
WEEK 2 STUDY GUIDE
10-301/10-601 Introduction to Machine Learning (Summer 2025)
http://www.cs.cmu.edu/˜hchai2/courses/10601

Released: Monday, May 19th, 2025
Quiz Date: Friday, May 23rd, 2025

TAs: Andy, Canary, Michael, Sadrishya, and Neural the Narwhal

Summary These questions are meant to prepare you for the upcoming quiz on MLE/MAP, Logistic
Regression, Linear Regression and Neural Networks. You’ll start with a few questions about MLE and
MAP. Then, you’ll work through an example of logistic regression and consider an adversarial attack
scenario. Next, you’ll apply gradient descent to optimize the parameters of a linear regression model,
then consider the impact of various modifications to the training dataset and a new loss function. You’ll
revisit logistic regression to consider the impact of regularization. Finally, you’ll answer a few questions
about training and tuning neural networks, followed by an example that asks you to compute all of the
relevant quantities for forward and backpropagation by hand, to give you some insight into these algorithms.

Note These questions are entirely optional; you do not need to submit your answers to these questions.
However, at least 50% of the questions that will appear in your workshop quiz will be identical or nearly
identical to questions in this document. Thus, we recommend you to at least attempt every question.
Furthermore, we highly encourage you to work in groups to solve these questions: because you are not
being directly assessed on your solutions, feel free to share solutions and discuss ideas with your peers.

We encourage you to work on this study guide regularly throughout the week; in particular, this
study guide is organized in sections where each section corresponds to a particular day’s lectures. Here is
our recommended schedule for working on this study guide:

1. MLE/MAP - after Monday’s (5/19) lectures

2. Logistic Regression: Example - after Tuesday’s (5/20) lectures

3. Logistic Regression: Adversarial Attack - after Tuesday’s (5/20) lectures

4. Linear Regression - after Tuesday’s (5/20) lectures

5. Regularization - after Wednesday’s (5/21) lectures

6. Neural Networks: Warm-up - after Wednesday’s (5/21) lectures

7. Neural Networks: Example - after Thursday’s (5/22) lectures

1

http://www.cs.cmu.edu/~hchai2/courses/10601

1 MLE/MAP
1. (a) True. As the number of training examples approaches infinity, the influence of the prior becomes

negligible.

2. 1

The posterior p(w|Y) follows

p(γ|Y) ∝ p(Y |γ)p(γ)

= 2γ × 3γe−3γ× 2
3

= 6γ2e−2γ

Take the first derivative of the posterior and set it to 0, we have

12γe−2γ(1− γ) = 0

Solve for γ, we obtain γ = 0 or γ = 1. Given that the second derivative of the posterior is not
always less than 0, thus, γ = 0 and γ = 1 are only stationary points, not necessarily giving the global
maximum. Further notice that when γ = 0, the posterior is 0. Thus, the MAP estimate of γ is 1.

3. MLE 0.75, MAP 0.5

MLE:
w = p(heads)
w = 0 : f(w = 0) =

(
3
2

)
wx(1− w)n−x = 3(0)2(1)1 = 0

w = .25 : f(w = .25) =
(
3
2

)
wx(1− w)n−x = 3(.25)2(.75)1 = 0.140625

w = .5 : f(w = .5) =
(
3
2

)
wx(1− w)n−x = 3(.5)2(.5)1 = 0.375

w = .75 : f(w = .75) =
(
3
2

)
wx(1− w)n−x = 3(.75)2(.25)1 = 0.421857

w = 1 : f(w = 1) =
(
3
2

)
wx(1− w)n−x = 3(1)2(0)1 = 0

w = 0.75 has the highest estimate so we choose that as our MLE

MAP:
w = p(heads)
w = 0 : 0.9 ∗ f(w = 0) = 0.9 ∗

(
3
2

)
wx(1− w)n−x = 0.9 ∗ 3 ∗ (0)2(1)1 = 0

w = .25 : 0.04 ∗ f(w = .25) = 0.04 ∗
(
3
2

)
wx(1− w)n−x = 0.04 ∗ 3 ∗ (.25)2(.75)1 = 0.005

w = .5 : 0.03 ∗ f(w = .5) = 0.03 ∗
(
3
2

)
wx(1− w)n−x = 0.03 ∗ 3 ∗ (.5)2(.5)1 = 0.011

w = .75 : 0.02 ∗ f(w = .75) = 0.02 ∗
(
3
2

)
wx(1− w)n−x = 0.02 ∗ 3 ∗ (.75)2(.25)1 = 0.008

w = 1 : 0.01 ∗ f(w = 1) = 0.01 ∗
(
3
2

)
wx(1− w)n−x = 0.01 ∗ 3 ∗ (1)2(0)1 = 0

w = 0.5 has the highest estimate so we choose that as our MAP

Page 2

2 Logistic Regression: Example
1. 0.7975

ℓ(w) = − 1

N
log p (y | X,w) = − 1

N

N∑
i=1

log
(
p
(
y(i) | x(i),w

))
= − 1

N

N∑
i=1

log
(
σ(wTx(i))y

(i)
(1− σ(wTx(i))(1−y(i))

