Gaussian Process Classification

Just as we could use the kernel trick to extend Bayesian linear regression to Gaussian processes
for general-purpose nonlinear regression, we may also extend Bayesian linear classification in the
same way. In Gaussian process classification, we assume there is a latent function f: X — R
that is commensurate with the probability of a positive observation; higher latent function values
correspond to higher probabilities of positive observations. In Bayesian linear classification, we
assumed a parametric (linear) form for this latent function:

f(x) =x"w.

In Gaussian process classification, rather than choosing a parametric form for f, we instead place a
Gaussian process prior on f:

p(f) =GP (f;u, K).

Note that a Gaussian prior on the weight vector w above induces a Gaussian process prior on f
with mean function
-
p(x) =x p

and covariance function
K(x,x') =x"x,

where p(w) = N (w; , ). The Gaussian process formalism allows us to model arbitrary nonlinear
classification boundaries by using any desired mean and covariance function for f.

Likelihood

Suppose we have made binary observations at a set of values X, and define f = f(X) to be the
associated set of latent function values. As we did when discussing Bayesian logistic regression, we
will assume the following likelihood for a given label observation y; associated with x;:

plyi = 1] fi) = o(fi),

where o: R — (0, 1) is a monotonically increasing sigmoid function such as the logisitic function
or the standard normal cDr. We again assume the observations are conditionally independent given

the latent function values:
piy | £) =[] p(wi | £).

Inference

Given our prior p(f) = GP(f;u, K) and a set of observations D = (X, y), we wish to find the
posterior distribution of the latent function values f = f(X). Note that if we had a Gaussian
posterior f, this would induce a GP posterior for the function f given D. The posterior is

p(E1 D) = (€ | X)ply | £) = N (8:0X), KX X)) [T oo | £,

Unfortunately, as we saw, the sigmoid likelihood coupled with the Gaussian prior does not form
a tractable posterior. Instead, we must approximate this posterior in some way. Previously we
described the Laplace approximation, which approximates the unnormalized log posterior with
a second-order Taylor expansion, resulting in a Gaussian approximate posterior centered at the
posterior mode

f = argmax p(f | D).
£



Here we will consider another approximation technique for approximating intractable posterior
distributions, which is useful when the likelihood factorizes into one-dimensional terms, as in GP
classification when the labels are assumed to be conditionally independent.

Assumed Density Filtering
Consider a posterior distribution of the form

n

P8 1D) = _po(®) [[ 116,

i=1

where the t; are typically likelihood terms, for example our p(y; | f;) above. We assume the
prior po(0) has been chosen to be of some nice form, for example a Gaussian, and we will use the
Gaussian case to illustrate the idea below.

In assumed density filtering (ADF), we assume that the posterior has the same form as the prior
Do, and we seek an approximating distribution

q(0) =~ p(6 | D)

from the same family as p, that approximates the true posterior “as well as possible.”

Mechanically, ensuring that our approximate distribution ¢ remains in the same family as py is
achieved by selecting an (unnormalized) member ¢; from the likelihood conjugate to the prior for
each of the likelihood terms ¢;. The result is

and this product will belong to the desired family by conjugacy. Here the constants Z; and the
local parameter vectors {7),} are free parameters, called site parameters. We will choose the
site parameters for each of the approximating distributions #; to try to improve the fit of the
approximating distribution.

For example, the Gaussian distribution is self-conjugate, so the ADF approximation will in this case
take the form

n

q(6) = po(0) [ [ 1:(0) ~ N'(6; 1, = H N(; ;, %),

i=1

where the site parameters are the constants Z; (chosen so that the approximation normalizes) as
well as the local mean vectors ft; and covariance matrices X;.

Note that in the GP classification case, the likelihood terms in the product are (very conveniently)
one-dimensional, because each term simply models a single scalar label, y;, and only depends on a
single latent function value f;:

Q(f) f X H .fz;,uu )



Consider just the first two terms in this product:
p(0 | D1) o< po(0)t:1(0).

This product will not have the same nice form as the prior, but has only been warped “slightly”
away from the prior via a single likelihood term. In many cases, this distribution will be at least
partially manageable. Perhaps there will not be a nice closed expression, but we might still be able
to compute the normalizing constant or the moments of the posterior.

In assumed density filtering, we will approximate this product with a member of the desired family:
q1(6) = Z1po(6)1(8571,) ~ p(6 | D1) o< po(6)t1(6).

This approximation is done by matching the moments between the approximation ¢; (8) and the
true posterior p(6 | Dy).

For example, consider po(6) = N (8; u, X). We select the site parameters n = {Z; ', fi;, 21}
such that

Now the approximate distribution is in the desired density family (Gaussians) and matches the true
posterior up to the second moment.

Now consider the first three terms of the product:
p(0 | D1, D) x po(0)t1(0)t2(0) x p(0 | D1)t2(0).
The idea in assumed density filtering is to substitute in our approximation ¢; (8), giving:
p(0 | D1,D2) ~ q1(0)t2(6).

