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10-301/10-601 Introduction to Machine Learning (Summer 2025)
http://www.cs.cmu.edu/˜hchai2/courses/10601
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TAs: Andy, Canary, Michael, Sadrishya, and Neural the Narwhal

Summary These questions are meant to prepare you for the upcoming quiz on Decision Trees, kNNs,
Model Selection and Perceptrons. You’ll first work through some information theory basics and terminology
before “learning” a Decision Tree on paper. You’ll also visually explore how to learn a Decision Tree on
real-valued features. Then, you’ll compare how decision trees and kNN relate, work through some simple
kNN examples, think about how to correctly select the hyperparameter k and analyze the behavior of the
perceptron learning algorithm in a variety of settings.

Note These questions are entirely optional; you do not need to submit your answers to these questions.
However, at least 50% of the questions that will appear in your workshop quiz will be identical or nearly
identical to questions in this document. Thus, we recommend you to at least attempt every question.
Furthermore, we highly encourage you to work in groups to solve these questions: because you are not
being directly assessed on your solutions, feel free to share solutions and discuss ideas with your peers.

We encourage you to work on this study guide regularly throughout the week; in particular, this
study guide is organized in sections where each section corresponds to a particular day’s lectures. Here is
our recommended schedule for working on this study guide:

1. Mutual Information - after Monday’s (5/12) lectures

2. Depth and Pruning - after Tuesday’s (5/13) lectures

3. Our First Tree - after Tuesday’s (5/13) lectures

4. Real-valued Decision Trees - after Tuesday’s (5/13) lectures

5. Decision Trees and kNNs - after Wednesday’s (5/14) lectures

6. k-Nearest Neighbors - after Wednesday’s (5/14) lectures

7. Perceptron - after Thursday’s (5/15) lectures
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1 Mutual Information
1. H(X) = −

∑6
x=1(

1
6) log2(

1
6) = log2(6)

2. I(X;Y ) = H(X)−H(X | Y ) so I(X;Y ) is 0 if and only if X and Y are independent.
Mathematically, H(Y | X) = H(Y ) making I(X;Y ) go to 0.
Intuitively, this is because if X and Y are independent, knowing one tells you nothing about the other
and vice versa, so their mutual information is 0.

2 Depth and Pruning
1. The depth of the tree is 1

2. The depth of the tree- is 4. The depth of node X1 is 0 and the depth of X5 is 2.

3. A.

The higher this threshold value is, the lesser nodes/smaller depth the decision tree contains.

4. B.

Pruning tends to increase the training error and decrease the test error.

3 Our First Tree
1. H(Y) = -68 ∗ log2(68)−

2
8 ∗ log2(28) ≈ 0.811

2. • H(Y | X1 = sunny) = −[13 ∗ log2(13) +
2
3 ∗ log2(23)] ≈ 0.918

• H(Y | X1 = rain) = 0

• H(Y | X1 = overcast) = 0

=⇒ H(Y | X1) = [38 ∗ 0.918 + 3
8 ∗ 0 + 2

8 ∗ 0] ≈ 0.344
=⇒ I(Y ;X1) ≈ 0.811− 0.344 = 0.467

3. • H(Y | X2 = hot) = −[13 ∗ log2(13) +
2
3 ∗ log2(23)] ≈ 0.918

• H(Y | X2 = cool) = 0

• H(Y | X2 = mild) = −[34 ∗ log2(34) +
1
4 ∗ log2(14)] ≈ 0.811

=⇒ H(Y | X2) = [38 ∗ 0.918 + 1
8 ∗ 0 + 4

8 ∗ 0.811] ≈ 0.75
=⇒ I(Y ;X2) ≈ 0.811− 0.75 = 0.061

4. • H(Y | X3 = high) = −[12 ∗ log2(12) +
1
2 ∗ log2(12)] = 1

• H(Y | X2 = normal) = 0

=⇒ H(Y | X3) = [48 ∗ 1.0 + 4
8 ∗ 0] = 0.5

=⇒ I(Y ;X3) ≈ 0.811− 0.5 = 0.311

5. X1, because this has the highest mutual information.
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6. The sub-datasets D(X1=rain) and D(X1=overcast) are pure. So we need to split only on the sub-dataset
D(X1=sunny).

