly and automatically transitioning from an exploration phase to an
exploitation phase and back as needed.

Acquisition Functions
Many acquisition functions can be interpreted in the framework of Bayesian decision theory as
corresponding to an expected loss associated with evaluating f at a point x. We then select the
point with the lowest expected loss, as usual.

In the following sections, we will drop the f | D subscripts on the mean µ and covariance K
functions for f ; assume everything is based on a posterior distribution when data is available.

3

Probability of improvement

Perhaps the first acquisition function designed for Bayesian optimization was probability of
improvement. Suppose

f ′ = max f

is the maximal value of f observed so far. Probability of improvement evaluates f at the point most
likely to improve upon this value. This corresponds to the following utility function3 associated
with evaluating f at a given point x:

u(x) =

{
0 f(x) < f ′ + ε

1 f(x) ≥ f ′ + ε.

That is, we receive a unit reward if f(x) turns out to be “better than” (i.e., greater than) f ′ by at
least ε, and no reward otherwise; here, ε is a tunable parameter of this acquisition function. The
probability of improvement acquisition function is then the expected utility as a function of x:

api(x) = E
[
u(x) | x,D

]
=

∫ ∞

f ′+ε

N
(
f ;µ(x),K(x, x)

)
df

= 1− Φ
(
f ′ + ε;µ(x),K(x, x)

)
.

The point with the highest probability of improvement (the maximal expected utility) is selected.
This is the Bayes optimal action under this loss. Figure 3 shows the effect of the parameter ε on this
acquisition function: observe that as ε grows, the acquisition policy becomes more exploratory.

Figure 3: The probability of improvement acquisition function on our running example. Note that
the acquisition function is symmetric about the observations and ties in the acquisition function
are broken arbitrarily.

3Recall a utility function is simply a negative loss function.

4

Expected improvement

The loss function associated with probability of improvement is somewhat odd: we get a reward for
improving by at least a certain amount upon the current maximum, but that reward is independent
of the size of the improvement! This acquisition function can sometimes lead to odd behavior, and
in practice can get stuck in local optima and under-explore globally.

An alternative acquisition function that does account for the size of the improvement is expected
improvement. Again suppose that f ′ is the maximal value of f observed so far. Expected
improvement evaluates f at the point that, in expectation, improves upon f ′ the most. This
corresponds to the following utility function:

u(x) = max
(
0, f(x)− f ′).

That is, we receive a reward equal to the “improvement” of the observation over our current best
observation, f(x)− f ′ The expected improvement acquisition function is then the expected utility
as a function of x:

aei(x) = E
[
u(x) | x,D

]
=

∫ ∞

f ′
(f − f ′)N

(
f ;µ(x),K(x, x)

)
df

=
(
µ(x)− f ′)Φ(µ(x)− f ′√

K(x, x)

)
+
√

K(x, x) N

(
µ(x)− f ′√
K(x, x)

)
.

The point with the highest expected improvement (the maximal expected utility) is selected.

The expected improvement has two components. The first can be increased by increasing the
mean function µ(x). The second can be increased by increasing the variance K(x, x). These two
terms can be interpreted as explicitly encoding the tradeoff between exploitation (evaluating at
points with high mean) and exploration (evaluating at points with high uncertainty). The expected
improvement acquisition function automatically captures both as a result of the Bayesian decision
theoretic treatment.

Figure 4 depicts the expected improvement acquisition function on our running example as well as
the observations made by the algorithm over 20 iterations; the optimal function value was located
after 19 queries.

5

Figure 4: The expected improvement acquisition function evaluated on our running example (top)
as well as the first ten observation locations selected by this policy (middle) and the next ten
observation locations (bottom). The height of the tick marks indicates the relative order that points
are selected to be observed in, with higher tick marks being selected earlier; the thicker tick marks
indicate observations with 0.2 units of the true optimum.

6