)
= − 1

N

N∑
i=1

y(i) log(σ(wTx(i))) + (1− y(i)) log(1− σ(wTx(i)))

= −1

4
(log(1− σ(1)) + log(σ(2))

+ log(σ(3)) + log(1− σ(1.5)))

= 0.797548...

2. 0.2044
-0.0417
0.1709

∂ℓ(w)

∂wj
=

1

N

N∑
i=1

(σ(wTx(i))− y(i))x
(i)
j

∂ℓ(w)

∂w1
=

1

4
((σ(1)− 0)(0) + (σ(2)− 1)(0) + (σ(3)− 1)(0) + (σ(1.5)− 0)(1))

= 0.204396... = 0.2044

∂ℓ(w)

∂w2
=

1

4
((σ(1)− 0)(0) + (σ(2)− 1)(1) + (σ(3)− 1)(1) + (σ(1.5)− 0)(0))

= −0.0416571987... = −0.0417
∂ℓ(w)

∂w3
=

1

4
((σ(1)− 0)(1) + (σ(2)− 1)(0) + (σ(3)− 1)(1) + (σ(1.5)− 0)(0))

= 0.17090817... = 0.1709

3. 1.2956
2.0417
0.8291

wj ← wj − η
∂ℓ(w)

∂wj

w1 = 1.5− 1(0.2044) = 1.2956

w2 = 2− 1(−0.0417) = 2.0417

w3 = 1− 1(0.1709) = 0.8291

Page 3

3 Logistic Regression: Adversarial Attack
1. ∂σ(wTx)

∂x = σ(wTx)(1− σ(wTx))w

x← x+ ησ(wTx)(1− σ(wTx))w

2. The update rule is for each pixel j in the pixel vector x, set xj = 1 if wj > 0 and set xj = 0 otherwise.

3. B

4 Linear Regression
1. (a) 209.2000

The gradient of this objective function is:

∂ℓ

∂w
=

1

N

N∑
i=1

2 · (wxi + b− yi) · xi

=
1

5

5∑
i=1

2xi(3xi − yi)

=
1

5
[468 + 24 + 180 + 6 + 368]

= 209.2

(b) 29.2000

The gradient of this objective function is:

∂ℓ

∂b
=

1

N

N∑
i=1

2 · (wxi + b− yi)

=
1

5

5∑
i=1

2(3xi − yi)

=
1

5
[52 + 12 + 30 + 6 + 46]

= 29.2

(c) Weight: 0.9080

Intercept: -0.2920

w ← w − α
∂ℓ

∂w
= 3.0− 0.01 · 209.2 = 0.9080

b← b− α
∂ℓ

∂w
= 0.0− 0.01 · 29.2 = −0.2920

Page 4

2. (a) C. In this problem, we are looking at linear regression in a one-dimensional case. We are looking
at what happens when we added a positive constant α to all the x’s and a constant β to all the y’s to
see how the solution to the linear regression problem will change. The constraint of w1α ̸= β says
that the constants we are adding will not simply ”slide” the points along the line y = w1x + β1.
Since this is the case, the intercept of the solution will change (as an example think of just a perfect
line where you shift by α and β). The slope of the solution will not change since all points are
shifting uniformly (again the simplest case is a perfect line).

(b) In general, by duplicating the data, the coefficients will generally change. This can actually be seen
as a form of weighted linear regression, the duplicated rows are considered more important, as they
will appear multiple times in objective function to be minimized.