H(Y(X1=sunny)) = −1
3 ∗ log2(13)−

2
3 ∗ log2(23) ≈ 0.918

For attribute X2,

• H(Y(X1=sunny) | X2 = hot) = 0

• H(Y(X1=sunny) | X2 = cool) = 0

• H(Y(X1=sunny) | X2 = mild) = −[12 ∗ log2(12) +
1
2 ∗ log2(12)] = 1

=⇒ H(Y(X1=sunny) | X2) = [23 ∗ 1.0 + 1
3 ∗ 0] ≈ 0.67

=⇒ I(Y(X1=sunny);X2) ≈ 0.918− 0.67 ≈ 0.25

For attribute X3,

• H(Y(X1=sunny) | X3 = high) = 0

• H(Y(X1=sunny) | X3 = normal) = 0

=⇒ H(Y(X1=sunny) | X3) = [23 ∗ 0 + 1
3 ∗ 0] = 0

=⇒ I(Y(X1=sunny);X3) ≈ 0.918

Thus, we would split on attribute X3.

7. The complete decision tree is shown below

X1

X3

no yes

yes yes

su
nn

y

hi
gh

norm
al

rain
overcast

4 Real-valued Decision Trees
1. 1

2. 1− ( 8
10 ∗ (−5

8 ∗ log2(58)−
3
8 ∗ log2(38)) +

2
10 ∗ 0) ≈ 0.236

3. 0.2; Achievable by a few different stumps e.g., X1 < 3.5 or X1 < 2

4. True
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5 Decision Trees and kNNs
1. (a) Yes. One way is to choose each t = x(i)+x(j)

2 for consecutive i, j, forming a decision tree with
N − 1 splits.

(b) A, B, E. Any 1-NN with non-vertical or non-horizontal decision boundaries cannot have an equiv-
alent decision tree. For instance, it is impossible for two points that aren’t perfectly vertical or
horizontal.

A and B have vertical/horizontal boundaries. And 1-NN on E can be decomposed into vertical/hor-
izontal boundaries as well.

6 k Nearest Neighbors
1. (a) 0. The training error rate of 1-nn model is always 0.

(b) 4
14 . For knn with k = 6, the decision boundary looks roughly like H shown below, which points
above H to be categorized as “-” and below as “+”. In this case, 4 out of 14 training data is mis-
classified, meaning the training error rate is 4

14 .

2. (a) False.

(b) A. It’s better, because by merely lowering the training error does not always guarantee a generalized
model. Instead, this may lead us with an overfitted model. In model selection, we prefer cross-
validation technique to find better hyperparameters.

(c) No, this is not a good idea. Test data should never be exposed to the machine learning model
before test time. Using this data to tune the hyper-parameter might bias the model towards hyper-
parameters that perform better on the test data than on generalized, unseen data.

3. A, B and D.

1. True, in general larger k gives smoother decision boundary, because the testing data is less suscep-
tible to individual points.

2. True, to reduce the impact of noise or outliers is equivalent to prevent models from overfitting,
which can be achieved by increasing k.

3. False, if we make k too large, we could end up underfitting the data.

4. True, cross-validation is a great way to determine hyperparameters, k in this case.
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7 Perceptron
1. False. The perceptron makes two mistakes on the sequence

(−1, 2,−), (1, 1,+), (−1, 0,−)

but one mistake on the permutation

(1, 1,+), (−1, 2,−), (−1, 0,−)

2. A and B. The AND function and OR function are linearly separable - they can be learned by lines with
slope -1. The XOR function, however, evaluates to negative at the first and third quadrant, and positive
at the second and fourth quadrant. No linear decision boundary could be drawn in this situation.

3. [18, 30, 63, 61], perceptron only updates on mistakes so add or subtract to w based on y-label and num
mistakes.

4. C. According to the perceptron algorithm, we update the perceptron only if y(θ ·x) < 0, and the update
is

θ(1) = θ + yx.

where x = (x1, x2) such that x1−x2 = 0 and θ = (3, 5). If we ignore the label of this dataset and only
consider the set of covariates S = {(x1, x2) : x1−x2 = 0}, we observe that for any θ(t), we must have
that θ(t) − θ ∈ S.

(−1, 1)− (3, 5) = (−4,−4) ∈ S

(4, 6)− (3, 5) = (1, 1) ∈ S

(−3, 0)− (3, 5) = (−6, 5) /∈ S

(−6,−4)− (3, 5) = (−9,−9) ∈ S

Hence the answer is C.

5. The solution here is A and B. When the vector [-2,1] the positive side has 3 mistakes and the negative
side has 2 mistakes (5 mistakes in total). For [2,-1] which is when the vector is pointing to the opposite
direction, the positive side has 4 mistakes and the negative side has 4 mistakes yielding a total of 8
mistakes.

6. B. The perceptron mistake bound is given by (R/γ)2, where R is radius of sphere that contains all
points in the dataset. That is, R is the maximum distance from any point to the origin. Therefore we
see that B is true.
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