Now we are in the same situation we were in before! We have a nice “prior” distribution ¢;
multiplied by a single likelihood term ¢2. We proceed as before, replacing the true likelihood term
to with an approximate (conjugate) term Zots (0; 92) where we again choose the site parameters
(Zg7 05) to match the moments between our new approximation

42(0) = Z241(0)12(6: 0y) = Z1Z2p0(0)11(85 711 )E2(8; 7).

and the “less-approximate” posterior g1 (0)t2(6). We proceed in this fashion until we have processed
all the local likelihood terms, resulting in the final approximation

q(0) = po(0) H Zifi(‘g; 7;)-

i=1



Moments for Bayesian Probit Regression

As an example, suppose we use the standard normal cDF as our sigmoid function

fi L2
o)== [ e Fan

In this setting, we can compute the site parameters Zi, fi;, and 67 in closed-form. To do so, first
observe that if we encode the labels as y; € {—1, 41}, we can succinctly express the likelihood as

Pr(y [ f) = ch(yifi)
i=1
where we have made use of the fact that
Pr(y; = —1[ fi) =1-Pr(y; = +1| fi) = 1 — (fi) = (- fi).
Now suppose that the product of the prior and the first ¢ — 1 likelihood terms has already been

approximated as 4 ,
gi-1(F) = N (F ul7), 3070

and we are interested in computing the moments of
p(f | X1:4) o< gi—1(£)ti(£)
where ¢;(f) = ®(f;). First, consider the normalizing constant
Z7'=(= /qi,l(f)ti(f) df
> i—1 i—1
— [ N (Fanl ) ot ar,

— 00

o< ryifi q a2 1 B i
= e 2 e 2=y da df;
/—oo /—oo \V4 2 QWE(?—l)

where we have made use of the (again, incredibly convenient) fact that the likelihood factorizes
along individual latent function values and the closure property of Gaussians under marginalization.
Note that the superscript (i — 1) indicates that the mean and variance come from the current
approximate belief ¢;_1 (f).

Let us first consider the case where y; = +1. We will define two intermediate quantities:

a=a— fi + #gi_l) — dO{ — da and a = (+1)fl S o= Iu(i—l)

B=fi—u™ = dp = df;
—“a=a+f



Using these substitutions and swapping the order of the integrals gives
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For the case where y; = —1, the procedure is similar except we define the substitution variables as

Ol:a+fi7,ui% da = daanda:(fl)fi‘}a:*,ui
B=fi—w — dB=df;

—“a=a—-0

Using these new substitutions and stepping through the same procedure as above gives an unsur-
prisingly similar result:

_Ml('ifl)

/143D

Thus, we can collect the two results into a single, concise expression by again using the fact that
the labels are encoded as y; € {—1,+1}:

gyiifl =®

(1)
(=0 | —LE | =a(z)
1+
Next, we need to compute the first two moments of the true posterior:

fz / fz f?a (= 5; 1)> (I)(yifi)dfi

m= f21 W (™, 2670) (i f) d



To compute these, first observe that

(i—1) sa(i—1)
a¢ o0 ON (fipi 7,55
oy Op;
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where A/(+) is the standard normal ppr. The first term in the top equation is precisely the first
moment we wish to compute multiplied by ﬁ' Thus, we can derive an expression for the first

moment by setting the two (equivalent) expressions for % equal to each other and solving:
i
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Similarly, taking the second derivative of { with respect to p; gives

#C 1 2 (i-1) L G-1) w(i-1)
S = [ () 2o (S0
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Setting these two equal and solving for the (normalized) first term gives
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Finally, the variance of f; can be computed as

var(f;) = E[f?) — E[f:)? = 2u{ " VE[fi] + 5V

¢
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Incredibly, we are only part way through the derivation! The next step is to compute the site
parameters, ji; and 62, such that the product q; 1 (f;)t;(fi; fii, 77) is a Gaussian with the mean and
variance that we just computed.

To do so, recall that the product of two independent Gaussian PDFs is an unnormalized Gaussian i.e.
1
N6 1) N, P) = SN (0, T),

where
T='"4+P H landw =T(Z '+ P 'v)

In the context of assumed density filtering for Gaussian process classification, we want
N (iS5 ) N (i sy 52) o N (Fis BLE), var (1))

Thus, we can solve for ji; and 52 as follows:

-1 -1
1 1 i 1 1
Var(fl) - <ZEE_1) + 5‘?) — g, = (Var(fi) - Zx—l)>

(i-1) ~ (i=1)
1= . Hi Hi ~ _ ~2 E[fz} 122
E[fz] = Var(fz) (Eg_l) + 53) — Wi = 0y (Var(fi) — El(,;:_l) .

Finally, we can now combine g; 1 (f) with our newly computed approximation N(f;; ji;, 52) to get
the next approximation in the sequence, g;(f).

However, to do so, we now need to “project” our 1-dimensional likelihood term back into the full
n—dimensional space corresponding to f. We can do this by constructing

« the matrix S, an n x n matrix of all zeros except for the i diagonal element, which is equal
to 5—12 and

« the vector m, which is an n length vector of all zeros except for the i™ element, which is g—é

Then the updated approximation can be expressed as
@(f) o s (BF(E ;) oc N (£, )
where we again apply the closure of Gaussian PDFs to get
i) _ (2@—1)*1 n S)’l and p@) = 50 (Ea—l)*lu(i—l) +m) .
We would then repeat this process for i + 1,7 + 2, ... and so on until all n likelihood terms have

been approximated as Gaussians, leading to a final Gaussian approximation for the intractable
posterior.