3. (a) ℓ(w) = 1
N

N∑
i=1

ℓ(i)(w) = 1
N

N∑
i=1

log(cosh(wTx(i) − y(i)))

(b) ∂ℓ(i)(w)
∂wj

= 1
cosh(wTx(i)−y(i))

·∂ cosh(wTx(i)−y(i))
∂wj

= sinh(wTx(i)−y(i))

cosh(wTx(i)−y(i))
·∂w

Tx(i)−y(i)

∂wj
= sinh(wTx(i)−y(i))

cosh(wTx(i)−y(i))
·

x
(i)
j(
tanh(wTx(i)−y(i)) ·x(i)j and e(w

T x(i)−y(i))−e−(wT x(i)−y(i))

e(w
T x(i)−y(i))+e(w

T x(i)−y(i))
·x(i)j are also correct

)
since sinh(x) =

ex−e−x

2

(c) sinh(wTx(i)−y(i))

cosh(wTx(i)−y(i))
· x(i) =

(
tanh(wTx(i) − y(i))

)
· x(i)

(d) w = zeros(k)
grad = zeros(k)
for i in range(N):

grad = grad + gradient[i] / N
w = w - 0.1 * grad

5 Regularization
1. C

2. For a feature dimension on which the training data is separable, if positive feature values increase
the probability of a positive class label, then we can always increase the log-likelihood by increasing
the corresponding weight because this will increase the probability (likelihood) of positive labels and
decrease the probability of negative labels. If negative feature values increase the probability of a
positive class label, then we can similarly always increase the log-likelihood by driving the weight to
negative infinity.

3. Option 2, 3 are correct. 1 refers to ℓ0 regularization.

Page 5

6 Neural Network Warm-up
1. False

2. (a) A, B, and C; linear layers or layers with no activation function can be collapsed to make equivalent
neural networks.

(b) B

(c) True; even though these two models are effectively the same (the linear layer does not add any
expressiveness to g or any classifier that g learns, f can also learn), there’s no guarantee that at
convergence, they will learn the same or equally good classifiers so it very well can be the case that
g achieves a lower training loss.

3. A; trimming is not guaranteed to help or hurt: it tends to decrease overfitting (removing edges makes
the model simpler) but it could be that your original neural network was appropriately or even underfit
so trimming could increase the validation loss. Note the key caveat that you trimmed at least one edge;
if you were not forced to trim any edges, then the trimming procedure could not increase the validation
loss as the original neural network would be a valid option.

7 Example Feed Forward and Backpropagation
1. (a) 4

(b) 3

(c) αx(1)

(d) B. Append a value of 1 to be the first entry of z

(e) ŷ =


eb1

eb1+eb2+eb3

eb2

eb1+eb2+eb3

eb3

eb1+eb2+eb3


2. (a)

∂ℓ

∂ŷi
= −yi

ŷi

Page 6

(b) The chain rule gives ∂ℓ
∂bk

=
∑

l
∂ℓ
∂ŷl

∂ŷl
∂bk

= −
∑

l yl(I[k = l]− ŷk) = −(
∑

l ylI[k = l]− ŷk
∑

l yl) =
−(yk − ŷk). Note that y is a one-hot encoding vector, and thus

∑
l yl = 1. We know to include

the sum over yl because, from examining the computation graph and tracing back the arrows, bk
depends on all yl due to the definition of the softmax.

∂ℓ

∂bk
=
∑
l

∂ℓ

∂ŷl

∂ŷl
∂bk

∂ℓ

∂ŷl
= −yl

ŷl

= −
∑
l

yl (I[k = l]− ŷk)

= −

(
yk −

∑
l

ylŷk

)

= −

(
yk − ŷk

∑
l

yl

) ∑
l

yl = 1

= ŷk − yk

(c)

∂ℓ

∂βkj
=

∂ℓ

∂bk

∂bk
∂βkj

=
∂ℓ

∂bk
zj

∂ℓ

∂β
=

∂ℓ

∂b
zT

(d) C. The forward pass does not compute βk,0 as a function of α, so the backward pass does not need
to compute ∂ℓ

∂α as a function of ∂ℓ
∂βk,0

.

(e)

∂ℓ

∂zj
=
∑
k

∂ℓ

∂bk

∂bk
∂zj

=
∑
k

∂ℓ

∂bk
β∗
kj

∂ℓ

∂z
= (β∗)T

∂ℓ

∂b

(f)
∂ℓ

∂zj

∂zj
∂aj

=
∂ℓ

∂zj
zj(1− zj)

(g)

∂ℓ

∂αji
=

∂ℓ

∂aj

∂aj
∂αji

=
∂ℓ

∂aj
x
(1)
i

∂ℓ

∂α
=

∂ℓ

∂a
x(1)T

Page 7

	MLE/MAP
	Logistic Regression: Example
	Logistic Regression: Adversarial Attack
	Linear Regression
	Regularization
	Neural Network Warm-up
	Example Feed Forward and Backpropagation

