Expectation Propagation

One thing to note about assumed density filtering is that our final approximation is dependent on
the sequence in which we process the likelihood terms {¢;}. Note that we are always matching the
moments between

i-1(0)t:(0),
the approximation using data up to the 7" term as well as the true i'" likelihood term, and the new
approximation

Qi(e) = Zi‘]i—l(e){i(0§ éi)'

This moment matching at time % therefore never considers data that appears in future terms. For
this reason, we might accumulate errors and/or wish to later “revisit” a particular term and update
the site parameters (Z;, 0;) in light of future data. This idea leads to expectation propagation, a
refinement of assumed density filtering that can address some of these issues.

The idea is simple: once we have processed each of the likelihood terms, resulting in the approxi-
mation

q(0) = po(0) H Zifi(e; 0:),
i=1

we repeatedly revisit each term and update its site parameters. First, we select asite 1 <7 < nto
update, then form the so-called cavity distribution, which is our approximation using all but the
i term in the product:
q-:(0) = po(0) [ ] Z,t;(6:6;).
J#i

Another way of conceptualizing the cavity distribution is that we have divided the previous ap-
proximation by the old site term Z;t,(0; 0;). Next, we replace the removed site term with the true
likelihood term t¢;, forming the tilted distribution

Finally, we select new site parameters to (re)match the moments between the tilted distribution and
our new approximation:

qnew(e) = Ziqfi (0)51 (07 éz)
We proceed continually updating site parameters in this manner until we reach convergence (i.e.,
none of the site parameters changes very much) or we expend a chosen computational budget.

Note that we do not need to use assumed density filtering to first initialize the site parameters, we
can use basically any initialization scheme; a common alternative is to simply initialize all of the
site parameters to Zi =1,f; =0and 6; = co V1 < ¢ < n, making the initial approximation
q(6) = po(0).
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(a) Unnormalized and normalized Laplace approximations (b) Expectation propagation

Figure 1: A comparison of the Laplace approximation and expectation propagation on a one-
dimensional, intractable posterior.

Figures 1a and 1b compare the Laplace approximation and expectation propagation on a one-
dimensional posterior: while the Laplace approximation does an okay job representing the posterior
around its mode, expectation propagation is better at capturing the entirety of the distribution.

EP for Bayesian Probit Regression

Continuing our previous example, suppose that we have used assumed density filtering to approx-
imate the intractable posterior on the latent function f for Bayesian probit regression with the
standard normal cDF as our sigmoid function:

n

%N(f;u,)H (yifi) = q(f) = N(£; p,) H N (fis fui, 7).
=1

Suppose we are updating the parameters for the i term and the current marginal belief about f;
using our approximation g is

a(fi) = N(fi, i, 7).

We first compute the parameters of the cavity distribution:

g-i(f) = N (&) [ [ ZN (13 115, 57) < N(fir pis02)
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Next, we compute the moments of the tilted distribution,

—i(fi)®@(yifi),
which are
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Note the similarity between these moments and the moments we computed during assumed density
filtering. The derivation of these moments is almost identical to the derivation of the moments
we matched in assumed density filtering, they only differ in the parameters of the Gaussian being
multiplied by the standard normal cDF; for brevity, the derivations have been omitted here.

Lastly, we update the site parameters such that the moments of
Gnew(fi) = Ziq—i(fi)N (fis 1, 57)

to match the moments above. To do this, we set the site parameters to be

L~ 2
— 7

We then recompute the approximation ¢(f) and resample another term to update our belief about.

EP for truncation

Another common use case for expectation propagation is to approximately truncate a Gaussian
random variable at some threshold. For a univariate Gaussian, x, we can represent this truncation
using a single (non-Gaussian) “likelihood” term:

t(z) =1(zr < a)

where a is the threshold and 1 is the indicator function, which takes value 1 when the argument is
true and 0 otherwise.

Again, suppose our initial approximation of the truncation term is £(x) = N (x; ji, 52), giving rise
to the approximate belief ¢(z) = A (x; i, o2). From here, we can calculate the mean and variance
of the cavity distribution as before:
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Omitting the tedious derivations, the resulting updates to the site parameters are

p=p_+o_ (g((i)) _,_Z)l where » — a;_u,
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Z =(z)\/27 (62 + 02) exp _




—— factor, #(x) —— Gaussian EP approximation
—— tilted distribution

Figure 2: An EP approximation to a truncated Gaussian.

Figure 2 shows the effect of truncating a 1-dimensional Gaussian to be less than a threshold a. As
an approximation, there is still some mass above the threshold but it accounts for only roughly 5%
of the total probability mass.

Theoretical motivation

We conclude with one brief note about the theoretical motivation behind the moment matching used
in assumed density filtering and expectation propagation. The Kullback-Leibler (xr) divergence
(also called relative entropy) is a notion of “distance” between probability distributions, defined by

010
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Notice that kL divergence is not a true distance, as it is not symmetric, but it does satisfy dy, (p ||
q) > 0 with d.(p || ¢) = 0if and only if p(@) = ¢(0) almost everywhere.

A well-known result is that the kL divergence between an arbitrary probability distribution p(8)
and a multivariate Gaussian distribution ¢(@) (in the direction dy,(p || ¢)) is minimized when ¢
is chosen to match the moments of p. Therefore, in the case of Gaussian approximations, these
methods can be seen as iteratively building up an approximate posterior in the desired family by
minimizing the KL divergence at every step.

Minimizing L divergence in “the other direction,” dy; (g || p), gives rise to another family of
approximation techniques known as variational Bayesian inference, which we will learn more about
later in the semester.



